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Introduction

• Oracle Spatial and PostGIS are two of the most mature 
implementations of a spatial type system for their relevant host 
databases.

• PostgreSQL/PostGIS is increasing in strength,  EnterpriseDB is 
aiming to convert businesses from Oracle to PostgreSQL but....
– You rarely see, on a customer's servers, only ONE DB product;
– Learn to live together: Not Either/Or but Both/And!

• This talk provides an understanding of:
– Oracle Locator/Spatial concepts and components;
– Relevant standards in common;

• Metadata structures;
• Type system.

– Tolerance model
– Programmatic and framework issues.
– Helping you understand each, and know how to migrate 

between or minimise solutions that can be deployed on both 
databases.



  

Oracle Releases

• Oracle's first version of “Spatial” was released 
with 8iR1 (8.1.5) back in 1999 (10 years ago).
– OpenGIS SFS for SQL was released in 1999;
– No initial support for OGC/SQLMM object type:

• “Singly inherited”?
• Timing of releases?

– Had 6 major releases since some with, without 
major spatial releases:

• 9i Releases 1 (9iR1) and 2 (9iR2)
• 10g Releases 1 (10gR1) and 2 (10gR2)
• 11g Releases 1 (11gR1) and 2 (11gR2)



  

Oracle Spatial Functionality Releases...
8i Basic SDO_Geometry type & Quad Tree indexing

9iR1 Geodetic, 
Linear Referencing System, 
RTree Spatial index,
Spatial Aggregate functions,
Partitioned Indexes

9iR2 Various function additions and changes eg SDO_AGGR_UNION, SDO_AGGR_MBR

10gR1 Annotation Point
GeoRaster, 
Network Data Model,
Geocoding,
Topology, 
Spatial Analysis and Mining (Spatial correlation , colocation, clustering, prospecting, binning)
Various function additions and changes.

10gR2 EPSG SRS, WKB in/out, 
Various function additions and changes.

11gR1 TIN
SOLIDS
POINTCLOUDS,
3D RTree indexing and some 3D query operators.

11gR2 SDO_AGGR_SET_UNION (cf STRM ST_Union)
Various function additions and changes.
KML in/out; GML in



  

Oranges and Lemons

• Oracle's “spatial” functionality is available in two 
versions: Locator and Spatial.
– Locator is a free feature of Oracle Database 

available on all versions (XE, SE1, SE, and EE) and 
releases from 9iR1 that implements the basics of a 
vector type system that includes:

• An object type (SDO_GEOMETRY) that describes and supports any 
type of geometry (whole earth geometry model for geodetic data 
introduced in 9iR1 – PostGIS end of 2009);

• A spatial indexing capability (Quad Tree and RTree);
• Spatial index aware operators for performing spatial queries;
• Some geometry functions (not geoprocessing eg SDO_Union) and the 

SDO_AGGR_MBR spatial aggregate function;
• Coordinate system support for explicit geometry transformations; 
• Spatial utility functions (eg Rectify_Geometry cf SQL Server 2008's 

MakeValid)



  

Oranges and Lemons (Cont)

• Spatial includes:
– All Spatial Functions e.g. SDO_Union and aggregates e.g. 

SDO_AGGR_UNION;
– Linear Referencing System (c.f. PostGIS LRS functions);
– GeoRaster Storage, Indexing and Querying (cf WKT Raster beta);
– Network Data Model;
– Topology Data Model (c.f. PostGIS Topology beta implementation);
– Spatial Analysis and Mining (SAM) Functions;
– Spatial Routing Engine (c.f. PostGIS pgRouting);
– Geocoding Engine;
– 3-D Geometry, Surface, and Point Cloud Storage; Index and Query;
– Semantic Content Storage, Indexing and Querying (RDF/OWL 

Support).
• Cannot be purchased separately!
• Can only be deployed on Enterprise Edition (EE)!



  

Parallel Processing, Partitioning 
and Replication

• Oracle’s native spatial data type allows for:
– Partitioning support for spatial indexes;
– Parallel index builds for spatial R-tree indexes;
– Parallel spatial queries;
– Replication

• Some features available only with Enterprise 
Edition.
– And so, $$$$$$$$$$$$$$$$$$$$$



  

Software that supports Oracle

• Oracle's focus, as always, is on sales and marketing.
• Technology Partners and Spatial Integrator Partners are all 

commercial businesses.
• But FOSS4G software also supports Oracle:

– OGR, GDAL, FDO, uDig, GeoTools, Quantum GIS, GeoServer, Deegree, 
MapServer, MapGuide OS....



Standards Bodies ...

• We look to those standards bodies that are defining 
applicable standards to control/support design, use 
and uptake of spatial databases:
– Open Geospatial Consortium (OGC) Inc 
– International Standards Organisation (ISO)
– W3C Consortium (XML/SVG…)

• Help to “level the playing fields” for open source 
projects.

• Oracle participates actively on technical committees 
eg authoring/editing of SQL/MM standards by Dr 
John Herring.



Applicable Spatial Standards...

