[GRASS-SVN] r49149 - in grass-addons: HydroFOSS/r.interception HydroFOSS/r.snow database/db.join display/d.barb general/g.region.point general/g.xlist general/g.xremove grass7/imagery/i.points.auto grass7/imagery/i.topo.corr grass7/raster/r.area grass7/raster/r.convergence grass7/raster/r.fuzzy/r.fuzzy.logic grass7/raster/r.fuzzy/r.fuzzy.set grass7/raster/r.fuzzy/r.fuzzy.system grass7/raster/r.modis grass7/raster/r.modis/r.modis.download grass7/raster/r.modis/r.modis.import grass7/raster/r.stream/r.stream.basins grass7/raster/r.stream/r.stream.channel grass7/raster/r.stream/r.stream.distance grass7/raster/r.stream/r.stream.order grass7/raster/r.stream/r.stream.segment grass7/raster/r.stream/r.stream.slope grass7/raster/r.stream/r.stream.snap grass7/raster/r.stream/r.stream.stats grass7/vector/v.colors2 grass7/vector/v.median grass7/vector/v.pack grass7/vector/v.unpack imagery/gipe/i.dn2potrad.l5 imagery/gipe/i.dn2potrad.l7 imagery/gipe/i.eb.deltat imagery/gipe/i.eb.disp imagery/ gipe/i.eb.h0 imagery/gipe/i.eb.h_SEBAL95 imagery/gipe/i.eb.h_iter imagery/gipe/i.eb.molength imagery/gipe/i.eb.psi imagery/gipe/i.eb.rah imagery/gipe/i.eb.rohair imagery/gipe/i.eb.ublend imagery/gipe/i.eb.ustar imagery/gipe/i.eb.wetdrypix imagery/gipe/i.eb.z0m imagery/gipe/i.eb.z0m0 imagery/gipe/i.evapo.TSA imagery/gipe/i.evapo.potrad imagery/gipe/i.evapo.senay imagery/gipe/i.evapo.zk imagery/gipe/i.lmf imagery/gipe/i.sattime imagery/gipe/i.vi.grid imagery/gipe/i.vi.mpi imagery/gipe/i.water imagery/gipe/i.wi imagery/gipe/m.gem imagery/gipe/r.gaswap.serial imagery/gipe/r.out.vic imagery/gipe/r.soiltex2prop imagery/gipe/r.soilusda2tex imagery/i.landsat.acca imagery/i.landsat.dehaze imagery/i.landsat.toar imagery/i.points.auto imagery/i.pr/i.pr_features imagery/i.pr/i.pr_training imagery/i.spec.sam imagery/i.spec.unmix imagery/i.topo.corr misc/m.eigensystem ossim_grass/d.png.legend ossim_grass/r.planet ossim_grass/v.planet postscript/ps.output raster/LandDyn/r.landscape.evol.py raster/mcda/r.in.drsa raster/mcda/r.mcda.electre raster/mcda/r.mcda.fuzzy raster/mcda/r.mcda.regime raster/mcda/r.mcda.roughset raster/mcda/r.roughset raster/mcda/r.to.drsa raster/r.area raster/r.basin raster/r.boxcount raster/r.boxcount.sh raster/r.burn.frict raster/r.clim raster/r.clump2 raster/r.convergence raster/r.denoise raster/r.fuzzy raster/r.fuzzy.logic raster/r.fuzzy.system raster/r.hazard.flood raster/r.in.swisstopo raster/r.inund.fluv raster/r.ipso raster/r.maxent.lambdas raster/r.out.gmap raster/r.out.kml raster/r.out.maxent_swd raster/r.out.netcdf raster/r.pi raster/r.pi/r.pi.corearea raster/r.pi/r.pi.rectangle raster/r.roughness raster/r.seg raster/r.soils.texture raster/r.stack raster/r.stream.angle raster/r.stream.basins raster/r.stream.del raster/r.stream.distance raster/r.stream.extract raster/r.stream.order raster/r.stream.pos raster/r.stream.stats raster/r.surf.volcano raster/r.threshold raster/r.viewshed raster/r.wf raster/r.xtent roadmap/homepage vect or/adehabitat/v.adehabitat.clusthr vector/adehabitat/v.adehabitat.kernelUD vector/adehabitat/v.adehabitat.mcp vector/v.autokrige vector/v.curvature vector/v.db.calc vector/v.eqsm vector/v.in.geodesic vector/v.in.geoplot vector/v.in.gshhs vector/v.in.marxan vector/v.in.mbsys_fnv vector/v.in.osm2 vector/v.in.postgis vector/v.in.redwg vector/v.krige vector/v.mkhexgrid vector/v.out.marxan vector/v.out.postgis vector/v.points.cog vector/v.profile vector/v.random.cover vector/v.rast.stats2 vector/v.strahler vector/v.surf.icw vector/v.transect.kia vector/v.vect.stats vector/v.what.rast.buffer

svn_grass at osgeo.org svn_grass at osgeo.org
Tue Nov 8 16:56:45 EST 2011


Author: neteler
Date: 2011-11-08 13:56:45 -0800 (Tue, 08 Nov 2011)
New Revision: 49149

Modified:
   grass-addons/HydroFOSS/r.interception/description.html
   grass-addons/HydroFOSS/r.snow/description.html
   grass-addons/database/db.join/description.html
   grass-addons/display/d.barb/description.html
   grass-addons/general/g.region.point/description.html
   grass-addons/general/g.xlist/description.html
   grass-addons/general/g.xremove/description.html
   grass-addons/grass7/imagery/i.points.auto/i.points.auto.html
   grass-addons/grass7/imagery/i.topo.corr/i.topo.corr.html
   grass-addons/grass7/raster/r.area/r.area.html
   grass-addons/grass7/raster/r.convergence/r.convergence.html
   grass-addons/grass7/raster/r.fuzzy/r.fuzzy.logic/r.fuzzy.logic.html
   grass-addons/grass7/raster/r.fuzzy/r.fuzzy.set/r.fuzzy.set.html
   grass-addons/grass7/raster/r.fuzzy/r.fuzzy.system/r.fuzzy.system.html
   grass-addons/grass7/raster/r.modis/r.modis.download/r.modis.download.html
   grass-addons/grass7/raster/r.modis/r.modis.html
   grass-addons/grass7/raster/r.modis/r.modis.import/r.modis.import.html
   grass-addons/grass7/raster/r.stream/r.stream.basins/r.stream.basins.html
   grass-addons/grass7/raster/r.stream/r.stream.channel/r.stream.channel.html
   grass-addons/grass7/raster/r.stream/r.stream.distance/r.stream.distance.html
   grass-addons/grass7/raster/r.stream/r.stream.order/r.stream.order.html
   grass-addons/grass7/raster/r.stream/r.stream.segment/r.stream.segment.html
   grass-addons/grass7/raster/r.stream/r.stream.slope/r.stream.slope.html
   grass-addons/grass7/raster/r.stream/r.stream.snap/r.stream.snap.html
   grass-addons/grass7/raster/r.stream/r.stream.stats/r.stream.stats.html
   grass-addons/grass7/vector/v.colors2/v.colors2.html
   grass-addons/grass7/vector/v.median/v.median.html
   grass-addons/grass7/vector/v.pack/v.pack.html
   grass-addons/grass7/vector/v.unpack/v.unpack.html
   grass-addons/imagery/gipe/i.dn2potrad.l5/description.html
   grass-addons/imagery/gipe/i.dn2potrad.l7/description.html
   grass-addons/imagery/gipe/i.eb.deltat/description.html
   grass-addons/imagery/gipe/i.eb.disp/description.html
   grass-addons/imagery/gipe/i.eb.h0/description.html
   grass-addons/imagery/gipe/i.eb.h_SEBAL95/description.html
   grass-addons/imagery/gipe/i.eb.h_iter/description.html
   grass-addons/imagery/gipe/i.eb.molength/description.html
   grass-addons/imagery/gipe/i.eb.psi/description.html
   grass-addons/imagery/gipe/i.eb.rah/description.html
   grass-addons/imagery/gipe/i.eb.rohair/description.html
   grass-addons/imagery/gipe/i.eb.ublend/description.html
   grass-addons/imagery/gipe/i.eb.ustar/description.html
   grass-addons/imagery/gipe/i.eb.wetdrypix/description.html
   grass-addons/imagery/gipe/i.eb.z0m/description.html
   grass-addons/imagery/gipe/i.eb.z0m0/description.html
   grass-addons/imagery/gipe/i.evapo.TSA/description.html
   grass-addons/imagery/gipe/i.evapo.potrad/i.evapo.potrad.html
   grass-addons/imagery/gipe/i.evapo.senay/i.evapo.senay.html
   grass-addons/imagery/gipe/i.evapo.zk/i.evapo.zk.html
   grass-addons/imagery/gipe/i.lmf/description.html
   grass-addons/imagery/gipe/i.sattime/i.sattime.html
   grass-addons/imagery/gipe/i.vi.grid/description.html
   grass-addons/imagery/gipe/i.vi.grid/description_grid.html
   grass-addons/imagery/gipe/i.vi.mpi/description.html
   grass-addons/imagery/gipe/i.water/description.html
   grass-addons/imagery/gipe/i.wi/description.html
   grass-addons/imagery/gipe/m.gem/description.html
   grass-addons/imagery/gipe/r.gaswap.serial/description.html
   grass-addons/imagery/gipe/r.out.vic/description.html
   grass-addons/imagery/gipe/r.soiltex2prop/description.html
   grass-addons/imagery/gipe/r.soilusda2tex/description.html
   grass-addons/imagery/i.landsat.acca/description.html
   grass-addons/imagery/i.landsat.dehaze/description.html
   grass-addons/imagery/i.landsat.toar/description.html
   grass-addons/imagery/i.points.auto/description.html
   grass-addons/imagery/i.pr/i.pr_features/description.html
   grass-addons/imagery/i.pr/i.pr_training/description.html
   grass-addons/imagery/i.spec.sam/description.html
   grass-addons/imagery/i.spec.unmix/description.html
   grass-addons/imagery/i.topo.corr/description.html
   grass-addons/misc/m.eigensystem/m.eigensystem.html
   grass-addons/ossim_grass/d.png.legend/description.html
   grass-addons/ossim_grass/r.planet/description.html
   grass-addons/ossim_grass/v.planet/description.html
   grass-addons/postscript/ps.output/description.html
   grass-addons/raster/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html
   grass-addons/raster/mcda/r.in.drsa/r.in.drsa.html
   grass-addons/raster/mcda/r.mcda.electre/description.html
   grass-addons/raster/mcda/r.mcda.fuzzy/description.html
   grass-addons/raster/mcda/r.mcda.regime/description.html
   grass-addons/raster/mcda/r.mcda.roughset/description.html
   grass-addons/raster/mcda/r.roughset/description.html
   grass-addons/raster/mcda/r.to.drsa/r.to.drsa.html
   grass-addons/raster/r.area/description.html
   grass-addons/raster/r.basin/description.html
   grass-addons/raster/r.boxcount.sh/description.html
   grass-addons/raster/r.boxcount/description.html
   grass-addons/raster/r.burn.frict/description.html
   grass-addons/raster/r.clim/description.html
   grass-addons/raster/r.clump2/description.html
   grass-addons/raster/r.convergence/description.html
   grass-addons/raster/r.denoise/description.html
   grass-addons/raster/r.fuzzy.logic/description.html
   grass-addons/raster/r.fuzzy.system/description.html
   grass-addons/raster/r.fuzzy/description.html
   grass-addons/raster/r.hazard.flood/description.html
   grass-addons/raster/r.in.swisstopo/description.html
   grass-addons/raster/r.inund.fluv/r.inund.fluv.html
   grass-addons/raster/r.ipso/description.html
   grass-addons/raster/r.maxent.lambdas/r.maxent.lambdas.html
   grass-addons/raster/r.out.gmap/description.html
   grass-addons/raster/r.out.kml/description.html
   grass-addons/raster/r.out.maxent_swd/r.out.maxent_swd.html
   grass-addons/raster/r.out.netcdf/description.html
   grass-addons/raster/r.pi/description.html
   grass-addons/raster/r.pi/r.pi.corearea/description_TO_BE_integrated.html
   grass-addons/raster/r.pi/r.pi.rectangle/description.html
   grass-addons/raster/r.roughness/r.roughness.window.vector.html
   grass-addons/raster/r.seg/description.html
   grass-addons/raster/r.soils.texture/description.html
   grass-addons/raster/r.stack/description.html
   grass-addons/raster/r.stream.angle/description.html
   grass-addons/raster/r.stream.basins/description.html
   grass-addons/raster/r.stream.del/description.html
   grass-addons/raster/r.stream.distance/description.html
   grass-addons/raster/r.stream.extract/description.html
   grass-addons/raster/r.stream.order/description.html
   grass-addons/raster/r.stream.pos/description.html
   grass-addons/raster/r.stream.stats/description.html
   grass-addons/raster/r.surf.volcano/description.html
   grass-addons/raster/r.threshold/r.threshold.html
   grass-addons/raster/r.viewshed/r.viewshed.html
   grass-addons/raster/r.wf/description.html
   grass-addons/raster/r.xtent/description.html
   grass-addons/roadmap/homepage/index.html
   grass-addons/vector/adehabitat/v.adehabitat.clusthr/description.html
   grass-addons/vector/adehabitat/v.adehabitat.kernelUD/description.html
   grass-addons/vector/adehabitat/v.adehabitat.mcp/description.html
   grass-addons/vector/v.autokrige/description.html
   grass-addons/vector/v.curvature/description.html
   grass-addons/vector/v.db.calc/description.html
   grass-addons/vector/v.eqsm/description.html
   grass-addons/vector/v.in.geodesic/description.html
   grass-addons/vector/v.in.geoplot/description.html
   grass-addons/vector/v.in.gshhs/description.html
   grass-addons/vector/v.in.marxan/description.html
   grass-addons/vector/v.in.mbsys_fnv/description.html
   grass-addons/vector/v.in.osm2/description.html
   grass-addons/vector/v.in.postgis/v.in.postgis.html
   grass-addons/vector/v.in.redwg/v.in.redwg.html
   grass-addons/vector/v.krige/description.html
   grass-addons/vector/v.mkhexgrid/description.html
   grass-addons/vector/v.out.marxan/description.html
   grass-addons/vector/v.out.postgis/v.out.postgis.html
   grass-addons/vector/v.points.cog/description.html
   grass-addons/vector/v.profile/v.profile.html
   grass-addons/vector/v.random.cover/description.html
   grass-addons/vector/v.rast.stats2/description.html
   grass-addons/vector/v.strahler/description.html
   grass-addons/vector/v.strahler/r.broscoe.sh.html
   grass-addons/vector/v.strahler/r.strahler.sh.html
   grass-addons/vector/v.strahler/v.mainchannel.html
   grass-addons/vector/v.surf.icw/description.html
   grass-addons/vector/v.transect.kia/v.transect.kia.html
   grass-addons/vector/v.vect.stats/description.html
   grass-addons/vector/v.what.rast.buffer/description.html
Log:
avoid caps HTML tags ; svn propset

