

Simon Greener,
The SpatialDB Advisor

simon@spatialdbadvisor.com
http://www.spatialdbadvisor.com

Oracle Spatial for PostGIS
Users – Understand, Isolate
and Migrate

mailto:simon@spatialdbadvisor.com
http://www.spatialdbadvisor.com/

Introduction

• Oracle Spatial and PostGIS are two of the most mature
implementations of a spatial type system for their relevant host
databases.

• PostgreSQL/PostGIS is increasing in strength, EnterpriseDB is
aiming to convert businesses from Oracle to PostgreSQL but....
– You rarely see, on a customer's servers, only ONE DB product;
– Learn to live together: Not Either/Or but Both/And!

• This talk provides an understanding of:
– Oracle Locator/Spatial concepts and components;
– Relevant standards in common;

• Metadata structures;
• Type system.

– Tolerance model
– Programmatic and framework issues.
– Helping you understand each, and know how to migrate

between or minimise solutions that can be deployed on both
databases.

Oracle Releases

• Oracle's first version of “Spatial” was released
with 8iR1 (8.1.5) back in 1999 (10 years ago).
– OpenGIS SFS for SQL was released in 1999;
– No initial support for OGC/SQLMM object type:

• “Singly inherited”?
• Timing of releases?

– Had 6 major releases since some with, without
major spatial releases:

• 9i Releases 1 (9iR1) and 2 (9iR2)
• 10g Releases 1 (10gR1) and 2 (10gR2)
• 11g Releases 1 (11gR1) and 2 (11gR2)

Oracle Spatial Functionality Releases...
8i Basic SDO_Geometry type & Quad Tree indexing

9iR1 Geodetic,
Linear Referencing System,
RTree Spatial index,
Spatial Aggregate functions,
Partitioned Indexes

9iR2 Various function additions and changes eg SDO_AGGR_UNION, SDO_AGGR_MBR

10gR1 Annotation Point
GeoRaster,
Network Data Model,
Geocoding,
Topology,
Spatial Analysis and Mining (Spatial correlation , colocation, clustering, prospecting, binning)
Various function additions and changes.

10gR2 EPSG SRS, WKB in/out,
Various function additions and changes.

11gR1 TIN
SOLIDS
POINTCLOUDS,
3D RTree indexing and some 3D query operators.

11gR2 SDO_AGGR_SET_UNION (cf STRM ST_Union)
Various function additions and changes.
KML in/out; GML in

Oranges and Lemons

• Oracle's “spatial” functionality is available in two
versions: Locator and Spatial.
– Locator is a free feature of Oracle Database

available on all versions (XE, SE1, SE, and EE) and
releases from 9iR1 that implements the basics of a
vector type system that includes:

• An object type (SDO_GEOMETRY) that describes and supports any
type of geometry (whole earth geometry model for geodetic data
introduced in 9iR1 – PostGIS end of 2009);

• A spatial indexing capability (Quad Tree and RTree);
• Spatial index aware operators for performing spatial queries;
• Some geometry functions (not geoprocessing eg SDO_Union) and the

SDO_AGGR_MBR spatial aggregate function;
• Coordinate system support for explicit geometry transformations;
• Spatial utility functions (eg Rectify_Geometry cf SQL Server 2008's

MakeValid)

Oranges and Lemons (Cont)

• Spatial includes:
– All Spatial Functions e.g. SDO_Union and aggregates e.g.

SDO_AGGR_UNION;
– Linear Referencing System (c.f. PostGIS LRS functions);
– GeoRaster Storage, Indexing and Querying (cf WKT Raster beta);
– Network Data Model;
– Topology Data Model (c.f. PostGIS Topology beta implementation);
– Spatial Analysis and Mining (SAM) Functions;
– Spatial Routing Engine (c.f. PostGIS pgRouting);
– Geocoding Engine;
– 3-D Geometry, Surface, and Point Cloud Storage; Index and Query;
– Semantic Content Storage, Indexing and Querying (RDF/OWL

Support).
• Cannot be purchased separately!
• Can only be deployed on Enterprise Edition (EE)!

Parallel Processing, Partitioning
and Replication

• Oracle’s native spatial data type allows for:
– Partitioning support for spatial indexes;
– Parallel index builds for spatial R-tree indexes;
– Parallel spatial queries;
– Replication

• Some features available only with Enterprise
Edition.
– And so, $$$$$$$$$$$$$$$$$$$$$

Software that supports Oracle

• Oracle's focus, as always, is on sales and marketing.
• Technology Partners and Spatial Integrator Partners are all

commercial businesses.
• But FOSS4G software also supports Oracle:

– OGR, GDAL, FDO, uDig, GeoTools, Quantum GIS, GeoServer, Deegree,
MapServer, MapGuide OS....

Standards Bodies ...