OpenGIS Document Title Version Type

OpenGIS Implementation Specification for Geographic Information - Simple 
Feature Access  (ISO 19125)
Part 1: Common Architecture

Supplies the common feature model for use by applications that will use the 
Simple Features data stores and access interfaces.

Part 2: SQL option
    Provides a standard SQL implementation of the abstract model in Part 1 that
    supports storage, retrieval, query and update of features.  Includes 
    Normalised, Binary and “SQL with Geometry Types”1 (Says nothing about
   physical storage format) implementation options

1.2 IS

• OpenGIS Standards (Latest)

• ISO Standards (Latest)
ISO Document Title
ISO/IEC CD 13249-3:2006(E) – Information technology – Database languages – SQL Multimedia and 
Application Packages ― Part 3: Spatial, May 15, 2006. 

ISO 19107, Geographic information ⎯ Spatial schema 

ISO 19111, Geographic information ⎯ Spatial referencing by coordinates 
(Implemented in the EPSG collection of geodetic systems)

IS - Implementation Specification
DIS - Deprecated  Implementation Specification
SAP - Specification Application Profile



  

OGC Standards Compliance

• Both original SDO_* and ST_* implementations 
have been submitted to standards bodies.



  

Prefixes and Naming ...

• “ST/ST_” Prefix....
– Seems to be universally accepted in PostGIS, QSL 

Server 2008, Oracle SQL/MM type, Informix...
– OGC SFS 1.2 does not mention it.
– ISO/TC 211 N 2393 (19125-2), “7.2.2.2 Language 

constructs” says:

“Note: Class names in SQL/MM carry a "ST_" prefix. This is optional 
and implementations may chose to drop this prefix as has been done in 
various places in this standard.”

– ISO/IEC 13249 “3.2.2 Notations provided in Part 3” says:

“This part of ISO/IEC 13249 uses the prefix 'ST_' for user-defined type, 
attribute and SQL-invoked routine names.”



  

Prefixes and Naming - Search

• Oracle's standard search operators that use 
spatial indexes are of the following form:
– SDO_<predicate> eg

• SDO_ANYINTERACT (ie ST_Intersects)
• SDO_CONTAINS
• SDO_COVEREDBY
• SDO_COVERS
• SDO_EQUAL
• SDO_FILTER (Primary Filter)
• SDO_INSIDE
• SDO_NN
• SDO_ON
• SDO_OVERLAPBDYDISJOINT
• SDO_OVERLAPBDYINTERSECT
• SDO_OVERLAPS
• SDO_RELATE (generic wrapper not 9matrix)
• SDO_TOUCH



  

Metadata.....



Schema for Geometry Types
ISO/TC 211 6.2 Architecture — SQL implementation using 
Geometry Types, 6.2.1 Overview:

“This standard defines a schema for the management of feature table, 
Geometry, and Spatial Reference System information in an SQL-
implementation with a Geometry Type extension.”



  

Geometry Columns – The Standard

• Eg OCG (1.2):
CREATE TABLE GEOMETRY_COLUMNS (  F_TABLE_CATALOG   CHARACTER VARYING NOT NULL,  F_TABLE_SCHEMA    CHARACTER VARYING NOT NULL,  F_TABLE_NAME      CHARACTER VARYING NOT NULL,  F_GEOMETRY_COLUMN CHARACTER VARYING NOT NULL,  G_TABLE_CATALOG   CHARACTER VARYING NOT NULL,  G_TABLE_SCHEMA    CHARACTER VARYING NOT NULL,  G_TABLE_NAME      CHARACTER VARYING NOT NULL,  STORAGE_TYPE      INTEGER,  GEOMETRY_TYPE     INTEGER,  COORD_DIMENSION   INTEGER,  MAX_PPR           INTEGER,  SRID              INTEGER NOT NULL  REFERENCES SPATIAL_REF_SYS,  CONSTRAINT GC_PK PRIMARY KEY   (F_TABLE_CATALOG, F_TABLE_SCHEMA,     F_TABLE_NAME, F_GEOMETRY_COLUMN))

• For the GEOMETRY_TYPE column, the “use of a non-leaf Geometry 
class name from the Geometry Object Model for a geometry column 
implies that domain of the column corresponds to instances of the 
class and all of its subclasses” [OGC 06-104r3, 7.1.3.3 Field 
description, Page 29]



  

Geometry_Columns - PostGIS
• CREATE TABLE geometry_columns(  f_table_catalog character varying(256) NOT NULL,  f_table_schema character varying(256) NOT NULL,  f_table_name character varying(256) NOT NULL,  f_geometry_column character varying(256) NOT NULL,  coord_dimension integer NOT NULL,  srid integer NOT NULL,  "type" character varying(30) NOT NULL,  CONSTRAINT geometry_columns_pk PRIMARY KEY    (f_table_catalog, f_table_schema,      f_table_name,    f_geometry_column));
• Notes:

– Doesn't bother with G_* columns
– Geometry Type column is named “type” and is a character field 

not integer.
– PostGIS's Management Functions for this table eg 

AddGeometryColumns does not insert “super-type” into “type” 
when mixed geometry types appear in table as per standard. So, 
MultiPolygon does not include “Polygon” as it is required to do.