Modified: grass-addons/HydroFOSS/r.interception/description.html
===================================================================
--- grass-addons/HydroFOSS/r.interception/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/HydroFOSS/r.interception/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,16 +9,16 @@
 
 <img src="grass.smlogo.gif" alt="GRASS logo"><hr align=center size=6 noshade>
 
-<H2>NAME</H2> <B><I>h.interception </I></B>
+<h2>NAME</h2> <b><I>h.interception </I></b>
 - computation of the water loss, drainage, and storage due 
 to <i>canopy rainfall interception</i>.
 
-<P><I>(GRASS Raster Program)</I>
+<p><I>(GRASS Raster Program)</I>
 
-<H2>SYNOPSIS</H2>
-<B>h.interception</B><BR>
-<B>h.interception</B> help<BR>
-<B>h.interception</b>
+<h2>SYNOPSIS</h2>
+<b>h.interception</b><br>
+<b>h.interception</b> help<br>
+<b>h.interception</b>
 <b>LAI</b>=name
 <b>ETPls</b>=name
 <b>Co</b>=name
@@ -29,9 +29,9 @@
 <b>D</b>=name
 <b>Ct</b>=name
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>h.interception</EM> 
+<p><em>h.interception</em> 
 given the LAI [-], the ETPls [mm/h], the leaf storage level at
 the previous step Co [mm], the rain R [mm/h], the timestep Ts [h],
 and the vegetation density Vc [%] the command estimates the interception
@@ -44,13 +44,13 @@
 <p>For more details on the algorithms see the references.
 
 
-<H2>OPTIONS</H2>
+<h2>OPTIONS</h2>
 
 The program will run non-interactively if the user specifies program
 arguments settings on the command line using the following
 form:<br>
 
-<B>h.interception</b>
+<b>h.interception</b>
 <b>LAI</b>=name
 <b>ETPls</b>=name
 <b>Co</b>=name
@@ -63,13 +63,13 @@
 
 
 
-<P>Alternatively, the user can simply type <EM>h.interception</EM> on the
+<p>Alternatively, the user can simply type <em>h.interception</em> on the
 command line and the program will ask for parameter values 
 settings interactively, using the standard GRASS parser interface.
 
-<H3>Parameters:</H3>
+<h3>Parameters:</h3>
 <dl>
- <dt><B>LAI</B>=<I>name</I>
+ <dt><b>LAI</b>=<I>name</I>
  <dd>Input: Leaf Area Index raster map [-]. Required.</dd>
 
  <dt><b>ETPls</b>=<I>name</I>
@@ -99,7 +99,7 @@
 </dl>
       
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 <p>The estimated D raster map (water drained from the vegetation to the groud)
 is calculated for each cell on the basis of the vegetation cover fraction. 
@@ -114,7 +114,7 @@
 <br><dd>r.mapcalc 'NETrain = D + (1-Vc)*R + snowmelt';
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <ul>
   <li>The <a href="http://istgis.ist.supsi.ch:8001/geomatica/">HydroFOSS</a> 
 project at IST-SUPSI (Institute of Earth Sciences - University school of applied science for the Southern Switzerland)
@@ -126,7 +126,7 @@
 
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
   
 <p>Original version of program: The <a href="http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1">HydroFOSS</a> project, 2006, IST-SUPSI. (http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1)
   <i>
@@ -138,10 +138,10 @@
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-  <p>[1] Cannata M., 2006. <A HREF="http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1">
-  GIS embedded approach for Free & Open Source Hydrological Modelling</A>. PhD thesis, Department of Geodesy and Geomatics, Polytechnic of Milan, Italy.
+  <p>[1] Cannata M., 2006. <a href="http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1">
+  GIS embedded approach for Free & Open Source Hydrological Modelling</a>. PhD thesis, Department of Geodesy and Geomatics, Polytechnic of Milan, Italy.
 
   <p>Zeng, N., JW Shuttleworth, and J. Gash, 2000. 
   Influence of temporal variability of rainfall on interception loss. 

Modified: grass-addons/HydroFOSS/r.snow/description.html
===================================================================
--- grass-addons/HydroFOSS/r.snow/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/HydroFOSS/r.snow/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,16 +9,16 @@
 
 <img src="grass.smlogo.gif" alt="GRASS logo"><hr align=center size=6 noshade>
 
-<H2>NAME</H2> <B><I>r.snow </I></B>
+<h2>NAME</h2> <b><I>r.snow </I></b>
 - computation of the snowpack water equivalent, 
 the snowamelt and the snowpack energy content.
 
-<P><I>(GRASS Raster Program)</I>
+<p><I>(GRASS Raster Program)</I>
 
-<H2>SYNOPSIS</H2>
-<B>r.snow</B><BR>
-<B>r.snow</B> help<BR>
-<B>r.snow</b>
+<h2>SYNOPSIS</h2>
+<b>r.snow</b><br>
+<b>r.snow</b> help<br>
+<b>r.snow</b>
 <b>temp</b>=name
 <b>RAD</b>=name
 <b>rain</b>=name
@@ -28,9 +28,9 @@
 <b>out_energy</b>=name
 <b>out_snowmelt</b>=name
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>r.snow</EM> 
+<p><em>r.snow</em> 
 given the temperature (temp) [&deg;C], the radiation (RAD) [W/(m^2*t)], 
 the rain (rain) [mm/t], the initial snowpack water content (in_snow) [mm] and 
 the initial snowpack energy content (in_energy) [Kcal/m^2] calculates the 
@@ -45,13 +45,13 @@
 <p>For more details on the algorithms see the references.
 
 
-<H2>OPTIONS</H2>
+<h2>OPTIONS</h2>
 
 The program will run non-interactively if the user specifies program
 arguments settings on the command line using the following
 form:<br>
 
-<B>r.snow</b>
+<b>r.snow</b>
 <b>temp</b>=name
 <b>RAD</b>=name
 <b>rain</b>=name
@@ -63,13 +63,13 @@
 
 
 
-<P>Alternatively, the user can simply type <EM>r.snow</EM> on the
+<p>Alternatively, the user can simply type <em>r.snow</em> on the
 command line and the program will ask for parameter values 
 settings interactively, using the standard GRASS parser interface.
 
-<H3>Parameters:</H3>
+<h3>Parameters:</h3>
 <dl>
- <dt><B>temp</B>=<I>name</I>
+ <dt><b>temp</b>=<I>name</I>
  <dd>Input: temperature raster map [&deg;C]. Required.</dd>
 
  <dt><b>RAD</b>=<I>name</I>
@@ -96,7 +96,7 @@
 </dl>
       
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 <p>The algorithm basically estimates the needed energy to maintain the snowpack 
 in a solid phase (in a zero snowmelt hypothesis). If the available energy is 
@@ -105,7 +105,7 @@
 snowpack for further step.
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <ul>
   <li>The <a href="http://istgis.ist.supsi.ch:8001/geomatica/">HydroFOSS</a> 
 project at IST-SUPSI (Institute of Earth Sciences - University school of applied science for the Southern Switzerland)
@@ -116,7 +116,7 @@
 
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
   
   <p>Original version of program: The <a href="http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1">HydroFOSS</a> project, 2006, IST-SUPSI. (http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1)
   <br><i><a href="http://w3.ist.supsi.ch:8001/geo/~maxi/">Massimiliano Cannata</a>,
@@ -126,10 +126,10 @@
 <p>Contact: <a href="mailto:massimiliano.cannata at supsi.ch"> Massimiliano Cannata</a></dt>
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-  <p>Cannata M., 2006. <A HREF="http://w3.ist.supsi.ch:8001/geo/hydrofoss/PhD_Cannata.pdf">
-  A GIS embedded approach for Free & Open Source Hydrological Modelling</A>.
+  <p>Cannata M., 2006. <a href="http://w3.ist.supsi.ch:8001/geo/hydrofoss/PhD_Cannata.pdf">
+  A GIS embedded approach for Free & Open Source Hydrological Modelling</a>.
   PhD dissertation in Geodesy and Geomatic engineering, Politecnico di Milano.
 