• We look to those standards bodies that are defining
applicable standards to control/support design, use
and uptake of spatial databases:
– Open Geospatial Consortium (OGC) Inc
– International Standards Organisation (ISO)
– W3C Consortium (XML/SVG…)

• Help to “level the playing fields” for open source
projects.

• Oracle participates actively on technical committees
eg authoring/editing of SQL/MM standards by Dr
John Herring.

Applicable Spatial Standards...

OpenGIS Document Title Version Type

OpenGIS Implementation Specification for Geographic Information - Simple
Feature Access (ISO 19125)
Part 1: Common Architecture

Supplies the common feature model for use by applications that will use the
Simple Features data stores and access interfaces.

Part 2: SQL option
 Provides a standard SQL implementation of the abstract model in Part 1 that
 supports storage, retrieval, query and update of features. Includes
 Normalised, Binary and “SQL with Geometry Types”1 (Says nothing about
 physical storage format) implementation options

1.2 IS

• OpenGIS Standards (Latest)

• ISO Standards (Latest)
ISO Document Title
ISO/IEC CD 13249-3:2006(E) – Information technology – Database languages – SQL Multimedia and
Application Packages ― Part 3: Spatial, May 15, 2006.

ISO 19107, Geographic information ⎯ Spatial schema

ISO 19111, Geographic information ⎯ Spatial referencing by coordinates
(Implemented in the EPSG collection of geodetic systems)

IS - Implementation Specification
DIS - Deprecated Implementation Specification
SAP - Specification Application Profile

OGC Standards Compliance

• Both original SDO_* and ST_* implementations
have been submitted to standards bodies.

Prefixes and Naming ...

• “ST/ST_” Prefix....
– Seems to be universally accepted in PostGIS, QSL

Server 2008, Oracle SQL/MM type, Informix...
– OGC SFS 1.2 does not mention it.
– ISO/TC 211 N 2393 (19125-2), “7.2.2.2 Language

constructs” says:

“Note: Class names in SQL/MM carry a "ST_" prefix. This is optional
and implementations may chose to drop this prefix as has been done in
various places in this standard.”

– ISO/IEC 13249 “3.2.2 Notations provided in Part 3” says:

“This part of ISO/IEC 13249 uses the prefix 'ST_' for user-defined type,
attribute and SQL-invoked routine names.”

Prefixes and Naming - Search

• Oracle's standard search operators that use
spatial indexes are of the following form:
– SDO_<predicate> eg

• SDO_ANYINTERACT (ie ST_Intersects)
• SDO_CONTAINS
• SDO_COVEREDBY
• SDO_COVERS
• SDO_EQUAL
• SDO_FILTER (Primary Filter)
• SDO_INSIDE
• SDO_NN
• SDO_ON
• SDO_OVERLAPBDYDISJOINT
• SDO_OVERLAPBDYINTERSECT
• SDO_OVERLAPS
• SDO_RELATE (generic wrapper not 9matrix)
• SDO_TOUCH

Metadata.....

Schema for Geometry Types
ISO/TC 211 6.2 Architecture — SQL implementation using
Geometry Types, 6.2.1 Overview:

“This standard defines a schema for the management of feature table,
Geometry, and Spatial Reference System information in an SQL-
implementation with a Geometry Type extension.”

Geometry Columns – The Standard

• Eg OCG (1.2):
CREATE TABLE GEOMETRY_COLUMNS (F_TABLE_CATALOG CHARACTER VARYING NOT NULL, F_TABLE_SCHEMA CHARACTER VARYING NOT NULL, F_TABLE_NAME CHARACTER VARYING NOT NULL, F_GEOMETRY_COLUMN CHARACTER VARYING NOT NULL, G_TABLE_CATALOG CHARACTER VARYING NOT NULL, G_TABLE_SCHEMA CHARACTER VARYING NOT NULL, G_TABLE_NAME CHARACTER VARYING NOT NULL, STORAGE_TYPE INTEGER, GEOMETRY_TYPE INTEGER, COORD_DIMENSION INTEGER, MAX_PPR INTEGER, SRID INTEGER NOT NULL REFERENCES SPATIAL_REF_SYS, CONSTRAINT GC_PK PRIMARY KEY (F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN))

• For the GEOMETRY_TYPE column, the “use of a non-leaf Geometry
class name from the Geometry Object Model for a geometry column
implies that domain of the column corresponds to instances of the
class and all of its subclasses” [OGC 06-104r3, 7.1.3.3 Field
description, Page 29]

Geometry_Columns - PostGIS
• CREATE TABLE geometry_columns(f_table_catalog character varying(256) NOT NULL, f_table_schema character varying(256) NOT NULL, f_table_name character varying(256) NOT NULL, f_geometry_column character varying(256) NOT NULL, coord_dimension integer NOT NULL, srid integer NOT NULL, "type" character varying(30) NOT NULL, CONSTRAINT geometry_columns_pk PRIMARY KEY (f_table_catalog, f_table_schema, f_table_name, f_geometry_column));
• Notes:

– Doesn't bother with G_* columns
– Geometry Type column is named “type” and is a character field

not integer.
– PostGIS's Management Functions for this table eg

AddGeometryColumns does not insert “super-type” into “type”
when mixed geometry types appear in table as per standard. So,
MultiPolygon does not include “Polygon” as it is required to do.