  

Geometry_Columns - Oracle
• CREATE TABLE MDSYS.OGIS_GEOMETRY_COLUMNS (  F_TABLE_SCHEMA    VARCHAR2(64),   F_TABLE_NAME      VARCHAR2(64),   F_GEOMETRY_COLUMN VARCHAR2(64), 

  G_TABLE_SCHEMA    VARCHAR2(64), 
  G_TABLE_NAME      VARCHAR2(64),   STORAGE_TYPE      NUMBER,   GEOMETRY_TYPE     NUMBER,   COORD_DIMENSION   NUMBER,   MAX_PPR           NUMBER,   SRID              NUMBER,   CONSTRAINT FK_SRID FOREIGN KEY (SRID) REFERENCES    MDSYS.OGIS_SPATIAL_REFERENCE_SYSTEMS (SRID) )

• There is no global GEOMETRY_COLUMNS view only Oracle-specific 
USER_GEOMETRY_COLUMNS and ALL_GEOMETRY_COLUMNS 
public views  based on MDSYS.OGC_GEOMETRY_COLUMNS table.

• The MAX_PPR and G_TABLE_SCHEMA/G_TABLE_NAME columns are 
no longer of any use as Oracle's implementation of the Normalised model 
has long been dropped.

– Note: Oracle does not have concept of a CATALOG so 
F_TABLE_CATALOG was never supported.

• STORAGE_TYPE should always be NULL = geometry types 
implementation (OGC SFS SQL 1.2)

• Geometry_Type column is declared as a Number/Integer



  

PostGIS Management Functions....

• In Oracle there are no equivalent Management Functions for metadata 
management to these in PostGIS (not that these are hard to write):

– AddGeometryColumn
• Adds a geometry column to an existing table.

– DropGeometryColumn
• Removes a geometry column from a spatial table.

– DropGeometryTable
• Drops a table and GEOMETRY_COLUMNS  reference.

– Populate_Geometry_Columns
• Ensures geometry column metadata exists in GEOMETRY_COLUMNS and 

table has appropriate spatial constraints (not requirement of standard).
– Probe_Geometry_Columns

• Scans all tables with PostGIS geometry constraints and adds them to the 
GEOMETRY_COLUMNS table if they are not there.

– UpdateGeometrySRID
• Updates the SRID of all features in a geometry column, 

GEOMETRY_COLUMNS metadata and srid table constraint



  

xxx_SDO_GEOM_METADATA

• No Oracle functions know of, or use, MDSYS.OGC_GEOMETRY_COLUMNS
• Rather, all use Oracle-specific metadata tables, the most basic being:
• CREATE TABLE mdsys.sdo_geom_metadata_table (   owner varchar2(32),   table_name varchar2(32),   column_name varchar2(32),   diminfo mdsys.sdo_dim_array,   srid number );

– Needed mainly for creation of indexes.
– Populated by user or client software.

• CREATE TYPE sdo_dim_array AS VARRAY(4) OF mdsys.sdo_dim_element;
– Has an sdo_dim_element for each dimension ie X, Y, Z or M

• CREATE TYPE sdo_dim_element AS OBJECT (  sdo_dimname varchar2(32),  sdo_lb number,  sdo_ub number,  sdo_tolerance number );
– Holds range of all data in table/column for that dimension.
– Some GIS software use diminfo as an accurate extent of all data in table.
– Also, precision (see later) of the data in those ranges.



  

SDO_DIM_ARRAY - Example
• SELECT *   FROM user_sdo_geom_metadata  WHERE table_name = 'TAS_LOCALITY';

X Range

Y Range

}

}



  

Geometry Columns (3)

• Oracle does not automatically synchronise GEOMETRY_COLUMNS as DML is 
executed against ****_SDO_GEOM_METADATA views.

• Manual DML executed against actual OGC_GEOMETRY_COLUMNS table or 
views generates errors.

• One approach is to build public viewcalled GEOMETRY_COLUMNS over 
existing metadata (value-added within functions) as follows:

– CREATE VIEW GEOMETRY_COLUMNS ASSELECT asgm.owner        as F_TABLE_SCHEMA,       asgm.table_name   as F_TABLE_NAME,       asgm.column_name  as F_GEOMETRY_COLUMN,       NULL              as STORAGE_TYPE,       Get_Geometry_Type(asgm.owner,                         asgm.table_name,                         asgm.column_name)                         as GEOMETRY_TYPE,       (SELECT count(*)           FROM TABLE(asgm.diminfo)       )                 as COORD_DIMENSION,       asgm.SRID         as SRID  FROM ALL_SDO_GEOM_METADATA asgm;
(Note: I have implemented the function Get_Geometry_Type() that returns the correct OGC Geometry_Type – see my website for details.)