   <p>Abbott, M. et al., 1986a, An introduction to the European Hydrological 

Modified: grass-addons/database/db.join/description.html
===================================================================
--- grass-addons/database/db.join/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/database/db.join/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -31,10 +31,10 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="db.execute.html">db.execute</a></em>,
-<em><a HREF="db.in.ogr.html">db.in.ogr</a></em>,
-<em><a HREF="v.db.join.html">v.db.join</a></em><br>
-<em><a HREF="v.db.update.html">v.db.update</a></em><br>
+<em><a href="db.execute.html">db.execute</a></em>,
+<em><a href="db.in.ogr.html">db.in.ogr</a></em>,
+<em><a href="v.db.join.html">v.db.join</a></em><br>
+<em><a href="v.db.update.html">v.db.update</a></em><br>
 <em><a href="sql.html">GRASS SQL interface</a></em>
 
 <h2>AUTHOR</h2>

Modified: grass-addons/display/d.barb/description.html
===================================================================
--- grass-addons/display/d.barb/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/display/d.barb/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,15 +9,15 @@
 
 Cartesian aspect is measured in degrees CCW from the positive x-axis (east).
 Compass aspect is measured in degrees CW from north.
-<P>
+<p>
 <!--I haven't added this yet, and I'm not sure that if I will. Leaning towards not.
 Rendering is scaled so largest stick covers 20% of the display frame
 for arrows and straws, use the scale parameter to adjust from there.
-<P>
+<p>
 -->
 Wind barbs are all of equal length, but that length may be adjusted
 by the scale parameter.
-<P>
+<p>
 Wind barbs assume velocity data is given in knots. Actually it
 doesn't care, but effectively maxes out at velo=150. When the
 style is set to wind barbs, the <b>scale</b> parameter becomes

Modified: grass-addons/general/g.region.point/description.html
===================================================================
--- grass-addons/general/g.region.point/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/general/g.region.point/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,27 +1,27 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>g.region.point</EM> resets the computational region to a square box
+<em>g.region.point</em> resets the computational region to a square box
 around a given coordinate at the current resolution. It is intended for
 use within GRASS scripts to speed up processing by limiting expensive
 raster calculations to a small area of interest.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 To preserve the original region settings this module should generally
 be used in tandem with the <tt>WIND_OVERRIDE</tt> environment variable.
 
-<P>
+<p>
 If the new region bounds do not line up with a multiple of the map resolution
 the bounds will be extended outwards, preserving the region resolution.
-<P>
+<p>
 If the <b>-z</b> flag is used, then in the case of a bounds/resolution
 incompatibility the resolution will be altered and the region bounds
 preserved. The <b>-z</b> flag requires that a value is given for the
 <b>resolution</b> option.
 
 
-<h2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 
 The following is a shell script utilizing <em>g.region.point</em> which
 will evaluate the mean value in a 100m wide raster buffer around a series
@@ -73,18 +73,18 @@
 the update script.
 
 
-<H2>SEE ALSO</H2>
-<EM>
-<A HREF="g.region.html">g.region</A>,
-<A HREF="v.rast.stats.html">v.rast.stats</A>
-</EM><BR>
-<A HREF="variables.html">GRASS Variables</A>
+<h2>SEE ALSO</h2>
+<em>
+<a href="g.region.html">g.region</a>,
+<a href="v.rast.stats.html">v.rast.stats</a>
+</em><br>
+<a href="variables.html">GRASS Variables</a>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Hamish Bowman, Dunedin, New Zealand
-<BR>
+<br>
 
 <p>
 <i>Last changed: $Date$</i>


Property changes on: grass-addons/general/g.region.point/description.html
___________________________________________________________________
Added: svn:eol-style
   + native

Modified: grass-addons/general/g.xlist/description.html
===================================================================
--- grass-addons/general/g.xlist/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/general/g.xlist/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -62,4 +62,4 @@
 Huidae Cho<br>
 grass4u at gmail.com
 
-<p><i>Last changed: $Date: 2008-06-28 04:37:22 -0500 (Sat, 28 Jun 2008) $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/general/g.xlist/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/general/g.xremove/description.html
===================================================================
--- grass-addons/general/g.xremove/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/general/g.xremove/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -14,7 +14,7 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="g.remove.html">g.remove</a></em>
+<em><a href="g.remove.html">g.remove</a></em>
 <p>
 <a href="http://en.wikipedia.org/wiki/Regular_expression">Regular expression</a> (from Wikipedia, the free encyclopedia)
 
@@ -23,4 +23,4 @@
 Huidae Cho<br>
 grass4u at gmail.com
 
-<p><i>Last changed: $Date: 2008-06-28 03:23:07 -0500 (Sat, 28 Jun 2008) $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/general/g.xremove/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/imagery/i.points.auto/i.points.auto.html
===================================================================
--- grass-addons/grass7/imagery/i.points.auto/i.points.auto.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/imagery/i.points.auto/i.points.auto.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>i.points.auto</em> tries to automatically generate a given number
 of new gound control points (GCPs) by matching the input map to a target
@@ -6,7 +6,7 @@
 enable automatic geocoding of imagery to a master image.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 It is recommended to use maps filtered with the DIVERSITY or STDDEV filters
 of the <em>r.neighbors</em> module, with a window size of 3x3 or 5x5
@@ -23,25 +23,25 @@
 points: 3 for order 1, 6 for order 2, 10 for order 3.
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 The GRASS 4 <em>
-<A HREF="http://grass.osgeo.org/gdp/imagery/grass4_image_processing.pdf">Image
-Processing manual</A></EM>
+<a href="http://grass.OSGeo.org/gdp/imagery/grass4_image_processing.pdf">Image
+Processing manual</a></em>
 
-<P>
-<EM>
-<!-- why? <A HREF="g.mapsets.html">g.mapsets</A><br> -->
-<A HREF="i.group.html">i.group</A><br>
-<A HREF="i.rectify.html">i.rectify</A><br>
-<A HREF="i.target.html">i.target</A><br>
-<A HREF="r.neighbors.html">r.neighbors</A><br>
-<!-- not in grass7 <A HREF="i.vpoints.html">i.vpoints</A><br> -->
+<p>
+<em>
+<!-- why? <a href="g.mapsets.html">g.mapsets</a><br> -->
+<a href="i.group.html">i.group</a><br>
+<a href="i.rectify.html">i.rectify</a><br>
+<a href="i.target.html">i.target</a><br>
+<a href="r.neighbors.html">r.neighbors</a><br>
+<!-- not in grass7 <a href="i.vpoints.html">i.vpoints</a><br> -->
 <a href="wxGUI.GCP_Manager.html">Ground Control Point Manager</a>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 Ivan Michelazzi<br>
 Luca Miori<br>
 Markus Metz

Modified: grass-addons/grass7/imagery/i.topo.corr/i.topo.corr.html
===================================================================
--- grass-addons/grass7/imagery/i.topo.corr/i.topo.corr.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/imagery/i.topo.corr/i.topo.corr.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -104,9 +104,9 @@
 <h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.landsat.toar">i.landsat.toar</A>,
-<A HREF="r.mapcalc.html">r.mapcalc</A>,
-<A HREF="r.sun.html">r.sun</A>
+<a href="i.landsat.toar">i.landsat.toar</a>,
+<a href="r.mapcalc.html">r.mapcalc</a>,
+<a href="r.sun.html">r.sun</a>
 </em>
 
 <h2>AUTHOR</h2>

Modified: grass-addons/grass7/raster/r.area/r.area.html
===================================================================
--- grass-addons/grass7/raster/r.area/r.area.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.area/r.area.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>input</b></DT>
-<DD>Name of input created with r.clump or another cell category map.</DD>
-<DT><b>treshold</b></DT>
-<DD>Remove areas smaller than treshold, set null for removing areas</DD>
-<DT><b>binary</b></DT>
-<DD>Output map has only 0 and 1 values. If treshold is applied small areas are emoved and replaced by 0</DD>
-<DT><b>output</b></DT>
-<DD>Original categories replaced with number of cells for each category. If areas belonging to category are not continuous every area belonging to the same category has the same area value.</DD>
-</DL>
+<dl>
+<dt><b>input</b></dt>
+<dd>Name of input created with r.clump or another cell category map.</dd>
+<dt><b>treshold</b></dt>
+<dd>Remove areas smaller than treshold, set null for removing areas</dd>
+<dt><b>binary</b></dt>
+<dd>Output map has only 0 and 1 values. If treshold is applied small areas are emoved and replaced by 0</dd>
+<dt><b>output</b></dt>
+<dd>Original categories replaced with number of cells for each category. If areas belonging to category are not continuous every area belonging to the same category has the same area value.</dd>
+</dl>
 <h2>DESCRIPTION</h2>
 <p>module can be used to remove, areas smaller than treshold, reclass according areas (similar to r.reclass area, but work in cells, not hectares and allow create more classes)</p>
 

Modified: grass-addons/grass7/raster/r.convergence/r.convergence.html
===================================================================
--- grass-addons/grass7/raster/r.convergence/r.convergence.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.convergence/r.convergence.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,16 +1,16 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-s</b></DT>
-<DD>Increase convergence if slope value is high. Slope parameter radically slow down computation time, especially if window parameter is high. If slope is used addational modifier is used according to formula: sin(current)*sin(target) + cos(current)*cos(target). if slope of current and target cells are equal. The modifier is 1. If not, the modifier is applied with formula: acos(cos(convergence) * modifier)  </DD>
-<DT><b>-c</b></DT>
-<DD>use circular window instead of suqare (default)</DD>
+<dl>
+<dt><b>-s</b></dt>
+<dd>Increase convergence if slope value is high. Slope parameter radically slow down computation time, especially if window parameter is high. If slope is used addational modifier is used according to formula: sin(current)*sin(target) + cos(current)*cos(target). if slope of current and target cells are equal. The modifier is 1. If not, the modifier is applied with formula: acos(cos(convergence) * modifier)  </dd>
+<dt><b>-c</b></dt>
+<dd>use circular window instead of suqare (default)</dd>
 
-<DT><b>input</b></DT>
-<DD>Digital elevation model. Data can be of any type and any projection. To calculate relief convergnece, r.convergence uses real distance wchich is recalculated into cell distance, according formula: <br><code>distance_between_current_cell_and_traget_cell/distance_between_current_cell_and_nearest_neighbour_cell.</code> It is important if convergence is calculated for large areas in LatLong projecton.
-</DD>
+<dt><b>input</b></dt>
+<dd>Digital elevation model. Data can be of any type and any projection. To calculate relief convergnece, r.convergence uses real distance which is recalculated into cell distance, according formula: <br><code>distance_between_current_cell_and_traget_cell/distance_between_current_cell_and_nearest_neighbour_cell.</code> It is important if convergence is calculated for large areas in LatLong projecton.
+</dd>
 
-<DT><b>weights</b></DT>
-<DD>Parameter describing the reduction of the impact of the cell due to its distance, where distance in cells:
+<dt><b>weights</b></dt>
+<dd>Parameter describing the reduction of the impact of the cell due to its distance, where distance in cells:
 <ul>
 <li><b>standard:</b>no decay
 <li><b>inverse:</b>distance modifier is calculated as 1/x
@@ -19,12 +19,12 @@
 <li><b>gentle:</b>distance modifier is calculated as 1/((1-x)/(1+x))
 </ul>
 
-<DT><b>window</b></DT>
-<DD>window size. Must be odd. For now there is no limits in window size. r.convergence uses window size instead of classical radius for compatibility with other GRASS programs.</DD>
+<dt><b>window</b></dt>
+<dd>window size. Must be odd. For now there is no limits in window size. r.convergence uses window size instead of classical radius for compatibility with other GRASS programs.</dd>
 