Geometry_Columns - Oracle
• CREATE TABLE MDSYS.OGIS_GEOMETRY_COLUMNS (F_TABLE_SCHEMA VARCHAR2(64), F_TABLE_NAME VARCHAR2(64), F_GEOMETRY_COLUMN VARCHAR2(64),

 G_TABLE_SCHEMA VARCHAR2(64),
 G_TABLE_NAME VARCHAR2(64), STORAGE_TYPE NUMBER, GEOMETRY_TYPE NUMBER, COORD_DIMENSION NUMBER, MAX_PPR NUMBER, SRID NUMBER, CONSTRAINT FK_SRID FOREIGN KEY (SRID) REFERENCES MDSYS.OGIS_SPATIAL_REFERENCE_SYSTEMS (SRID))

• There is no global GEOMETRY_COLUMNS view only Oracle-specific
USER_GEOMETRY_COLUMNS and ALL_GEOMETRY_COLUMNS
public views based on MDSYS.OGC_GEOMETRY_COLUMNS table.

• The MAX_PPR and G_TABLE_SCHEMA/G_TABLE_NAME columns are
no longer of any use as Oracle's implementation of the Normalised model
has long been dropped.

– Note: Oracle does not have concept of a CATALOG so
F_TABLE_CATALOG was never supported.

• STORAGE_TYPE should always be NULL = geometry types
implementation (OGC SFS SQL 1.2)

• Geometry_Type column is declared as a Number/Integer

PostGIS Management Functions....

• In Oracle there are no equivalent Management Functions for metadata
management to these in PostGIS (not that these are hard to write):

– AddGeometryColumn
• Adds a geometry column to an existing table.

– DropGeometryColumn
• Removes a geometry column from a spatial table.

– DropGeometryTable
• Drops a table and GEOMETRY_COLUMNS reference.

– Populate_Geometry_Columns
• Ensures geometry column metadata exists in GEOMETRY_COLUMNS and

table has appropriate spatial constraints (not requirement of standard).
– Probe_Geometry_Columns

• Scans all tables with PostGIS geometry constraints and adds them to the
GEOMETRY_COLUMNS table if they are not there.

– UpdateGeometrySRID
• Updates the SRID of all features in a geometry column,

GEOMETRY_COLUMNS metadata and srid table constraint

xxx_SDO_GEOM_METADATA

• No Oracle functions know of, or use, MDSYS.OGC_GEOMETRY_COLUMNS
• Rather, all use Oracle-specific metadata tables, the most basic being:
• CREATE TABLE mdsys.sdo_geom_metadata_table (owner varchar2(32), table_name varchar2(32), column_name varchar2(32), diminfo mdsys.sdo_dim_array, srid number);

– Needed mainly for creation of indexes.
– Populated by user or client software.

• CREATE TYPE sdo_dim_array AS VARRAY(4) OF mdsys.sdo_dim_element;
– Has an sdo_dim_element for each dimension ie X, Y, Z or M

• CREATE TYPE sdo_dim_element AS OBJECT (sdo_dimname varchar2(32), sdo_lb number, sdo_ub number, sdo_tolerance number);
– Holds range of all data in table/column for that dimension.
– Some GIS software use diminfo as an accurate extent of all data in table.
– Also, precision (see later) of the data in those ranges.

SDO_DIM_ARRAY - Example
• SELECT * FROM user_sdo_geom_metadata WHERE table_name = 'TAS_LOCALITY';

X Range

Y Range

}

}

Geometry Columns (3)

• Oracle does not automatically synchronise GEOMETRY_COLUMNS as DML is
executed against ****_SDO_GEOM_METADATA views.

• Manual DML executed against actual OGC_GEOMETRY_COLUMNS table or
views generates errors.

• One approach is to build public viewcalled GEOMETRY_COLUMNS over
existing metadata (value-added within functions) as follows:

– CREATE VIEW GEOMETRY_COLUMNS ASSELECT asgm.owner as F_TABLE_SCHEMA, asgm.table_name as F_TABLE_NAME, asgm.column_name as F_GEOMETRY_COLUMN, NULL as STORAGE_TYPE, Get_Geometry_Type(asgm.owner, asgm.table_name, asgm.column_name) as GEOMETRY_TYPE, (SELECT count(*) FROM TABLE(asgm.diminfo)) as COORD_DIMENSION, asgm.SRID as SRID FROM ALL_SDO_GEOM_METADATA asgm;
(Note: I have implemented the function Get_Geometry_Type() that returns the correct OGC Geometry_Type – see my website for details.)