– CREATE PUBLIC SYNONYM geometry_columns FOR codesys.geometry_columns;



  

Spatial Reference Systems

• OGC:
– CREATE TABLE SPATIAL_REF_SYS (  SRID INTEGER NOT NULL PRIMARY KEY,  AUTH_NAME VARCHAR (256),  AUTH_SRID INTEGER,  SRTEXT VARCHAR (2048))

• Oracle:
– CREATE TABLE MDSYS.OGIS_SPATIAL_REFERENCE_SYSTEMS (  SRID      NUMBER,   AUTH_NAME VARCHAR2(100),   AUTH_SRID NUMBER,   SRTEXT    VARCHAR2(1000), 

  SRNUM     NUMBER,   CONSTRAINT PK_SRID PRIMARY KEY (SRID))
– This table is NOT POPULATED and,
– There is no global view called SPATIAL_REF_SYS 

based on it.



  

Spatial Reference Systems

• Oracle does provide the following table:
CREATE TABLE MDSYS.SDO_CS_SRS (  SRID      INTEGER NOT NULL PRIMARY KEY,  AUTH_NAME VARCHAR2(256),   AUTH_SRID INTEGER,   WKTEXT    VARCHAR2(2046),   CS_NAME   VARCHAR2(80),
  CS_BOUNDS MDSYS.SDO_GEOMETRY )

• And associated tables such as:
– SDO_DATUMS, SDO_ELLIPSOIDS, SDO_COORD_AXES, SDO_COORD_OPS. etc.

• Oracle's SRS tables are populated by default.
– Since 10g Oracle's SRS is based on EPSG.

• There is no global view called SPATIAL_REF_SYS defined on 
this or the previous table.

• Oracle does not automatically synchronise 
OGC_SPATIAL_REFERENCE_SYSTEMS as DML is executed 
against mdsys.SDO_CS_SRS and other tables.



  

SPATIAL_REF_SYS

• We can, however, create our own 
SPATIAL_REF_SYS view in Oracle as follows:
– CREATE VIEW SPATIAL_REF_SYS AS SELECT SRID,        AUTH_NAME,        AUTH_SRID,        WKTEXT AS SRTEXT   FROM MDSYS.SDO_CS_SRS;

• One could create a global synonym for this view 
as follows:
– CREATE PUBLIC SYNONYM spatial_ref_sysFOR codesys.spatial_ref_sys;
– CREATE PUBLIC SYNONYM spatial_reference_systemsFOR codesys.spatial_ref_sys;



  

INFORMATION_SCHEMA

• Oracle does not support this aspect of SQL92 
standard
– Needed for some open source software eg ogr
– Can get a basic implementation from the 

SourceForge project “Oracle Information Schema” 
(Lewis Cunningham) at 
http://sourceforge.net/projects/ora-info-schema/ 

• This, plus active GEOMETRY_COLUMNS and 
SPATIAL_REF_SYS objects makes ogr tools like 
ogrinfo & ogr2ogr work with ODBC driver (don't 
need compiled OCI version)!

http://sourceforge.net/projects/ora-info-schema/


  

Storage Format and API...



  

Database Storage Formats...

• Should we care what storage format is used by a 
database vendor or type manufacturer?
– While often useful, it is, frankly, irrelevant. 
– Chris Date and Hugh Darwen wrote in their book 

“Foundation for Future Database Systems: The Third 
Manifesto”:
“What we are saying is that, in the relational world, a domain 
is a data type, system- or user-defined, whose values are 
manipulable solely by means of the operators defined for the type in 
question (and whose internal representation can be 
arbitrarily complex but is hidden from the user).” [Emphasis 
added by myself]

– No one really worries about how a number is stored (ie IEEE) 
within a database as long as we can create, modify, delete and 
access the data via appropriate languages and standards to a 
desired precision.



  

Spatial Database Storage Formats...

• For those that think storage format matters, PostGIS uses 
“extended” WKB and Oracle uses openly accessible 
numbers and arrays (SQL/3 components).

• WKT and WKB are provided primarily as interchange and 
not storage formats.

• From Standard (SFS 1.2 Part 1 Common Architecture):
“The Well-known Binary Representation for Geometry (WKBGeometry) 
provides a portable representation of a geometric object as a contiguous 
stream of bytes.”

“The Well-known Binary Representation for Geometry is obtained by 
serializing a geometric object as a sequence of numeric types drawn from 
the set {Unsigned Integer, Double} and then serializing each numeric 
type as a sequence of bytes using one of two well defined, standard, 
binary representations for numeric types...”



Standards: Orientation & 
Organisation

• OGC/SQLMM standards also define things like 
orientation of vertices in a polygon:
– Anti-clockwise for all outer-shells
– Clockwise for all inner-shells

• And polygon inversion/exversion 
and bowties



Oracle's Original UDT 
Implementation ...