 
-<DT><b>output</b></DT>
-<DD>Map of convergence index. The values ranges from -100 (max divergent, real peaks and ridges) by 0 (planar areas) to 100 (max convergent, real pits and channels). Classical convergence index presented with degrees (-90 to 90)</DD>
+<dt><b>output</b></dt>
+<dd>Map of convergence index. The values ranges from -100 (max divergent, real peaks and ridges) by 0 (planar areas) to 100 (max convergent, real pits and channels). Classical convergence index presented with degrees (-90 to 90)</dd>
 
 
 <h2>DESCRIPTION</h2>

Modified: grass-addons/grass7/raster/r.fuzzy/r.fuzzy.logic/r.fuzzy.logic.html
===================================================================
--- grass-addons/grass7/raster/r.fuzzy/r.fuzzy.logic/r.fuzzy.logic.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.fuzzy/r.fuzzy.logic/r.fuzzy.logic.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,30 +1,30 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>xmap</b></DT>
-<DD>Name of input x membership operand. This map must be of type FCELL with
+<dl>
+<dt><b>xmap</b></dt>
+<dd>Name of input x membership operand. This map must be of type FCELL with
 range 0 :1 and may require null values. Otherwise program will print error
 message and stops.
-</DD>
-<DT><b>xmap</b></DT>
-<DD>Name of input y membership operand. This map must be of type FCELL with
+</dd>
+<dt><b>xmap</b></dt>
+<dd>Name of input y membership operand. This map must be of type FCELL with
 range 0 :1 and may require null values. Otherwise program will print error
 message and stops. This map is optional bit is required for all operation except
 NOT
-</DD>
-<DT><b>operator</b></DT>
-<DD>A fuzzy set operators are generalization of crisp operators. There is more
+</dd>
+<dt><b>operator</b></dt>
+<dd>A fuzzy set operators are generalization of crisp operators. There is more
 than one possible generalization of every opeartor. There are three operations:
 fuzzy complements, fuzzy intersections, and fuzzy unions. Addational implication
 operator is also provided.
 <ul>
-<li>fuzzy intersection (<B>AND</B>) use T-norm of given family for calculation;
-<li>fuzzy union (<B>OR</B>) use T-conorm of given family for calculation;
-<li>fuzzy complement (<B>NOT</B>) fuzzy negation ussualy 1-x;
-<li>fuzzy implication (<B>IMP</B>) use residuum of given family if available;
+<li>fuzzy intersection (<b>AND</b>) use T-norm of given family for calculation;
+<li>fuzzy union (<b>OR</b>) use T-conorm of given family for calculation;
+<li>fuzzy complement (<b>NOT</b>) fuzzy negation ussualy 1-x;
+<li>fuzzy implication (<b>IMP</b>) use residuum of given family if available;
 </ul>
-</DD>
-<DT><b>family</b></DT>
-<DD>T-norms, T-conorms and residuals are a generalization of the two-valued
+</dd>
+<dt><b>family</b></dt>
+<dd>T-norms, T-conorms and residuals are a generalization of the two-valued
 logical conjunction,  disjunction and implication used by boolean logic, for
 fuzzy logics. Because there is more than one possible generalisation of logial
 operations, r.fuzzy.logic provides 6 most popular families for fuzzy operations:
@@ -41,16 +41,16 @@
 There is no residuum for drastic and Hamacher families.
 For more details see <a href="http://www.jstatsoft.org/v31/i02">Meyer D, Hornik
 K (2009)</a>; <a href="http://en.wikipedia.org/wiki/T-norm">T-norms</a>; 
-</DD>
-</DL>
+</dd>
+</dl>
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>output</b></DT>
-<DD>Map containing result of two-values operations. Multivalued operations will
+<dl>
+<dt><b>output</b></dt>
+<dd>Map containing result of two-values operations. Multivalued operations will
 be avaialbel in the future. Map is always of type FCELLS and contains values
 from 0 (no membership) to 1 (full membership). Values between 0 and 1 indicate
-partial membership</DD>
-</DL>
+partial membership</dd>
+</dl>
 <h2>SEE ALSO</h2>
 <em>
 <a href="r.fuzzy.html">r.fuzzy</a>,
@@ -61,23 +61,23 @@
 <h2>REFERENCES</h2>
 
 Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
-doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<P>
+doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<p>
 
 Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
-ISBN 0-85274-583-4.<P>
+ISBN 0-85274-583-4.<p>
 
 Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
-applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<P>
+applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<p>
 
 Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
-0133410587.<P>
+0133410587.<p>
 
 Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal of
-Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<P>
+Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<p>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz

Modified: grass-addons/grass7/raster/r.fuzzy/r.fuzzy.set/r.fuzzy.set.html
===================================================================
--- grass-addons/grass7/raster/r.fuzzy/r.fuzzy.set/r.fuzzy.set.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.fuzzy/r.fuzzy.set/r.fuzzy.set.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,11 +1,11 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>input</b></DT>
-<DD>Name of input raster map to be fuzified. This map may be of any type and may
+<dl>
+<dt><b>input</b></dt>
+<dd>Name of input raster map to be fuzified. This map may be of any type and may
 require null values. 
-</DD>
-<DT><b>points</b></DT>
-<DD>A list containing 4 (A,B,C,D) or 2 A,B) points defining set boundaries.
+</dd>
+<dt><b>points</b></dt>
+<dd>A list containing 4 (A,B,C,D) or 2 A,B) points defining set boundaries.
 Points must not to be in map range, but it may lead to only 0 o 1 membership for
 the whole map. For "both" side parameters range between A and D defines base,
 but range between B and C core of the fuzzy set. Between A and B and C and D are
@@ -14,33 +14,33 @@
 <h3>Fuzzy set definition:</h3>
 <img src="set.png" border=1>
 </center>
-</DD>
-<DT><b>side</b></DT>
-<DD>Option indicate if set is fuzzified of both sides (both), left or right
+</dd>
+<dt><b>side</b></dt>
+<dd>Option indicate if set is fuzzified of both sides (both), left or right
 side. See description for details.
 <center>
 <h3>Boundary definition:</h3>
 <img src=boundary.png border=1><br>
 </center>
-</DD>
-</DL>
+</dd>
+</dl>
 
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>output</b></DT>
-<DD>Map containing membership value of original map. Map is alvays of type
+<dl>
+<dt><b>output</b></dt>
+<dd>Map containing membership value of original map. Map is alvays of type
 FCELLS and contains values from 0 (no membership) to 1 (full membership). Values
-between 0 and 1 indicate partial membership</DD>
-</DL>
+between 0 and 1 indicate partial membership</dd>
+</dl>
 <h2>FUZZY SET PARAMETERS</h2>
-<DL>
-<DT><b>boundary</b></DT>
-<DD>Parameter definied the shape of the fuzzy boundary. The default and most
+<dl>
+<dt><b>boundary</b></dt>
+<dd>Parameter definied the shape of the fuzzy boundary. The default and most
 popular is S-shaped, linear, J-shaped and G-shaped boundaries are also
-available. The same boundaires are appled to the both sides.</DD>
+available. The same boundaires are appled to the both sides.</dd>
 
-<DT><b>shape</b></DT>
-<DD>Optional shape modifier. Range from -1 to 1. The default value is 0 and
+<dt><b>shape</b></dt>
+<dd>Optional shape modifier. Range from -1 to 1. The default value is 0 and
 shoud  not be changed in most of the time. The negative values indicate more
 dilatant set, the positive values more concentrate set. See description for
 details.
@@ -48,16 +48,16 @@
 <h3>Impact of shape parameter on shape boundary:</h3>
 <img src=shape.png border=1>
 </center>
-</DD>
-<DT><b>height</b></DT>
-<DD>Optional height modifier. Range from 0 to 1. The default value is 1 and
+</dd>
+<dt><b>height</b></dt>
+<dd>Optional height modifier. Range from 0 to 1. The default value is 1 and
 indicate full membership beteen points B and C. If height is lesser than one the
-maximum memebrship is equal to height. See image: Fuzzy set definition.</DD>
-</DL>
+maximum memebrship is equal to height. See image: Fuzzy set definition.</dd>
+</dl>
 
 <h2>DESCRIPTION</h2>
 
-<H4>Definition of fuzzy set</H4>
+<h4>Definition of fuzzy set</h4>
 Fuzzy sets are sets whose elements have degrees of membership. Zadeh (1965)
 introduced Fuzzy sets as an extension of the classical notion of set. Classical 
 membership of elements in a set are binary terms: an element either belongs or
@@ -70,12 +70,12 @@
 GIS operations.
 
 
-<h2>NOTES</H2>
-<H4>Calculation of boundary shape</H4>
+<h2>NOTES</h2>
+<h4>Calculation of boundary shape</h4>
 Depending on type of the boundary different equation are used to determine its
 shape:
-<P>
-<B>Linear:</B> the membership is calculated according following equation:<br>
+<p>
+<b>Linear:</b> the membership is calculated according following equation:<br>
 <pre><code>
 value  <=  A -> x = 0
 A< value > B -> x = (value-A)/(B-A)
@@ -85,8 +85,8 @@
 
 where x: membership
 </code></pre>
-<P>
-<B>S-shaped:</B> it use following equation:
+<p>
+<b>S-shaped:</b> it use following equation:
 <pre><code>
 sin(x * Pi/2)^m (for positive shape parameter)
 1-cos(x * Pi/2)^m (for nagative shape parameter)
@@ -100,8 +100,8 @@
 For default shape parameter = 0 m is = 2 whcich is most common parameter for
 that equation.
 
-<P>
-<B>G-shaped and J shaped:</B> it use following equations: 
+<p>
+<b>G-shaped and J shaped:</b> it use following equations: 
 <pre><code>
 tan(x * Pi/4)^m (for J-shaped)
 tan(x * Pi/4)^1/m (for G-shaped)
@@ -123,24 +123,24 @@
 
 <h2>REFERENCES</h2>
 
-<P>Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
+<p>Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
 doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.</P>
 
-<P>Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
+<p>Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
 ISBN 0-85274-583-4.</P>
 
-<P>Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
+<p>Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
 applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.</P>
 
-<P>Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
+<p>Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
 0133410587.</P>
 
-<P>Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal
+<p>Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal
 of Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.</P>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz

Modified: grass-addons/grass7/raster/r.fuzzy/r.fuzzy.system/r.fuzzy.system.html
===================================================================
--- grass-addons/grass7/raster/r.fuzzy/r.fuzzy.system/r.fuzzy.system.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.fuzzy/r.fuzzy.system/r.fuzzy.system.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,61 +1,61 @@
 <h2>OPTIONS</h2>
 
-<DL>
-<DT><b>maps</b></DT>
-<DD>A text file containing maps name and  fuzzy sets connected with map
+<dl>
+<dt><b>maps</b></dt>
+<dd>A text file containing maps name and  fuzzy sets connected with map
 definition. Maps in text file must exist on a search path, except the output
 map. The name of output map name is the output name parameter. In map file
-outmput map is marked by special name <B>_OUTPUT_</B>  If maps are in different
+outmput map is marked by special name <b>_OUTPUT_</b>  If maps are in different
 mapsets the name require @. Map names in database cannot contain following
-symbols: <B> %,$ and #</B>. Every map name must start with map name
-identifier:<B> %</B>. Every set definition connected with cetrain map must
-follow the map name and must start with set identifier :<B> $</B>. The set
+symbols: <b> %,$ and #</b>. Every map name must start with map name
+identifier:<b> %</b>. Every set definition connected with cetrain map must
+follow the map name and must start with set identifier :<b> $</b>. The set
 definition must be in braces { } and requires parameters separated by semicolon.
 Any whitespaces like spaces, tabs, empty lines are allowed and may used to
 visual format of rule file.
 