– CREATE PUBLIC SYNONYM geometry_columns FOR codesys.geometry_columns;

Spatial Reference Systems

• OGC:
– CREATE TABLE SPATIAL_REF_SYS (SRID INTEGER NOT NULL PRIMARY KEY, AUTH_NAME VARCHAR (256), AUTH_SRID INTEGER, SRTEXT VARCHAR (2048))

• Oracle:
– CREATE TABLE MDSYS.OGIS_SPATIAL_REFERENCE_SYSTEMS (SRID NUMBER, AUTH_NAME VARCHAR2(100), AUTH_SRID NUMBER, SRTEXT VARCHAR2(1000),

 SRNUM NUMBER, CONSTRAINT PK_SRID PRIMARY KEY (SRID))
– This table is NOT POPULATED and,
– There is no global view called SPATIAL_REF_SYS

based on it.

Spatial Reference Systems

• Oracle does provide the following table:
CREATE TABLE MDSYS.SDO_CS_SRS (SRID INTEGER NOT NULL PRIMARY KEY, AUTH_NAME VARCHAR2(256), AUTH_SRID INTEGER, WKTEXT VARCHAR2(2046), CS_NAME VARCHAR2(80),
 CS_BOUNDS MDSYS.SDO_GEOMETRY)

• And associated tables such as:
– SDO_DATUMS, SDO_ELLIPSOIDS, SDO_COORD_AXES, SDO_COORD_OPS. etc.

• Oracle's SRS tables are populated by default.
– Since 10g Oracle's SRS is based on EPSG.

• There is no global view called SPATIAL_REF_SYS defined on
this or the previous table.

• Oracle does not automatically synchronise
OGC_SPATIAL_REFERENCE_SYSTEMS as DML is executed
against mdsys.SDO_CS_SRS and other tables.

SPATIAL_REF_SYS

• We can, however, create our own
SPATIAL_REF_SYS view in Oracle as follows:
– CREATE VIEW SPATIAL_REF_SYS AS SELECT SRID, AUTH_NAME, AUTH_SRID, WKTEXT AS SRTEXT FROM MDSYS.SDO_CS_SRS;

• One could create a global synonym for this view
as follows:
– CREATE PUBLIC SYNONYM spatial_ref_sysFOR codesys.spatial_ref_sys;
– CREATE PUBLIC SYNONYM spatial_reference_systemsFOR codesys.spatial_ref_sys;

INFORMATION_SCHEMA

• Oracle does not support this aspect of SQL92
standard
– Needed for some open source software eg ogr
– Can get a basic implementation from the

SourceForge project “Oracle Information Schema”
(Lewis Cunningham) at
http://sourceforge.net/projects/ora-info-schema/

• This, plus active GEOMETRY_COLUMNS and
SPATIAL_REF_SYS objects makes ogr tools like
ogrinfo & ogr2ogr work with ODBC driver (don't
need compiled OCI version)!

http://sourceforge.net/projects/ora-info-schema/

Storage Format and API...

Database Storage Formats...

• Should we care what storage format is used by a
database vendor or type manufacturer?
– While often useful, it is, frankly, irrelevant.
– Chris Date and Hugh Darwen wrote in their book

“Foundation for Future Database Systems: The Third
Manifesto”:
“What we are saying is that, in the relational world, a domain
is a data type, system- or user-defined, whose values are
manipulable solely by means of the operators defined for the type in
question (and whose internal representation can be
arbitrarily complex but is hidden from the user).” [Emphasis
added by myself]

– No one really worries about how a number is stored (ie IEEE)
within a database as long as we can create, modify, delete and
access the data via appropriate languages and standards to a
desired precision.

Spatial Database Storage Formats...

• For those that think storage format matters, PostGIS uses
“extended” WKB and Oracle uses openly accessible
numbers and arrays (SQL/3 components).

• WKT and WKB are provided primarily as interchange and
not storage formats.

• From Standard (SFS 1.2 Part 1 Common Architecture):
“The Well-known Binary Representation for Geometry (WKBGeometry)
provides a portable representation of a geometric object as a contiguous
stream of bytes.”

“The Well-known Binary Representation for Geometry is obtained by
serializing a geometric object as a sequence of numeric types drawn from
the set {Unsigned Integer, Double} and then serializing each numeric
type as a sequence of bytes using one of two well defined, standard,
binary representations for numeric types...”

Standards: Orientation &
Organisation

• OGC/SQLMM standards also define things like
orientation of vertices in a polygon:
– Anti-clockwise for all outer-shells
– Clockwise for all inner-shells

• And polygon inversion/exversion
and bowties

Oracle's Original UDT
Implementation ...