SQL> desc mdsys.sdo_geometry Name                                      Null?    Type ----------------------------------------- -------- ------------------------- SDO_GTYPE                                          NUMBER SDO_SRID                                           NUMBER SDO_POINT                                          MDSYS.SDO_POINT_TYPE SDO_ELEM_INFO                                      MDSYS.SDO_ELEM_INFO_ARRAY SDO_ORDINATES                                      MDSYS.SDO_ORDINATE_ARRAY
METHOD------ MEMBER FUNCTION GET_GTYPE RETURNS NUMBER
METHOD------ MEMBER FUNCTION GET_DIMS RETURNS NUMBER
... etc …
METHOD------ MEMBER FUNCTION ST_COORDDIM RETURNS NUMBER
METHOD------ FINAL CONSTRUCTOR FUNCTION SDO_GEOMETRY RETURNS SELF AS RESULT Argument Name                  Type                    In/Out Default? ------------------------------ ----------------------- ------ -------- WKT                            CLOB                    IN SRID                           NUMBER                  IN     DEFAULT
... etc …

• There is no inheritance (no SDO_Polygon, SDO_Point etc)
• Very limited number of methods
• Most “processing” done in PL/SQL packages: SDO_GEOM and SDO_UTIL.

SQL> desc sdo_ordinate_array SDO_ORDINATE_ARRAY VARRAY(1048576) OF NUMBER



SQLMM Type System / Object Model

Note: Inheritance
Note: Class names in SQL/MM carry a "ST_" prefix. This is 
optional and implementations may chose to drop this prefix.



CREATE TYPE ST_Geometry AS ( ST_PrivateDimension SMALLINT DEFAULT -1, ST_PrivateCoordinateDimension SMALLINT DEFAULT 2,ST_PrivateIs3D SMALLINT DEFAULT 0, ST_PrivateIsMeasured SMALLINT DEFAULT 0) NOT INSTANTIABLE NOT FINAL 
METHOD ST_Dimension()RETURNS SMALLINT LANGUAGE SQL DETERMINISTIC CONTAINS SQL RETURNS NULL ON NULL INPUT

CREATE TYPE ST_PointUNDER ST_Geometry AS  (   ST_PrivateX   DOUBLE PRECISION DEFAULT NULL,   ST_PrivateY   DOUBLE PRECISION DEFAULT NULL,   ST_PrivateZ   DOUBLE PRECISION DEFAULT NULL,   ST_PrivateM   DOUBLE PRECISION DEFAULT NULL ) INSTANTIABLE NOT FINAL METHOD ST_X() RETURNS DOUBLE PRECISION LANGUAGE SQL DETERMINISTIC CONTAINS SQL RETURNS NULL ON NULL INPUTetc

ISO SQL/MM Part 3 Spatial ADT

“Standard does not 
prescribe a particular ADT 
mechanism, but specifies 
the behaviour of the ADT 
through a specification of 
interfaces that must be 
supported”



What's in a name

• UDT – User Data Type
• ADT – Abstract Data Type
• Both refer to a data type that extends the SQL type system. 

– Both can define table column types
• Stored values are instances of the ADT/UDT. 

– SQL functions may be declared to manipulate 
ADT/UDT values. 

• Difference between implementations is important where 
you want to inherit from the geometry object as required 
by "ISO Geometry Object Model"
– ADTs allow sub-typing, UDTs do not.
– UDTs generally use existing data types for storage, ADTs can 

create new storage formats.
(Concrete examples soon...)



Oracle's SQL/MM ADT 
Implementation

CREATE OR REPLACE TYPE ST_GEOMETRY AS OBJECT (  GEOM SDO_GEOMETRY,...  MEMBER FUNCTION ST_CoordDim RETURN SMALLINT,  MEMBER FUNCTION ST_IsValid RETURN INTEGER,...  STATIC FUNCTION FROM_WKT(wkt CLOB) RETURN ST_GEOMETRY,...   MEMBER FUNCTION ST_Envelope RETURN ST_Geometry,  MEMBER FUNCTION ST_GeometryType RETURN VARCHAR2,  MEMBER FUNCTION ST_Buffer(d NUMBER) RETURN ST_Geometry,  MEMBER FUNCTION ST_Intersects(g2 ST_Geometry) RETURN Integer,  MEMBER FUNCTION ST_Intersection(g2 ST_Geometry) RETURN ST_Geometry ,  MEMBER FUNCTION ST_Union(g2 ST_Geometry) RETURN ST_Geometry ) NOT FINAL

CREATE OR REPLACE TYPE ST_CURVE UNDER ST_GEOMETRY (  OVERRIDING MEMBER FUNCTION ST_Dimension RETURN Integer,  MEMBER FUNCTION ST_NumPoints RETURN INTEGER,  MEMBER FUNCTION ST_PointN(aposition INTEGER) RETURN ST_Point,  MEMBER FUNCTION ST_IsClosed RETURN Integer,  MEMBER FUNCTION ST_MidPointRep RETURN ST_Point_Array,  MEMBER FUNCTION ST_StartPoint RETURN ST_Point,  MEMBER FUNCTION ST_EndPoint RETURN ST_Point,  OVERRIDING MEMBER FUNCTION ST_IsSimple RETURN Integer,  MEMBER FUNCTION ST_IsRing RETURN Integer,  MEMBER FUNCTION ST_Length RETURN NUMBER) NOT FINAL
create or replace TYPE ST_LINESTRINGUNDER ST_CURVE (  CONSTRUCTOR FUNCTION ST_LINESTRING(apointarray ST_Point_Array)               RETURN SELF AS RESULT,... RETURN SELF AS RESULT,
  OVERRIDING MEMBER FUNCTION ST_IsSimple RETURN Integer 
...