-<PRE>$ set_name {side; points; boundary_shape; hedge; height }</PRE>
-<UL>
-<li><B>set_name</B>: Any name of the fuzzy set. Must not contain symbols: <i>
+<pre>$ set_name {side; points; boundary_shape; hedge; height }</pre>
+<ul>
+<li><b>set_name</b>: Any name of the fuzzy set. Must not contain symbols: <i>
 %,$ and #</i>
-<li><B>side</B>: Option indicate if set is fuzzified of both sides (both), left
+<li><b>side</b>: Option indicate if set is fuzzified of both sides (both), left
 or right side. Available: <i>both, left, right</i>. 
-<li><B>points</B>: A list containing 4 (A,B,C,D) or 2 A,B) points separated by
+<li><b>points</b>: A list containing 4 (A,B,C,D) or 2 A,B) points separated by
 comma. Points definine  location of sets of boundaries. Points may not to be in
 map range, but it may lead to only 0 o 1 membership for the whole map. For
 "both" side parameters range between A and D defines base, but range between B
 and C core of the fuzzy set. Between A and B and C and D are set's boundaries.
 If side is "both" it require 4 points, else 2 points. Points values must be
 not-decreasing.
-<li><B>shape</B>: Parameter definied the shape of the fuzzy boundary. Available:
+<li><b>shape</b>: Parameter definied the shape of the fuzzy boundary. Available:
 <i>sshaped, linear, jshaped, gshaped</i>. The same boundaires are appled to 
 both sides of fuzzy set.
-<li><B>hedge</B>: Shape modifier the positive number means dilatation (power the
+<li><b>hedge</b>: Shape modifier the positive number means dilatation (power the
 fuzzy set by 2) the negative means concetration (square root of fuzzy set). The
 number means number of dilatation/concetration applied on fuzzy set.
-<li><B>height</B>: Height modifier. Range from 0 to 1. The  value 1 and indicate
+<li><b>height</b>: Height modifier. Range from 0 to 1. The  value 1 and indicate
 full membership beteen points B and C. If height is lesser than one the maximum
 memebrship is equal to height.
-</UL>
-<P>An example of fuzzy sets definiton:
-<PRE>$ moderate {both; 90,100,120,130; sshaped; 0; 1}</PRE>
+</ul>
+<p>An example of fuzzy sets definiton:
+<pre>$ moderate {both; 90,100,120,130; sshaped; 0; 1}</pre>
 
-<B>Special notes about sets definition for output map:</B><BR>
+<b>Special notes about sets definition for output map:</b><br>
 These sets shall be created as triangular (both sides) sets with linear
 boundaries, without hedge and height modifiers:
-<PRE>$ moderate {both; 0,20,20,40; linear; 0; 1}</PRE>
-</DD>
+<pre>$ moderate {both; 0,20,20,40; linear; 0; 1}</pre>
+</dd>
 
-<DT><b>rules</b></DT>
-<DD>A text file containing rules for classification.Th typical fuzzy rule
+<dt><b>rules</b></dt>
+<dd>A text file containing rules for classification.Th typical fuzzy rule
 consists of one or more antecedents and one consequent:
 
-<PRE>IF elev IS high AND distance IS low THEN probability IS small
+<pre>IF elev IS high AND distance IS low THEN probability IS small
 
 where:
 antecetends: elev IS high; distance IS low
 consequent: probability IS small
-</PRE>
+</pre>
 
 The rule file has his own syntax. Because module creates only one result map,
 the map name is ommited. Every rule starts with $ and consist of consequent name
@@ -63,27 +63,27 @@
 included in the maps file. At the begining of the calculation program checks if
 all names and sets are included in maps file. Names of the rules must be same as
 sets names of the output map. The rules file use following symbols:
-<UL>
-<li>IS is symbolised by <B>=</B>
-<li>IS NOT is symbolised by <B>~</B>
-<li>AND is symbolised by <B>&</B>
-<li>OR is symbolised by <B>|</B>
-<li>To  specify the order of operators must use parentheses <B>()</B>.
-</UL>
+<ul>
+<li>IS is symbolised by <b>=</b>
+<li>IS NOT is symbolised by <b>~</b>
+<li>AND is symbolised by <b>&</b>
+<li>OR is symbolised by <b>|</b>
+<li>To  specify the order of operators must use parentheses <b>()</b>.
+</ul>
 
 
-<P>An example of fuzzy rules definiton:
-<PRE>
+<p>An example of fuzzy rules definiton:
+<pre>
 $ small {distance = high & elev = high}
-</PRE>
+</pre>
 
-</DD>
-</DL>
+</dd>
+</dl>
 <h2>ADVANCED OPTIONS</h2>
 In most cases default options shoud not be changed.
-<DL>
-<DT><b>family</b></DT>
-<DD>AND and OR operations in fuzzy logic are made with T-norms, T-conorms.
+<dl>
+<dt><b>family</b></dt>
+<dd>AND and OR operations in fuzzy logic are made with T-norms, T-conorms.
 T-norms, T-conorms are a generalization of the two-valued logical conjunction
 and  disjunction  used by boolean logic, for fuzzy logics. Because there is more
 than one possible generalisation of logial operations, r.fuzzy.system provides 6
@@ -98,7 +98,7 @@
 <li><b>Hamacher</b> (simplified) with Hamacher product as T-norm and Einstein
 sum as T-conorm;
 </ul>
-<P>
+<p>
 <TABLE cellspacing=4>
 <TR><TH>Family</TH><TH> T-NORM (AND) </TH><TH>T CONORM (OR) </TH></TR>
 <TR><TD>ZADEH</TD><TD> MIN(x,y)</TD><TD>MAX(x,y)</TD></TR>
@@ -111,73 +111,73 @@
 <TR><TD>HAMACHER</TD><TD>	IF (x==y==0) THEN 0 ELSE
 (x*y)/((x+y)-x*y)</TD><TD>	(x+y)/(1+x*y)</TD></TR>
 </TABLE>
-</DD>
-<DT><b>imp: implication </b></DT>
-<DD>Imlication determines the method of reshapening of consequents (fuzzy set)
+</dd>
+<dt><b>imp: implication </b></dt>
+<dd>Imlication determines the method of reshapening of consequents (fuzzy set)
 by antecedents (single value) : 
-<UL>
-<li><B>minimum</B> means the lowest value of the antecedtents and output set
-definition. It ussually creates trapezoidal consequent set definition.
-<li><B>product</B> means the multiplication of the antecedtents and output set
-definition. It ussually creates triangular consequent set definition.
-</UL>
-</DD>
-<DT><b>defuzz: deffuzyfication method</b></DT>
-<DD>Before deffuzification all consequents are agregated into one fuzzy set.
+<ul>
+<li><b>minimum</b> means the lowest value of the antecedtents and output set
+definition. It usually creates trapezoidal consequent set definition.
+<li><b>product</b> means the multiplication of the antecedtents and output set
+definition. It usually creates triangular consequent set definition.
+</ul>
+</dd>
+<dt><b>defuzz: deffuzyfication method</b></dt>
+<dd>Before deffuzification all consequents are agregated into one fuzzy set.
 Defuzzification is the process of conversion of aggregated fuzzy set into one
 crisp value. The r.fuzzy.system provides 5 methods of deffuzyfication:
-<UL>
-<li><B>centroid</B> center of mass of the fuzzy set (in practise weighted mean);
-<li><B>bisector</B> a value wchich divide fuzzy set on two parts of equal area;
-<li><B>min</B> min (right limit) of highest part of the set;
-<li><B>mean</B> mean (center) of highest part of the set;
-<li><B>max</B> max (left limit) of highest part of the set;
-</UL>
-</DD>
-<DT><b>res: universe resolution</b></DT>
-<DD>The universe is an interval between the lowest and highest values of
+<ul>
+<li><b>centroid</b> center of mass of the fuzzy set (in practise weighted mean);
+<li><b>bisector</b> a value which divide fuzzy set on two parts of equal area;
+<li><b>min</b> min (right limit) of highest part of the set;
+<li><b>mean</b> mean (center) of highest part of the set;
+<li><b>max</b> max (left limit) of highest part of the set;
+</ul>
+</dd>
+<dt><b>res: universe resolution</b></dt>
+<dd>The universe is an interval between the lowest and highest values of
 consequent and agregated fuzzy sets. The resolution provides number of elements
 of these fuzzy sets. The minimum and maximum for univese is taken from the
 minimal and maximal values of fuzzy set definition of output map Because it has
 strong impact on computation time and precision of deffuzification, values lower
 than 30 may impact on precision of final result, but values above 200 may slow
 down computation time.
-</DD>
-</DL>
+</dd>
+</dl>
 <h2>VISUAL OUTPUT</h2>
-<DL>
-<DT><b>coordinates</b></DT>
-<DD>Coordinates of points for which output: universe, all consequents sets and
+<dl>
+<dt><b>coordinates</b></dt>
+<dd>Coordinates of points for which output: universe, all consequents sets and
 agregate set. It is useful for visual presentation or detail analysis of fuzzy
 rules behaviour. In that cases calculations are peroforemd n=only for selected
-point.</DD>
-<DT><b>membership only flag</b></DT>
-<DD>Prints for all maps sat of values in map range (map universe) and values of
+point.</dd>
+<dt><b>membership only flag</b></dt>
+<dd>Prints for all maps sat of values in map range (map universe) and values of
 fuzzy sets (linguistic values). Number of values is taken from resolution
 (default 100). This option is useful for visual control fuzzy set definitions
-for evrey map.</DD>
-</DL>
+for evrey map.</dd>
+</dl>
 
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>output</b></DT>
-<DD>Map containing deffuzified values. Map is always of type FCELLS and contains
+<dl>
+<dt><b>output</b></dt>
+<dd>Map containing deffuzified values. Map is always of type FCELLS and contains
 values defined in output universe. The output name must be the same as one of
 maps in maps definition file.
-</DD>
-<DT><b>multipe output flag</b></DT>
-<DD>This flag is used to create fuzzified maps for every rule. The name of the
+</dd>
+<dt><b>multipe output flag</b></dt>
+<dd>This flag is used to create fuzzified maps for every rule. The name of the
 map consist of otput map name, '_' and rule name (for example: output=probs and
 rule name high, the map name: probs_high). Values of maps ranges from 0  to 1.
 If map with such name exists will be overwritten without warning.
-</DD>
-</DL>
-<h2>NOTES</H2>
-<H4>Calculation of boundary shape</H4>
+</dd>
+</dl>
+<h2>NOTES</h2>
+<h4>Calculation of boundary shape</h4>
 Depending on type of the boundary different equation are used to determine its
 shape:
-<P>
-<B>Linear:</B> the membership is calculated according following equation:<br>
+<p>
+<b>Linear:</b> the membership is calculated according following equation:<br>
 
 <pre><code>
 value  <=  A -> x = 0
@@ -186,7 +186,7 @@
 C< value > D -> x = (D-value)/(D-C)
 value  >=  D -> x = 0
 </code></pre>
-<B>S-shaped, G-shaped and J shaped:</B>  use following equation to sommoth
+<b>S-shaped, G-shaped and J shaped:</b>  use following equation to sommoth
 boundary:
 <pre><code>
 sin(x * Pi/2)^2 (for S-shaped)
@@ -198,8 +198,8 @@
 A,B,C,D inflection point,
 </code></pre>
 