SQL> desc mdsys.sdo_geometry Name Null? Type --- -------- ------------------------- SDO_GTYPE NUMBER SDO_SRID NUMBER SDO_POINT MDSYS.SDO_POINT_TYPE SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY
METHOD------ MEMBER FUNCTION GET_GTYPE RETURNS NUMBER
METHOD------ MEMBER FUNCTION GET_DIMS RETURNS NUMBER
... etc …
METHOD------ MEMBER FUNCTION ST_COORDDIM RETURNS NUMBER
METHOD------ FINAL CONSTRUCTOR FUNCTION SDO_GEOMETRY RETURNS SELF AS RESULT Argument Name Type In/Out Default? ------------------------------ ----------------------- ------ -------- WKT CLOB IN SRID NUMBER IN DEFAULT
... etc …

• There is no inheritance (no SDO_Polygon, SDO_Point etc)
• Very limited number of methods
• Most “processing” done in PL/SQL packages: SDO_GEOM and SDO_UTIL.

SQL> desc sdo_ordinate_array SDO_ORDINATE_ARRAY VARRAY(1048576) OF NUMBER

SQLMM Type System / Object Model

Note: Inheritance
Note: Class names in SQL/MM carry a "ST_" prefix. This is
optional and implementations may chose to drop this prefix.

CREATE TYPE ST_Geometry AS (ST_PrivateDimension SMALLINT DEFAULT -1, ST_PrivateCoordinateDimension SMALLINT DEFAULT 2,ST_PrivateIs3D SMALLINT DEFAULT 0, ST_PrivateIsMeasured SMALLINT DEFAULT 0) NOT INSTANTIABLE NOT FINAL
METHOD ST_Dimension()RETURNS SMALLINT LANGUAGE SQL DETERMINISTIC CONTAINS SQL RETURNS NULL ON NULL INPUT

CREATE TYPE ST_PointUNDER ST_Geometry AS (ST_PrivateX DOUBLE PRECISION DEFAULT NULL, ST_PrivateY DOUBLE PRECISION DEFAULT NULL, ST_PrivateZ DOUBLE PRECISION DEFAULT NULL, ST_PrivateM DOUBLE PRECISION DEFAULT NULL) INSTANTIABLE NOT FINAL METHOD ST_X() RETURNS DOUBLE PRECISION LANGUAGE SQL DETERMINISTIC CONTAINS SQL RETURNS NULL ON NULL INPUTetc

ISO SQL/MM Part 3 Spatial ADT

“Standard does not
prescribe a particular ADT
mechanism, but specifies
the behaviour of the ADT
through a specification of
interfaces that must be
supported”

What's in a name

• UDT – User Data Type
• ADT – Abstract Data Type
• Both refer to a data type that extends the SQL type system.

– Both can define table column types
• Stored values are instances of the ADT/UDT.

– SQL functions may be declared to manipulate
ADT/UDT values.

• Difference between implementations is important where
you want to inherit from the geometry object as required
by "ISO Geometry Object Model"
– ADTs allow sub-typing, UDTs do not.
– UDTs generally use existing data types for storage, ADTs can

create new storage formats.
(Concrete examples soon...)

Oracle's SQL/MM ADT
Implementation

CREATE OR REPLACE TYPE ST_GEOMETRY AS OBJECT (GEOM SDO_GEOMETRY,... MEMBER FUNCTION ST_CoordDim RETURN SMALLINT, MEMBER FUNCTION ST_IsValid RETURN INTEGER,... STATIC FUNCTION FROM_WKT(wkt CLOB) RETURN ST_GEOMETRY,... MEMBER FUNCTION ST_Envelope RETURN ST_Geometry, MEMBER FUNCTION ST_GeometryType RETURN VARCHAR2, MEMBER FUNCTION ST_Buffer(d NUMBER) RETURN ST_Geometry, MEMBER FUNCTION ST_Intersects(g2 ST_Geometry) RETURN Integer, MEMBER FUNCTION ST_Intersection(g2 ST_Geometry) RETURN ST_Geometry , MEMBER FUNCTION ST_Union(g2 ST_Geometry) RETURN ST_Geometry) NOT FINAL

CREATE OR REPLACE TYPE ST_CURVE UNDER ST_GEOMETRY (OVERRIDING MEMBER FUNCTION ST_Dimension RETURN Integer, MEMBER FUNCTION ST_NumPoints RETURN INTEGER, MEMBER FUNCTION ST_PointN(aposition INTEGER) RETURN ST_Point, MEMBER FUNCTION ST_IsClosed RETURN Integer, MEMBER FUNCTION ST_MidPointRep RETURN ST_Point_Array, MEMBER FUNCTION ST_StartPoint RETURN ST_Point, MEMBER FUNCTION ST_EndPoint RETURN ST_Point, OVERRIDING MEMBER FUNCTION ST_IsSimple RETURN Integer, MEMBER FUNCTION ST_IsRing RETURN Integer, MEMBER FUNCTION ST_Length RETURN NUMBER) NOT FINAL
create or replace TYPE ST_LINESTRINGUNDER ST_CURVE (CONSTRUCTOR FUNCTION ST_LINESTRING(apointarray ST_Point_Array) RETURN SELF AS RESULT,... RETURN SELF AS RESULT,
 OVERRIDING MEMBER FUNCTION ST_IsSimple RETURN Integer
...