Indexing...

• ST_* search functions like ST_Intersects are NOT 
indexed in Oracle. 
– Only underlying SDO_Geometry object.

• So...
SELECT *  FROM <table> a WHERE a.geometry.ST_Intersects(<search geometry>) = 1;
– Will not use Rtree index.

• But...
SELECT *  FROM <table> a WHERE SDO_Filter(a.geometry.geom,<search_geometry>) = 'TRUE'   AND a.geometry.ST_Intersects(<search geometry>) = 1;
– Will use index and be efficient.



  

Precision Model...



  

Precision Model

• An important aspect of Oracle Spatial for 
PostGIS users is in understanding Oracle's 
precision model.

• There is a lot written about Oracle's precision 
model that is wrong. For example:
– I come from the ESRI and Oracle world. Both ArcSDE and 

Oracle Spatial have user-defined spatial tolerance for each 
spatially enabled layer. This ensures that coordinates are 
exact, down to the last decimal (or integer for ArcSDE).

• That Oracle Spatial has a spatial tolerance 
associated with each sdo_geometry column in a 
table (which is not a layer) is correct.

• Strictly speaking, as the Oracle documentation 
points out, a tolerance is not the same as 
coordinate precision! 



  

Precision Model - Continued

• Many think Oracle's tolerance describes the precision of an actual 
ordinate. 
– That is if the tolerance is 0.05, an ordinate 123.45678 should 

actually be 123.5.
• However, the Oracle documentation describes tolerance as:

“Tolerance reflects the distance that two points can be apart and still be 
considered the same (for example, to accommodate rounding errors).”
– This is different from an exact number of digits in an ordinate. 

• A tolerance of 0.05 means 5cm between two vertices: 
– If the distance between the ordinates is less than that the 

vertices are considered to be equal.
– So, if the actual distance between geometries is 0.846049894. 

• An SDO_TOLERANCE value of 0.005 will cause the Oracle 
SDO_Distance function to return a distance of 0.846049894

• While an SDO_TOLERANCE value of 0.5 will return 0.0.

• (Oracle's documentation tells users to set tolerances to be half the actual real world 
tolerance: so, 0.05 means 0.1m. For those who know how rounding is traditionally 
done in the C language, this is why tolerances are specified in this way.)



  

Precision Model - Reality

• You can store anything in the number that make up 
an ordinate of a geometry!
SELECT mdsys.OGC_LineStringFromText('LINESTRING(1.123456789 1.3445837283728232, 2.4322323534 2.232303998398)',NULL).Get_WKT() |  as geom   FROM dual a;
GEOM-------------------------------------------LINESTRING (1.123456789 1.3445837283728233, 2.4322323534 2.232303998398)

• Oracle has no automatic mechanism for applying 
the tolerance stored in USER_SDO_GEOM_METADATA 
during transactions such that the ordinates are 
rounded to a stated precision.

• It is up to your client application or your own 
programming of triggers to ensure that ordinate 
precision remains exact: some do, some don't.



  

Precision Model - Final
• Having said all that, in my programming of Oracle (see my free PL/SQL packages) I 

actually take the second view in how I handle the comparison of co-ordinates. 
– I prefer to round precisely because when I view the data in textual form 

(ST_AsText etc) I want to see that it is stored to a stated ordinate (numeric) 
precision. 

– So, in my packages, I have programmed a function called Tolerance (with 
wrapper called ST_SnapToGrid) which will round the ordinates to the stated 
precision.

• In the following, you will note that I can construct a geometry with any number of 
digits but you have to write a function yourself to round them to your data's actual 
precision (in this case 1cm):

SELECT ST_GEOM.ST_SnapToGrid(a.geom,0.005).GET_WKT() as geom  FROM (SELECT mdsys.OGC_LineStringFromText(   'LINESTRING(1.12345 1.3445,2.43534 2.03998398)',NULL) as geom           FROM dual) a;
GEOM
---------------------------------------
LINESTRING (1.12 1.34, 2.44 2.04)

• To do this is PostGIS you need to use use ST_SnapToGrid():
SELECT ST_AsText(ST_SnapToGrid(a.geom,0.05,0.05)) as geom  FROM (SELECT ST_GeomFromText(                      'LINESTRING(1.12345 1.3445,2.43534 2.03998398)',                      0)               as geom) a;
geomtext------------------------LINESTRING(1.1 1.35,2.45 2.05)



  

Programming...



  

Cross-Platform Porting....

• I do all my programming of Oracle using PL/SQL 
and the standard SDO_Geometry data type.