-<h2>EXAMPLE</H2>
-<P>
+<h2>EXAMPLE</h2>
+<p>
 Fuzzy sets are sets whose elements have degrees of membership. Zadeh (1965)
 introduced Fuzzy sets as an extension of the classical notion of set. Classical 
 membership of elements in a set are binary terms: an element either belongs or
@@ -209,48 +209,48 @@
 sets and only take values 0 or 1. Classical sets are in fuzzy set theory usually
 called crisp sets. The fuzzy set theory can be used in a wide range of domains
 in which information is  imprecise, such as most of the GIS operations.
-<P>
+<p>
 Suppose we want to determine the flood risk on some area (Spearfish dataset)
 using two maps: distance to streams and elevation above streams. We can write
 some common sense rules:
-<PRE>
+<pre>
 IF elevation IS low AND distance IS near THEN risk IS veryprobable
 IF elevation IS low OR distance IS near THEN risk IS probable
 IF elevation IS high AND distance IS far THEN risk IS unprobable
-</PRE>
+</pre>
 In clasical boolean sense, we would taken some limits of ideas "near" "far" etc,
 but what about walues near the limit? The fuzzy set uses partial memberships
 which abolish these restrictions. In that sense to set "near" belongs all areas
 with distance no more than 100 m with full membership and from 100 to 200 m with
-partial membership grater than 0. Over 200 m we can assume that is not near.
+partial membership greater than 0. Over 200 m we can assume that is not near.
 This allow to formulate fuzzy rules for distance map:
-<PRE>
+<pre>
 near: BELOW 100 = 1; FROM 100 TO 200 = {1 TO 0}; ABOVE 200 = 0;
-</PRE>
+</pre>
 
 To recive final map program calculate partial fuzzy set for all rules and next
 agregate it into one fuzzy set. These fuzzy sets are created on value sequence
 called universe. Every set has the number of elements equal to universe
 resolution. Such set cannot be stored as map so finally is deffuzified with
 method choosen by user.
-<P>
+<p>
 First we need two maps created with r.stream package:
 
-<PRE>
+<pre>
 r.stream.extract elevation=elevation.10m at PERMANENT threshold=2000
 stream_rast=streams direction=dirs 
 r.stream.order stream=streams dir=dirs horton=horton
 r.mapcalc "horton3=if(horton>2,horton,null())"
 r.stream.distance stream=streams dir=dirs dem=elevation.10m method=downstream
 distance=distance elevation=elevation 
-</PRE>
+</pre>
 
 Next, to perform analysis we need two files: one with definition of map used in
 analysis and definition of fuzzy sets for every map, and second with fuzzy
 rules. For this example:
 
-<P>MAPS
-<PRE>
+<p>MAPS
+<pre>
 #flood.map
 	%elevation
 $ low {right; 2,6; sshaped; 0; 1}
@@ -264,19 +264,19 @@
 $ prob {both; 20,40,40,60; linear; 0;1}
 $ veryprob {both; 40,60,60,80; linear; 0;1}
 
-</PRE>
-<P>RULES:
-<PRE>
+</pre>
+<p>RULES:
+<pre>
 #flood.rul
 $ unprob {elevation = high & distance = far}
 $ prob {distance = near | elevation = low}
 $ veryprob {distance = near & elevation = low}
-</PRE>
+</pre>
 
 finally we need run r.fuzzy.system:
-<PRE>
+<pre>
 r.fuzzy.system maps=flood.map rules=flod.rul output=flood 
-</PRE>
+</pre>
 
 Resulting map should look like this below. Yellow color means no risk, red high
 risk, green, blue end so on moderate risk.
@@ -296,23 +296,23 @@
 <h2>REFERENCES</h2>
 
 Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
-doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<P>
+doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<p>
 
 Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
-ISBN 0-85274-583-4.<P>
+ISBN 0-85274-583-4.<p>
 
 Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
-applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<P>
+applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<p>
 
 Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
-0133410587.<P>
+0133410587.<p>
 
 Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal of
-Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<P>
+Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<p>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz

Modified: grass-addons/grass7/raster/r.modis/r.modis.download/r.modis.download.html
===================================================================
--- grass-addons/grass7/raster/r.modis/r.modis.download/r.modis.download.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.modis/r.modis.download/r.modis.download.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -75,4 +75,4 @@
 
 Luca Delucchi, Google Summer of Code 2011
 
-<p><i>Last changed: $Date: 2011-06-18 14:44:59 +0200 (Mon, 18 June 2011) $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/grass7/raster/r.modis/r.modis.download/r.modis.download.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/raster/r.modis/r.modis.html
===================================================================
--- grass-addons/grass7/raster/r.modis/r.modis.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.modis/r.modis.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -126,4 +126,4 @@
 
 Luca Delucchi, Google Summer of Code 2011
 
-<p><i>Last changed: $Date: 2011-06-03 14:44:59 +0200 (Mon, 09 May 2011) $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/grass7/raster/r.modis/r.modis.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/raster/r.modis/r.modis.import/r.modis.import.html
===================================================================
--- grass-addons/grass7/raster/r.modis/r.modis.import/r.modis.import.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.modis/r.modis.import/r.modis.import.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -70,4 +70,4 @@
 
 Luca Delucchi, Google Summer of Code 2011
 
-<p><i>Last changed: $Date: 2011-06-18 14:44:59 +0200 (Mon, 18 June 2011) $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/grass7/raster/r.modis/r.modis.import/r.modis.import.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/raster/r.stream/r.stream.basins/r.stream.basins.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.basins/r.stream.basins.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.basins/r.stream.basins.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,23 +1,23 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-z</b></DT>
-<DD>Creates zero-value background instead of NULL. For some reason (like map
+<dl>
+<dt><b>-z</b></dt>
+<dd>Creates zero-value background instead of NULL. For some reason (like map
 algebra calculation) zero-valued background may be required. This flag produces
-zero-filled background instead of null (default).</DD>
-<DT><b>-c</b></DT>
-<DD>By default r.stream.basins uses streams category as basin category. In some
+zero-filled background instead of null (default).</dd>
+<dt><b>-c</b></dt>
+<dd>By default r.stream.basins uses streams category as basin category. In some
 cases - for example if stream map is product of map algebra and separete streams
 may not have unique values this option will create new category sequence for
 each basin (do not work in vector point mode)
-</DD>
-<DT><b>-l</b></DT>
-<DD>By default r.stream.basins create basins for all unique streams. This option
+</dd>
+<dt><b>-l</b></dt>
+<dd>By default r.stream.basins create basins for all unique streams. This option
 delinate basins only for last streams ignoring upstreams (do not work in vector
 point mode).
-</DD>
+</dd>
 
-<DT><b>dirs</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+<dt><b>dirs</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -26,43 +26,43 @@
 Also <em>stream</em> network map (if used) and direction map must have the same
 resolution. It is checked by default. If resolutions differ the module informs
 about it and stops. Region boundary and maps boundary may be differ but it may
-lead to unexpected results.</DD>
+lead to unexpected results.</dd>
 
-<DT><b>coors</b></DT>
-<DD>East and north coordinates for basin outlet. It can delinate only one basin
+<dt><b>coors</b></dt>
+<dd>East and north coordinates for basin outlet. It can delinate only one basin
 using that option. This option simply copies funcionality of <a
 href="r.water.outlet.html">r.water.outlet</a>.
-</DD>
-<DT><b>streams</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed
+</dd>
+<dt><b>streams</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed
 produced by r.watershed or r.stream.extract. Because streams network produced by
 r.watershed and r.stream.extract may slighty differ in detail it is required to
 use both stream and direction map produced by the same module. Stream background
 shall have NULL value or zero value. Background values of NULL are by default
 produced by r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+</dd>
 
-<DT><b>cats</b></DT>
-<DD>Stream categories to delineate basins for: All categories which are not in
+<dt><b>cats</b></dt>
+<dd>Stream categories to delineate basins for: All categories which are not in
 stream map are ignored. It can be used with stream network created by
 r.watershed, r.stream.extract or r.stream.order. For r.stream.order use category
 of order for which basins must be created. For example to delineate only basins
 for order two use cats=2. If you need unique category for every basin use -c
 flag.
-</DD>
+</dd>
 
-<DT><b>points</b></DT>
-<DD>Vector file containing basins outlet as vector points. Only point's
+<dt><b>points</b></dt>
+<dd>Vector file containing basins outlet as vector points. Only point's
 categories are used to prepare basins. Table attached to it is ignored. Every
-point shall heve his own unique category. In that mode flags -l and -c are
+point shall have his own unique category. In that mode flags -l and -c are
 ignored
-</DD>
-</DL>
+</dd>
+</dl>
 
 
 <h2>OUTPUTS</h2>
-<P>The module produces one raster map with basins acording user's rules</p>
+<p>The module produces one raster map with basins acording user's rules</p>
 
 
 <h2>DESCRIPTION</h2>
@@ -70,15 +70,15 @@
 Module r.stream.basins is prepared to delineate basins and subasins with
 different input data. Module is prepared to delineate unrestricted number of
 basins in one step. It can delineate basins with three methods:
-<UL>
-<LI>Using coordinates: his option simply copies funcionality of <a
+<ul>
+<li>Using coordinates: his option simply copies funcionality of <a
 href="r.water.outlet.html">r.water.outlet</a>.
-<LI>Using vector points: it allow to mannually point outlets with any method
-<LI>Using streams (most advanced) it allow on lots of modifications. See
+<li>Using vector points: it allow to mannually point outlets with any method
+<li>Using streams (most advanced) it allow on lots of modifications. See
 examples for more details.
-</UL>
+</ul>
 Only one method can be used at once. Methods cannot be mixed.
-<P>
+<p>
 The most recommended method require two maps: direction and streams. In spite of
 in stream map we can store information required to proper delineation, we can
 also enumarate stream categories for which basins are to be created (cats
@@ -96,11 +96,11 @@
 
 
 <h2>NOTES</h2>
-<P>
+<p>
 To receive good results outlets markers created by user shall overlapping with
 streams. On the other way basins could results with very small area. Input maps
 must be in CELL format (default output of r.watershed, r.stream.order  and
-r.stream.extract)<P>
+r.stream.extract)<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted.  
@@ -111,66 +111,65 @@
 r.patch). 
 
 <h2>EXAMPLES</h2>
-<P>
+<p>
 To delineate all basins with categories of streams:
-<P>
-<CODE>r.stream.basins dir=dirs stream=streams basins=bas_basins_elem</CODE>
-<P>
+<p>
+<code>r.stream.basins dir=dirs stream=streams basins=bas_basins_elem</code>
+<p>
 To determine major and minor basins in area, definied by outlets, ignoring
 subbasins use  - l flag. That flag ignores all nodes and uses only real outlets
 (in most cases that on map border):
-<P>
-<CODE>r.stream.basins -l dir=dirs stream=streams basins=bas_basins_last</CODE>
+<p>
+<code>r.stream.basins -l dir=dirs stream=streams basins=bas_basins_last</code>
 
-<P>
-<CODE>r.stream.basins dir=dirs coors=639936.623832,216939.836449</CODE>
+<p>
+<code>r.stream.basins dir=dirs coors=639936.623832,216939.836449</code>
 
-<P>
+<p>
 To delineate one or more particular basins defined by given streams, add simply
 stream categories:
-<CODE>
+<div class="code"><pre>
 r.stream.basins -lc dirs=dirs streams=streams cats=2,7,184 basins=bas_basin
-</CODE>
+</pre></div>
 
-<P>
+<p>
 Do delineate basins of particular order we must use the following procedure: 
 
-<CODE>
+<div class="code"><pre>
 r.stream.basins -lc dirs=dirs streams=strahler cats=2
 basins=bas_basin_strahler_2
-</CODE>
+</pre></div>
 
-<P>
+<p>
 The usage of polygons as outlets markers is very useful when exact stream course
 cannot be cleary determined before running analysis, but the area of its
 occurrence can be determined (mostly in iterative simulations) Example uses
 r.circle but can be substituted by any polygon created for example  with
 v.digit:
-<CODE>
+<div class="code"><pre>
 r.circle -b output=circle coordinate=639936.623832,216939.836449 max=200
 r.stream.basins -c dirs=dirs streams=circle basins=bas_simul
-</CODE>
-<P>
+</pre></div>
+<p>
 To determine areas of contribution to streams of particular order  use as
 streams the result of ordering:
-<P>
-<CODE>r.stream.basins dirs=dirs streams=ord_strahler
-basins=bas_basin_strahler</CODE>
-<P>
+<p>
+<div class="code"><pre>
+r.stream.basins dirs=dirs streams=ord_strahler basins=bas_basin_strahler
+</pre></div>
+<p>
 Determination of areas of potential source of pollution. The example will be
 done for lake marked with FULL_HYDR 8056 in North Carolina sample dataset. The
 lake shall be extracted and converted to binary raster map.
 