Indexing...

• ST_* search functions like ST_Intersects are NOT
indexed in Oracle.
– Only underlying SDO_Geometry object.

• So...
SELECT * FROM <table> a WHERE a.geometry.ST_Intersects(<search geometry>) = 1;
– Will not use Rtree index.

• But...
SELECT * FROM <table> a WHERE SDO_Filter(a.geometry.geom,<search_geometry>) = 'TRUE' AND a.geometry.ST_Intersects(<search geometry>) = 1;
– Will use index and be efficient.

Precision Model...

Precision Model

• An important aspect of Oracle Spatial for
PostGIS users is in understanding Oracle's
precision model.

• There is a lot written about Oracle's precision
model that is wrong. For example:
– I come from the ESRI and Oracle world. Both ArcSDE and

Oracle Spatial have user-defined spatial tolerance for each
spatially enabled layer. This ensures that coordinates are
exact, down to the last decimal (or integer for ArcSDE).

• That Oracle Spatial has a spatial tolerance
associated with each sdo_geometry column in a
table (which is not a layer) is correct.

• Strictly speaking, as the Oracle documentation
points out, a tolerance is not the same as
coordinate precision!

Precision Model - Continued

• Many think Oracle's tolerance describes the precision of an actual
ordinate.
– That is if the tolerance is 0.05, an ordinate 123.45678 should

actually be 123.5.
• However, the Oracle documentation describes tolerance as:

“Tolerance reflects the distance that two points can be apart and still be
considered the same (for example, to accommodate rounding errors).”
– This is different from an exact number of digits in an ordinate.

• A tolerance of 0.05 means 5cm between two vertices:
– If the distance between the ordinates is less than that the

vertices are considered to be equal.
– So, if the actual distance between geometries is 0.846049894.

• An SDO_TOLERANCE value of 0.005 will cause the Oracle
SDO_Distance function to return a distance of 0.846049894

• While an SDO_TOLERANCE value of 0.5 will return 0.0.

• (Oracle's documentation tells users to set tolerances to be half the actual real world
tolerance: so, 0.05 means 0.1m. For those who know how rounding is traditionally
done in the C language, this is why tolerances are specified in this way.)

Precision Model - Reality

• You can store anything in the number that make up
an ordinate of a geometry!
SELECT mdsys.OGC_LineStringFromText('LINESTRING(1.123456789 1.3445837283728232, 2.4322323534 2.232303998398)',NULL).Get_WKT() | as geom FROM dual a;
GEOM---LINESTRING (1.123456789 1.3445837283728233, 2.4322323534 2.232303998398)

• Oracle has no automatic mechanism for applying
the tolerance stored in USER_SDO_GEOM_METADATA
during transactions such that the ordinates are
rounded to a stated precision.

• It is up to your client application or your own
programming of triggers to ensure that ordinate
precision remains exact: some do, some don't.

Precision Model - Final
• Having said all that, in my programming of Oracle (see my free PL/SQL packages) I

actually take the second view in how I handle the comparison of co-ordinates.
– I prefer to round precisely because when I view the data in textual form

(ST_AsText etc) I want to see that it is stored to a stated ordinate (numeric)
precision.

– So, in my packages, I have programmed a function called Tolerance (with
wrapper called ST_SnapToGrid) which will round the ordinates to the stated
precision.

• In the following, you will note that I can construct a geometry with any number of
digits but you have to write a function yourself to round them to your data's actual
precision (in this case 1cm):

SELECT ST_GEOM.ST_SnapToGrid(a.geom,0.005).GET_WKT() as geom FROM (SELECT mdsys.OGC_LineStringFromText('LINESTRING(1.12345 1.3445,2.43534 2.03998398)',NULL) as geom FROM dual) a;
GEOM

LINESTRING (1.12 1.34, 2.44 2.04)

• To do this is PostGIS you need to use use ST_SnapToGrid():
SELECT ST_AsText(ST_SnapToGrid(a.geom,0.05,0.05)) as geom FROM (SELECT ST_GeomFromText('LINESTRING(1.12345 1.3445,2.43534 2.03998398)', 0) as geom) a;
geomtext------------------------LINESTRING(1.1 1.35,2.45 2.05)

Programming...

Cross-Platform Porting....

• I do all my programming of Oracle using PL/SQL
and the standard SDO_Geometry data type.