• However, it is perfectly possible to minimise the 
effort required when switching between Oracle and 
PostGIS.
– For example, if we want the first vertex of a linestring 

geometry in Oracle (no native Oracle function):
  SELECT MDSYS.SDO_GEOMETRY(2001,NULL,
                            SDO_POINT_TYPE(v.x,v.y,v.z),NULL,NULL)         as first_point    FROM TABLE(           MDSYS.SDO_UTIL.GETVERTICES(             MDSYS.SDO_GEOMETRY(2002,NULL,NULL,                                MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),                                MDSYS.SDO_ORDINATE_ARRAY(1,1,2,2)))              ) v   WHERE rownum < 2;

– With PostGIS this is easy – use the ST_StartPoint function:
SELECT ST_AsText(ST_StartPoint(ST_LineFromText('LINESTRING(1 1,2 2)',28355)));



  

Cross Platform (2)

• How do we bring these two approaches together?
– Well, one way is to use Oracle's ST_Geometry 

implementation as it contains an ST_StartPoint method:
SELECT MDSYS.OGC_AsText(mdsys.OGC_LinestringFromText('LINESTRING(1 1,2 2)',28355).ST_StartPoint())   FROM DUAL;
or
SELECT TREAT(MDSYS.ST_Linestring.From_WKT('LINESTRING(1 1,2 2)',28355)                as MDSYS.ST_LineString).ST_StartPoint().Get_WKT()   FROM dual;

– But what if the function doesn't exist in Oracle's SQL/MM 
implementation e.g. PostGIS's ST_RemovePoint? 
geometry ST_RemovePoint(geometry linestring, integer offset);

– Then I use PL/SQL to implement a function.
• I use native Oracle methods to implement the function but
• I include two overloaded methods:

– One for the native SDO_Geometry type
– The other using Oracle's ST_Geometry type



  

Cross Platform (3)
• CREATE OR REPLACE PACKAGE GEOMAUTHID CURRENT_USERAS…    Function SDO_RemovePoint(p_geometry  IN MDSYS.SDO_Geometry,                           p_position  IN Number)    Return MDSYS.SDO_Geometry Deterministic;

  Function ST_RemovePoint(p_geometry  IN MDSYS.ST_Geometry,                          p_position  IN Number)    Return MDSYS.ST_Geometry Deterministic;
…END Network;

• CREATE OR REPLACE PACKAGE BODY GEOMAS…  Function ST_RemovePoint(p_geometry  IN MDSYS.ST_Geometry,                          p_position  IN Number)    RETURN MDSYS.ST_Geometry   Is  Begin    Return MDSYS.ST_Geometry.FROM_SDO_GEOM(                    SDO_RemovePoint( p_geometry.GET_SDO_GEOM(),                                     p_position ));  End ST_RemovePoint;
• Where SDO_RemovePoint is the function that is written using native 

SDO_Geometry processing and methods.



  

Dot Notation...

• PostGIS is not implemented as an inheritable type 
system so one executes methods on a geometry 
object as follows:
SELECT ST_Length(ST_LineFromText('LINESTRING(1 1,2 2)',28355));

• With Oracle, if you use the ST_* type system you 
have to use “dot”notation:
SELECT mdsys.OGC_LineStringFromText(         'LINESTRING(1 1,2 2)',28355).ST_Length()  FROM DUAL;

• But if you use the ordinary SDO_Geometry, while 
there are a limited set of methods for the type most 
processing is done using utility functions.
SELECT mdsys.sdo_geom.Sdo_Length(mdsys.sdo_geometry(         'LINESTRING(1 1,2 2)',28355),0.05)  FROM DUAL;



  

Hiding names....

• Don't like “mdsys.sdo_geom.sdo_length”? Then hide it:
create function ST_Length( p_geometry  in sdo_geometry,                           p_tolerance in number ) return number DETERMINISTICAsBegin  Return mdsys.sdo_geom.sdo_length(p_geometry,p_tolerance);End ST_Length;

• Which you can use as follows:
SELECT ST_Length(sdo_geometry('LINESTRING(1 1,2 2)',28355),0.05)   FROM DUAL;

• This “looks” a lot more like PostGIS
• Could be done for all Oracle packaged functions that are 

functionally the same.



  

ST_* Issue...

• Now, when one database implements things “properly” 
the other causes “problems”.

• For example, in Oracle the SQL/MM functions 
ST_GeometryN() and ST_NumGeometries() does not exist!

• In PostGIS one would like to write (but can't):
SELECT ST_GeometryN(m.mline,p.*) as Line
  FROM (SELECT ST_MLineFromText(                 'MULTILINESTRING((1 1,2 2),(3 3,4 4))',                 28355) as mline        ) m,       generate_series(1,ST_NumGeometries(m.mline),1) p;

• One can do this in Oracle because they have implemented 
an ST_Geometries method in ST_Geometries that returns 
an array of Geometries:

• SELECT b.*  FROM TABLE(SELECT a.geom.ST_Geometries()               FROM (SELECT mdsys.OGC_MultiLineStringFromText(                'MULTILINESTRING((1 1,2 2),(3 3,4 4))', 28355)                            as geom                        FROM dual) a             ) b;
• This plays to Oracle's strengths but isn't an implementation of the 

SQL/MM standard.



  

Complain or....