-<CODE>
+<div class="code"><pre>
 v.extract -d input=lakes at PERMANENT output=lake8056 type=area layer=1
 'where=FULL_HYDRO = 8056' new=-1 
 v.to.rast input=lake8056 output=lake8056 use=val type=area layer=1 value=1
 r.stream.basins dirs=dirs streams=lake8056 basins=bas_basin_lake
-</CODE>
-<P>
-See also tutorial: <a
-href="http://grass.osgeo.org/wiki/R.stream.*">http://grass.osgeo.org/wiki/R.
-stream.*</a>
+</pre></div>
+<p>
+See also tutorial: <a href="http://grass.OSGeo.org/wiki/R.stream.*">http://grass.OSGeo.org/wiki/R.stream.*</a>
 
 <h2>SEE ALSO</h2>
 

Modified: grass-addons/grass7/raster/r.stream/r.stream.channel/r.stream.channel.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.channel/r.stream.channel.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.channel/r.stream.channel.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,17 +1,17 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-l</b></DT>
-<DD>Calculate local values. See output for detials.</DD>
-<DT><b>-c</b></DT>
-<DD>Calculate distance in cells instead of meters. See output for detials.</DD>
-<DT><b>-d</b></DT>
-<DD>Calculate downstream distance (from current cell DOWNSTREAM to outlet/join).
-Default is upstream (from current cell upstream to init/join.</DD>
-<DT><b>-m</b></DT>
-<DD>Only for very large data sets. Use segment library to optimize memory
-consumption during analysis</DD>
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map. Map may be ordered according one
+<dl>
+<dt><b>-l</b></dt>
+<dd>Calculate local values. See output for detials.</dd>
+<dt><b>-c</b></dt>
+<dd>Calculate distance in cells instead of meters. See output for detials.</dd>
+<dt><b>-d</b></dt>
+<dd>Calculate downstream distance (from current cell DOWNSTREAM to outlet/join).
+Default is upstream (from current cell upstream to init/join.</dd>
+<dt><b>-m</b></dt>
+<dd>Only for very large data sets. Use segment library to optimize memory
+consumption during analysis</dd>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map. Map may be ordered according one
 of the r.stream.order ordering system as well as unordered (with origilan stream
 identifiers)  Because streams network produced by r.watershed and
 r.stream.extract may slighty differ in detail it is required to use both stream
@@ -19,9 +19,9 @@
 value or zero value. Background values of NULL are by default produced by
 r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+</dd>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -30,57 +30,58 @@
 Also <em>stream</em> network map must have the same resolution. It is checked by
 default. If resolutions differ the module informs about it and stops. Region
 boundary and maps boundary may be differ but it may lead to unexpected
-results.</DD>
-<DT><b>elevation</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
+results.</dd>
+<dt><b>elevation</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
 DCELL. It is not restricted to resolution of region settings as streams and
-dirs.</DD>
-</DL>
+dirs.</dd>
+</dl>
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>distance</b></DT>
-<DD>Upstream distance of current cell to the init/join. Flag modifications: <BR>
-<b>d:</b> downstream distance of current cell to the join/outlet;<BR>
+<dl>
+<dt><b>distance</b></dt>
+<dd>Upstream distance of current cell to the init/join. Flag modifications: <br>
+<b>d:</b> downstream distance of current cell to the join/outlet;<br>
 <b>l:</b> local distance between current cell and next cell. In most cases cell
 resolution and sqrt2 of cell resolution. usefull when projection is LL or NS and
-WE resolutions differs. Flag d ignored<BR>
+WE resolutions differs. Flag d ignored<br>
 <b>c:</b> distance in cells. Map is written as double. Use mapcalc to convetrt
-to integer. Flags l and d ignored.<BR>
-</DD>
-<DT><b>difference</b></DT>
-<DD>Upstream elevation difference between current cell to the init/join. It we
+to integer. Flags l and d ignored.<br>
+</dd>
+<dt><b>difference</b></dt>
+<dd>Upstream elevation difference between current cell to the init/join. It we
 need to calculate parameters different than elevation. If we need to calculate
 different parameters than elevation along streams (for example precipitation or
-so) use neccesary map as elevation. Flag modifications: <BR>
-<b>d:</b> downstream difference of current cell to the join/outlet;<BR>
+so) use neccesary map as elevation. Flag modifications: <br>
+<b>d:</b> downstream difference of current cell to the join/outlet;<br>
 <b>l:</b> local difference between current cell and next cell. With flag
-calculates difference between previous cell and current cell<BR>
+calculates difference between previous cell and current cell<br>
 <b>c:</b> Ignored.
-</DD>
-<DT><b>gradient</b></DT>
-<DD>Upstream mean gradient between current cell and the init/join.  Flag
-modifications: <BR>
+</dd>
+<dt><b>gradient</b></dt>
+<dd>Upstream mean gradient between current cell and the init/join.  Flag
+modifications: <br>
 <b>d:</b> downstream mean gradient between current cell and the the
-join/outlet;<BR>
-<b>l:</b> local gradient between current cell and next cell. Flag d ignored<BR>
+join/outlet;<br>
+<b>l:</b> local gradient between current cell and next cell. Flag d ignored<br>
 <b>c:</b> Ignored.
-</DD>
-<DT><b>curvature</b></DT>
-<DD>Local stream course curvature  of current cell. Calculated according
+</dd>
+<dt><b>curvature</b></dt>
+<dd>Local stream course curvature  of current cell. Calculated according
 formula: <i>first_derivative/(1-second_derivative<sup>2</sup>)<sup>3/2</sup></i>
-Flag modifications: <BR>
-<b>d:</b> ignored;<BR>
-<b>l:</b> Ignored.<BR>
+Flag modifications: <br>
+<b>d:</b> ignored;<br>
+<b>l:</b> Ignored.<br>
 <b>c:</b> Ignored.
-</DD>
-<DT><b>identifier</b></DT>
-<DD> Integer map: In ordered stream network there are more than one segment
+</dd>
+<dt><b>identifier</b></dt>
+<dd> Integer map: In ordered stream network there are more than one segment
 (segment: a part of the network where order ramains unchanged) with the same
 order. To identify particular segments (for further analysis) every segment
-recive his unique identifier.</DD>
-</DL>
+recive his unique identifier.</dd>
+</dl>
+
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.channel is prepared to calculate some local properties of the
 stream network. It is suplementary module for r.stream.order, and
 r.stream.distance to investigate channel subsystem. For slope subsystem
@@ -90,14 +91,14 @@
 It can calculate parameters for every orders but best results are for these
 orders where order remains unchanged from stream init to natural outlet (Hack
 and Horton ordering).
-<P>
+<p>
 
-<h2>EGZAMPLE</h2>
+<h2>EXAMPLE</h2>
 
 This example shows how to visualise the change of gradient map along the main
 stream of the catchment:
-<PRE>
-<CODE>
+
+<div class="code"><pre>
 r.watershed elevation=elevation.10m treshold=1000 stream=streams drainage=dirs
 r.stream.order streams=streams dirs=dirs hack=hack
 r.stream.channel streams=hack dirs=dirs elevation=elevation.10m
@@ -113,8 +114,8 @@
 p=subset(r at data,!is.na(r at data$dist))
 sorted=p[order(p$stdist),]
 plot(sorted,stdist~stgrad,type="l")
-</CODE>
-</PRE>
+</pre></div>
+
 <h2>SEE ALSO</h2>
 
 <em>

Modified: grass-addons/grass7/raster/r.stream/r.stream.distance/r.stream.distance.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.distance/r.stream.distance.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.distance/r.stream.distance.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,29 +1,29 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-o</b></DT>
-<DD>Outlets. Downstream method only. Calculate distance and relative  elevation
+<dl>
+<dt><b>-o</b></dt>
+<dd>Outlets. Downstream method only. Calculate distance and relative  elevation
 to basin outlets instead of streams. It choose only last outlets in the network
-ignoring nodes.</DD>
-<DT><b>-s</b></DT>
-<DD>Subbasins. Downstream method only. Calculate distance and elevation to
+ignoring nodes.</dd>
+<dt><b>-s</b></dt>
+<dd>Subbasins. Downstream method only. Calculate distance and elevation to
 stream nodes instead of streams. It create distance and elevation parameters not
-for whole basins but for all elementary subbasins.</DD>
-<DT><b>-n</b></DT>
-<DD>Near. For upstram method only. Calculate distance and elevation to the
+for whole basins but for all elementary subbasins.</dd>
+<dt><b>-n</b></dt>
+<dd>Near. For upstream method only. Calculate distance and elevation to the
 nearest local maximum/divide. With the default option distance/elevation is
 calculated to the farthest possible maximum/divide
-</DD>
-<DT><b>streams</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed
+</dd>
+<dt><b>streams</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed
 produced by r.watershed or r.stream.extract. Because streams network produced by
 r.watershed and r.stream.extract may slighty differ in detail it is required to
 use both stream and direction map produced by the same module. Stream background
 shall have NULL value or zero value. Background values of NULL are by default
 produced by r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
-<DT><b>dirs</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+</dd>
+<dt><b>dirs</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -31,37 +31,37 @@
 resolution and map resoultion must be the same. Also <em>stream</em> network map
 must have the same resolution. It is checked by default. If resolutions differ
 the module informs about it and stops. Region boundary and maps boundary may be
-differ but it may lead to unexpected results.</DD>
-<DT><b>elevation</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
+differ but it may lead to unexpected results.</dd>
+<dt><b>elevation</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
 DCELL. It is not restricted to resolution of region settings as stream and
-dir.</DD>
-<DT><b>method</b></DT>
-<DD>It is possible to calculate distance with two method: <b>downstream</b> from
+dir.</dd>
+<dt><b>method</b></dt>
+<dd>It is possible to calculate distance with two method: <b>downstream</b> from
 any raster cell to the nearest stream cell/ junction cell or outlet or
-<b>upstream</b> from any cell upstream to the nearest maximum or divide</DD>
-</DL>
+<b>upstream</b> from any cell upstream to the nearest maximum or divide</dd>
+</dl>
 
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>difference</b></DT>
-<DD>Returns elevation difference to the targer (outlet, node, stream, divide,
-maximum) along watercoures. The map is of FCELL type</DD>
-<DT><b>distance</b></DT>
-<DD>Returns distance to the targer (outlet, node, stream, divide, maximum) along
-watercoures. The map is of FCELL type</DD>
-</DL>
+<dl>
+<dt><b>difference</b></dt>
+<dd>Returns elevation difference to the targer (outlet, node, stream, divide,
+maximum) along watercoures. The map is of FCELL type</dd>
+<dt><b>distance</b></dt>
+<dd>Returns distance to the targer (outlet, node, stream, divide, maximum) along
+watercoures. The map is of FCELL type</dd>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.distance may calculate distance using two methods: downstream
 and upstream.
-<P>
+<p>
 The default is downstream method when it  calculate distance to streams and
 outlets and relative elevation to streams and outlets. The distance and
 elevation is calculated along watercourses. In outlets mode it can also
 calculate parameters for subbasins.
-<P>
+<p>
 In streams mode (default) it calculates that parameters downstream to streams
 which are added as stream mask. In outlets mode there are some additional
 possibilities. If subbasin is off it calculate parameters only for last point of
@@ -69,11 +69,11 @@
 subbasin separately. Subbasin mode acts similar to subbasin mask. Streams file
 prepared to create basins and subbasins with r.stream.basins can use to to
 calculate distance and elevation parameters.
-<P>
+<p>
 With upstream method it calculate distance to the local maximum or divide.
 Opposite to downstream method, where every cell has one and only one downstream
-cell in upstream method every cell has usssualy more than one upstream cell. So
-it is impossible to determine nterchangeable path from any cell. The upstream
+cell in upstream method every cell has usually more than one upstream cell. So
+it is impossible to determine interchangeable path from any cell. The upstream
 method offers two alternative modes switched with -n flag: nearest local
 maximum/divide:  means the shortest path to local maximum and default option
 farthest maximum/divide means the longest path. In hydrological sense nearest
@@ -81,26 +81,26 @@
 reach particular cell, while farthest mode means the possible longest path.
 