• However, it is perfectly possible to minimise the
effort required when switching between Oracle and
PostGIS.
– For example, if we want the first vertex of a linestring

geometry in Oracle (no native Oracle function):
 SELECT MDSYS.SDO_GEOMETRY(2001,NULL,
 SDO_POINT_TYPE(v.x,v.y,v.z),NULL,NULL) as first_point FROM TABLE(MDSYS.SDO_UTIL.GETVERTICES(MDSYS.SDO_GEOMETRY(2002,NULL,NULL, MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1), MDSYS.SDO_ORDINATE_ARRAY(1,1,2,2)))) v WHERE rownum < 2;

– With PostGIS this is easy – use the ST_StartPoint function:
SELECT ST_AsText(ST_StartPoint(ST_LineFromText('LINESTRING(1 1,2 2)',28355)));

Cross Platform (2)

• How do we bring these two approaches together?
– Well, one way is to use Oracle's ST_Geometry

implementation as it contains an ST_StartPoint method:
SELECT MDSYS.OGC_AsText(mdsys.OGC_LinestringFromText('LINESTRING(1 1,2 2)',28355).ST_StartPoint()) FROM DUAL;
or
SELECT TREAT(MDSYS.ST_Linestring.From_WKT('LINESTRING(1 1,2 2)',28355) as MDSYS.ST_LineString).ST_StartPoint().Get_WKT() FROM dual;

– But what if the function doesn't exist in Oracle's SQL/MM
implementation e.g. PostGIS's ST_RemovePoint?
geometry ST_RemovePoint(geometry linestring, integer offset);

– Then I use PL/SQL to implement a function.
• I use native Oracle methods to implement the function but
• I include two overloaded methods:

– One for the native SDO_Geometry type
– The other using Oracle's ST_Geometry type

Cross Platform (3)
• CREATE OR REPLACE PACKAGE GEOMAUTHID CURRENT_USERAS… Function SDO_RemovePoint(p_geometry IN MDSYS.SDO_Geometry, p_position IN Number) Return MDSYS.SDO_Geometry Deterministic;

 Function ST_RemovePoint(p_geometry IN MDSYS.ST_Geometry, p_position IN Number) Return MDSYS.ST_Geometry Deterministic;
…END Network;

• CREATE OR REPLACE PACKAGE BODY GEOMAS… Function ST_RemovePoint(p_geometry IN MDSYS.ST_Geometry, p_position IN Number) RETURN MDSYS.ST_Geometry Is Begin Return MDSYS.ST_Geometry.FROM_SDO_GEOM(SDO_RemovePoint(p_geometry.GET_SDO_GEOM(), p_position)); End ST_RemovePoint;
• Where SDO_RemovePoint is the function that is written using native

SDO_Geometry processing and methods.

Dot Notation...

• PostGIS is not implemented as an inheritable type
system so one executes methods on a geometry
object as follows:
SELECT ST_Length(ST_LineFromText('LINESTRING(1 1,2 2)',28355));

• With Oracle, if you use the ST_* type system you
have to use “dot”notation:
SELECT mdsys.OGC_LineStringFromText('LINESTRING(1 1,2 2)',28355).ST_Length() FROM DUAL;

• But if you use the ordinary SDO_Geometry, while
there are a limited set of methods for the type most
processing is done using utility functions.
SELECT mdsys.sdo_geom.Sdo_Length(mdsys.sdo_geometry('LINESTRING(1 1,2 2)',28355),0.05) FROM DUAL;

Hiding names....

• Don't like “mdsys.sdo_geom.sdo_length”? Then hide it:
create function ST_Length(p_geometry in sdo_geometry, p_tolerance in number) return number DETERMINISTICAsBegin Return mdsys.sdo_geom.sdo_length(p_geometry,p_tolerance);End ST_Length;

• Which you can use as follows:
SELECT ST_Length(sdo_geometry('LINESTRING(1 1,2 2)',28355),0.05) FROM DUAL;

• This “looks” a lot more like PostGIS
• Could be done for all Oracle packaged functions that are

functionally the same.

ST_* Issue...

• Now, when one database implements things “properly”
the other causes “problems”.

• For example, in Oracle the SQL/MM functions
ST_GeometryN() and ST_NumGeometries() does not exist!

• In PostGIS one would like to write (but can't):
SELECT ST_GeometryN(m.mline,p.*) as Line
 FROM (SELECT ST_MLineFromText('MULTILINESTRING((1 1,2 2),(3 3,4 4))', 28355) as mline) m, generate_series(1,ST_NumGeometries(m.mline),1) p;

• One can do this in Oracle because they have implemented
an ST_Geometries method in ST_Geometries that returns
an array of Geometries:

• SELECT b.* FROM TABLE(SELECT a.geom.ST_Geometries() FROM (SELECT mdsys.OGC_MultiLineStringFromText('MULTILINESTRING((1 1,2 2),(3 3,4 4))', 28355) as geom FROM dual) a) b;
• This plays to Oracle's strengths but isn't an implementation of the

SQL/MM standard.