• To the lack of ST_GeometryN and 
OGC_MultiLineStringFromText we can:
– Complain....
– Or do something about it.

• Do the former, but implement the latter:
create or replace function ST_GeometryN       ( p_geometry in mdsys.ST_GeomCollection,          p_num      in integer )  return mdsys.st_geometry deterministic as  v_geom mdsys.st_geometry;begin  SELECT c.geom    INTO v_geom    FROM (SELECT rownum as rin,                  mdsys.ST_Geometry.From_SDO_Geom(g.geom)                     as geom            FROM TABLE(SELECT p_geometry.ST_Geometries()                         FROM DUAL                       ) g          ) c   WHERE rin = p_num;  RETURN v_geom;  EXCEPTION    WHEN NO_DATA_FOUND THEN       RETURN NULL;end ST_GeometryN;



  

Complain (2)...
• ST_NumGeometries:

Create Function ST_NumGeometries (                       p_geometry in mdsys.ST_GeomCollection )  Return Integer Deterministic As  v_count integer;Begin  SELECT count(*)    INTO v_count    FROM TABLE(SELECT p_geometry.ST_Geometries() FROM DUAL) g;  RETURN v_count;  EXCEPTION    WHEN NO_DATA_FOUND THEN       RETURN NULL;End ST_NumGeometries;
• Throw in some public synonyms:

create public synonym ST_LinestringFromText for mdsys.OGC_LinestringFromText;
create public synonym ST_MultiLinestringFromText for mdsys.OGC_MultiLinestringFromText;

• And it all starts to look just a bit... familiar!
SELECT ST_GeometryN(b.mline,n.column_value)
  FROM (SELECT ST_MultiLineStringFromText(                     'MULTILINESTRING((1 1,2 2),(3 3,4 4))',                     28355)                  as mline           FROM dual ) b,       TABLE(codesys.geom.generate_series(1,
                            ST_NumGeometries(b.mline),1)) n;



  

Complain (3)

• Oracle's implementation of ST_Geometry is declared 
NOT FINAL so, theoretically, it would be possible to 
extend the type system as follows:

ALTER TYPE mdsys.ST_GeomCollection CASCADEADD MEMBER FUNCTION ST_GeometryN ( p_geometry in mdsys.ST_GeomCollection,
                  p_num in integer )   RETURN  mdsys.ST_Geometry DETERMINISTIC,ADD MEMBER FUNCTION ST_NumGeometries ( p_geometry in  mdsys.ST_GeomCollection )   RETURN Integer DETERMINISTIC;

• But one might meet support issues with Oracle.



  

Framework/Database issues....

• Programmatic problems often have nothing to do with the 
spatial data type.

• For example, one can, in a SELECT statement, in PostGIS 
you cannot call a function (generate_series) using the 
values from a table (m).
SELECT ST_PointN(m.line,p.*) as point  FROM (SELECT ST_LineFromText('LINESTRING(1 1,2 2)',28355)               as mline        ) m,       generate_series(1,ST_NPoints(m.mline),1) p;

• As you get this error (what is called “Functional Row 
Expansion”): 
ERROR: function expression in FROM cannot refer to other relations of same query level

• Whereas, in Oracle, this is not a problem:
SELECT a.geom.ST_PointN(g.COLUMN_VALUE)  FROM (SELECT mdsys.OGC_LineStringFromText(               'LINESTRING(1 1,2 2)', 28355)                as geom           FROM dual       ) a,       TABLE(codesys.geom.generate_series(                           1,a.geom.ST_NumPoints(),1)) g



  

Issues (2)

• pg/PLSQL is like PL/SQL but it is not the same!
• Can't overload functions/procedures in Oracle as you 

can in PostgreSQL
– PACKAGEd functions can be overloades

• Only EnterpriseDB has packages!
• Casting is a part of life in PostGIS but you can only do 

it via the CAST() SQL function in Oracle.
• SELECT … FROM DUAL;
• CHECK constraint limitations (can't do this in Oracle):

– CHECK ( ST_Area(the_geom) > 10 )
• SQL Analytics, rownum, TABLE() ....
• Materialised Views, Schemas/Tablespaces... 
• Redo and undo logs, nologging, direct path inserts...

– The list is endless!



  

Open/Closed Source...

• Oracle may be closed source but your code can 
be open source...
– I make my PL/SQL code available for free.

• Lewis's INFORMATION_SCHEMA on 
SourceForge is a good example.

• So, share it around!



  

Summary...

• To know how to port from one database to the other 
or support both in a production environment 
demands knowledge of each product.

• The rich set of tools any database provides offers 
much scope for improving portability: views, 
functions, synoynms etc.

• I have given you some methods for increasing 
portability of the spatial side of Oracle/PostGIS;
– Synonyms, views, function wrappers, ST_* type etc;

• However, the majority of issues are not spatial
– The spatial “design pattern” is pretty standard, it's just 

the names used that cause “problems”!
– Major issues are endemic:

• i.e., fundamentally a part of a database's architecture.



  

Questions...

• Thank you for being patient....

Any questions?
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