Complain or....

• To the lack of ST_GeometryN and
OGC_MultiLineStringFromText we can:
– Complain....
– Or do something about it.

• Do the former, but implement the latter:
create or replace function ST_GeometryN (p_geometry in mdsys.ST_GeomCollection, p_num in integer) return mdsys.st_geometry deterministic as v_geom mdsys.st_geometry;begin SELECT c.geom INTO v_geom FROM (SELECT rownum as rin, mdsys.ST_Geometry.From_SDO_Geom(g.geom) as geom FROM TABLE(SELECT p_geometry.ST_Geometries() FROM DUAL) g) c WHERE rin = p_num; RETURN v_geom; EXCEPTION WHEN NO_DATA_FOUND THEN RETURN NULL;end ST_GeometryN;

Complain (2)...
• ST_NumGeometries:

Create Function ST_NumGeometries (p_geometry in mdsys.ST_GeomCollection) Return Integer Deterministic As v_count integer;Begin SELECT count(*) INTO v_count FROM TABLE(SELECT p_geometry.ST_Geometries() FROM DUAL) g; RETURN v_count; EXCEPTION WHEN NO_DATA_FOUND THEN RETURN NULL;End ST_NumGeometries;
• Throw in some public synonyms:

create public synonym ST_LinestringFromText for mdsys.OGC_LinestringFromText;
create public synonym ST_MultiLinestringFromText for mdsys.OGC_MultiLinestringFromText;

• And it all starts to look just a bit... familiar!
SELECT ST_GeometryN(b.mline,n.column_value)
 FROM (SELECT ST_MultiLineStringFromText('MULTILINESTRING((1 1,2 2),(3 3,4 4))', 28355) as mline FROM dual) b, TABLE(codesys.geom.generate_series(1,
 ST_NumGeometries(b.mline),1)) n;

Complain (3)

• Oracle's implementation of ST_Geometry is declared
NOT FINAL so, theoretically, it would be possible to
extend the type system as follows:

ALTER TYPE mdsys.ST_GeomCollection CASCADEADD MEMBER FUNCTION ST_GeometryN (p_geometry in mdsys.ST_GeomCollection,
 p_num in integer) RETURN mdsys.ST_Geometry DETERMINISTIC,ADD MEMBER FUNCTION ST_NumGeometries (p_geometry in mdsys.ST_GeomCollection) RETURN Integer DETERMINISTIC;

• But one might meet support issues with Oracle.

Framework/Database issues....

• Programmatic problems often have nothing to do with the
spatial data type.

• For example, one can, in a SELECT statement, in PostGIS
you cannot call a function (generate_series) using the
values from a table (m).
SELECT ST_PointN(m.line,p.*) as point FROM (SELECT ST_LineFromText('LINESTRING(1 1,2 2)',28355) as mline) m, generate_series(1,ST_NPoints(m.mline),1) p;

• As you get this error (what is called “Functional Row
Expansion”):
ERROR: function expression in FROM cannot refer to other relations of same query level

• Whereas, in Oracle, this is not a problem:
SELECT a.geom.ST_PointN(g.COLUMN_VALUE) FROM (SELECT mdsys.OGC_LineStringFromText('LINESTRING(1 1,2 2)', 28355) as geom FROM dual) a, TABLE(codesys.geom.generate_series(1,a.geom.ST_NumPoints(),1)) g

Issues (2)

• pg/PLSQL is like PL/SQL but it is not the same!
• Can't overload functions/procedures in Oracle as you

can in PostgreSQL
– PACKAGEd functions can be overloades

• Only EnterpriseDB has packages!
• Casting is a part of life in PostGIS but you can only do

it via the CAST() SQL function in Oracle.
• SELECT … FROM DUAL;
• CHECK constraint limitations (can't do this in Oracle):

– CHECK (ST_Area(the_geom) > 10)
• SQL Analytics, rownum, TABLE()
• Materialised Views, Schemas/Tablespaces...
• Redo and undo logs, nologging, direct path inserts...

– The list is endless!

Open/Closed Source...

• Oracle may be closed source but your code can
be open source...
– I make my PL/SQL code available for free.

• Lewis's INFORMATION_SCHEMA on
SourceForge is a good example.

• So, share it around!

Summary...

• To know how to port from one database to the other
or support both in a production environment
demands knowledge of each product.

• The rich set of tools any database provides offers
much scope for improving portability: views,
functions, synoynms etc.

• I have given you some methods for increasing
portability of the spatial side of Oracle/PostGIS;
– Synonyms, views, function wrappers, ST_* type etc;

• However, the majority of issues are not spatial
– The spatial “design pattern” is pretty standard, it's just

the names used that cause “problems”!
– Major issues are endemic:

• i.e., fundamentally a part of a database's architecture.

Questions...

• Thank you for being patient....

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