 <h2>NOTES</h2>
-<P>
+<p>
 If there are more than one point or one stream networks and some separate points
 or separate streams networks are in catchment area defined by others it will
 results as in subbasin mode.  In stream mode subbasin options is ommited. Input
 maps must be in CELL format (default output of r.watershed, r.stream.order  and
-r.stream.extract)
+r.stream.extract).
 The distance are calculated in meters both for planimeters and
 Latitude-Longitude projections. The distance is calculated for flat areas not
 corrected by topography. Distance correction by topography may be done with
 following mapcalc formula:
-<P>
-<CODE>echo 'dist_corrected = sqrt(distance^2 + elevation ^2)'|r.mapcalc<CODE>
-<P>
+<p>
+<code>echo 'dist_corrected = sqrt(distance^2 + elevation ^2)'|r.mapcalc</code>
+<p>
 Module can work only if direction map, stream map and region has same settings.
 It is also required that stream map and direction map come from the same source.
 For lots of reason this limitation probably cannot be omitted.   this means if
 stream map comes from r.stream.extract also direction map from r.stream.extract
 must be used. If stream network was generated with MFD method also MFD direction
 map must be used.
-<P>
+<p>
 Probably one of the most imortant features of r.stream.extract is the ability to
 calculate distnace not only for streams generated with r.stream.order, but also
 to any CELL map with resoultion coresponding to dirs map. It can be a lake,

Modified: grass-addons/grass7/raster/r.stream/r.stream.order/r.stream.order.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.order/r.stream.order.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.order/r.stream.order.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,19 +1,19 @@
 <h2>DESCRIPTION</h2>
 
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-z</b></DT>
-<DD>Creates zero-value background instead of NULL. For some reason (like map
+<dl>
+<dt><b>-z</b></dt>
+<dd>Creates zero-value background instead of NULL. For some reason (like map
 algebra calculation) zero-valued background may be required. This flag produces
-zero-filled background instead of null (default).</DD>
-<DT><b>-a</b></DT>
-<DD>Uses accumulation map instead of cumulated stream length to determine main
-branch at bifuraction. Works well only with SFD networks</DD>
-<DT><b>-m</b></DT>
-<DD>Only for very large data sets. Use segment library to optimise memory
-consumption during analysis</DD>
-<DT><b>stream network map</b></DT>
-<DD>Name of input stream map on which ordering will be performed produced by
+zero-filled background instead of null (default).</dd>
+<dt><b>-a</b></dt>
+<dd>Uses accumulation map instead of cumulated stream length to determine main
+branch at bifuraction. Works well only with SFD networks</dd>
+<dt><b>-m</b></dt>
+<dd>Only for very large data sets. Use segment library to optimise memory
+consumption during analysis</dd>
+<dt><b>stream network map</b></dt>
+<dd>Name of input stream map on which ordering will be performed produced by
 r.watershed or r.stream.extract. Because streams network produced by r.watershed
 and r.stream.extract may slighty differ in detail it is required to 
 use both stream and direction map produced by the same module. Stream background
@@ -21,9 +21,9 @@
 Background values of NULL are by default produced by r.watershed and
 r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to
 set background values to null.  
-</DD>
-<DT><b>flow direction map</b></DT>
-<DD>Name of input direction map produced by r.watershed or r.stream.extract. If
+</dd>
+<dt><b>flow direction map</b></dt>
+<dd>Name of input direction map produced by r.watershed or r.stream.extract. If
 r.stream.extract output map is used, it only has non-NULL values in places where
 streams occur. NULL (nodata) cells are ignored, zero and negative values are
 valid direction data if they vary from -8 to 8 (CCW from East in steps of 45
@@ -32,72 +32,72 @@
 Also <em>stream</em> network and <em>direction</em> maps must have the same
 resolution. It is checked by default. If resolutions differ the module informs
 about it and stops. Region boundary
-and maps boundary may be differ but it may lead to unexpected results.</DD>
-<DT><b>accumulation map</b></DT>
-<DD>Flow accumulation (optional, not recommended): name of flow accumulation
+and maps boundary may be differ but it may lead to unexpected results.</dd>
+<dt><b>accumulation map</b></dt>
+<dd>Flow accumulation (optional, not recommended): name of flow accumulation
 file produced by r.watershed or used in r.stream.extract. This map is an option
 only if Horton's or Hack's ordering is performed. Normally both Horton and Hack
-ordering is calculated on cumulative stream lrngth wchich is calculated
+ordering is calculated on cumulative stream lrngth which is calculated
 internaly. Flow accumulation can be used if user want to calculate main stream
 as most accumulated stream. Flow accumulation map shall be of DCELL type, as is
-by default produced by r.watershed or converted do DCELL with r.mapcalc.</DD>
-<DT><b>elevation map</b></DT>
-<DD>Used to calculate geometrical properites of the network stored in the
-table.</DD>
-</DL>
+by default produced by r.watershed or converted do DCELL with r.mapcalc.</dd>
+<dt><b>elevation map</b></dt>
+<dd>Used to calculate geometrical properites of the network stored in the
+table.</dd>
+</dl>
 <h2>OUTPUTS</h2>
 
-<P>At least one output map is required: </p>
-<DL>
-<DT><b>vector</b></DT>
-<DD>Vector network with table where stream network topology can be stored.
+<p>At least one output map is required: </p>
+<dl>
+<dt><b>vector</b></dt>
+<dd>Vector network with table where stream network topology can be stored.
 Because r.stream.order is prepared to work both with r.watershed and
 r.stream.extract, it may be yused to create correct vector from r.watershed
-results.<DD>
+results.<dd>
 
-<DT><b>strahler</b></DT>
-<DD>Name of Strahler's stream order output map: see notes for detail. </DD>
+<dt><b>strahler</b></dt>
+<dd>Name of Strahler's stream order output map: see notes for detail. </dd>
 
-<DT><b>shreve</b></DT>
-<DD>Name of Shreve's stream magnitude output map: see notes for detail.</DD>
+<dt><b>shreve</b></dt>
+<dd>Name of Shreve's stream magnitude output map: see notes for detail.</dd>
 
-<DT><b>horton</b></DT>
-<DD>Name of Horton's stream order output map (require accum file): see notes for
-detail.</DD>
+<dt><b>horton</b></dt>
+<dd>Name of Horton's stream order output map (require accum file): see notes for
+detail.</dd>
 
-<DT><b>hack</b></DT>
-<DD>Name of Hack's main streams output map : see notes for detail.</DD>
+<dt><b>hack</b></dt>
+<dd>Name of Hack's main streams output map : see notes for detail.</dd>
 
-<DT><b>top</b></DT>
-<DD>Name of topological dimensions streams output map: see notes for
-detail.</DD>
-</DL>
+<dt><b>top</b></dt>
+<dd>Name of topological dimensions streams output map: see notes for
+detail.</dd>
+</dl>
 
 <h3>Stream ordering example:</h3>
 <center>
 <img src=orders.png border=1><br>
 </center>
 
-<P>
-<H4>Strahler's stream order</H4>
+<p>
+<h4>Strahler's stream order</h4>
 Strahler's stream order is a modification of Horton's streams order which fixes
 the ambiguity of Horton's ordering. 
 In Strahler's ordering the main channel is not determined; instead the ordering
 is based on the hierarchy of tributaries. The 	
 ordering follows these rules:
-<OL>
+<ol>
 <li>if the node has no children, its Strahler order is 1.
 <li>if the node has one and only one tributuary with Strahler greatest order i,
-and all other tributuaries have order less than i, then the order remains i.
-<li>if the node has two or more tributuaries with greatest order i, then the
+and all other tributaries have order less than i, then the order remains i.
+<li>if the node has two or more tributaries with greatest order i, then the
 Strahler order of the node is i + 1.
-</OL>
+</ol>
 Strahler's stream ordering starts in initial links which assigns order one. It
 proceeds downstream. At every node it verifies that there are at least 2 equal
 tributaries with maximum order. If not it continues with highest order, if yes
 it increases the node's order by 1 and continues downstream with new order. 
-<BR>
-<B>Advantages and disadvantages of Strahler's ordering: </B>
+<br>
+<b>Advantages and disadvantages of Strahler's ordering: </b>
  Strahler's stream order has a good mathematical background. All catchments with
 streams in this context are directed graphs, oriented from the root towards the
 leaves. Equivalent definition of the Strahler number of a tree is that it is the
@@ -108,7 +108,7 @@
 channel which may interfere with the analytical process in highly elongated
 catchments
 
-<H4>Horton's stream order</H4>
+<h4>Horton's stream order</h4>
 Horton's stream order applies to the stream as a whole but not to segments or
 links since the order on any channel remains unchanged from source till it
 "dies" in the higher order stream or in the outlet of the catchment. The main
@@ -133,22 +133,22 @@
 upstream to the next initial links. In that way stream orders remain unchanged
 from the point where Horton's order have been determined to the source. 
   
-<BR>
-<B>Advantages and disadvantages of Horton's ordering:</B> 
+<br>
+<b>Advantages and disadvantages of Horton's ordering:</b> 
 The main advantages of Horton's ordering is that it produces natural stream
 ordering with main streams and its tributaries. The main disadvantage is that it
 requires prior Strahler's ordering. In some cases this may result in unnatural
 ordering, where the highest order will be ascribed not to the channel with
 higher accumulation but to the channel which leads to the most branched parts of
 the the catchment. 
-<P>
-<H4>Shreve's stream magnitude</H4>
+<p>
+<h4>Shreve's stream magnitude</h4>
 That ordering method is similar to Consisted Associated Integers proposed by
 Scheidegger. It assigns magnitude of 1 for every initial channel. The magnitude
 of the following channel is the sum of magnitudes of its tributaries. The number
 of a particular link is the number of initials which contribute to it. 
 
-<H4>Scheidegger's stream magnitude</H4>
+<h4>Scheidegger's stream magnitude</h4>
 That ordering method is similar to Shreve's stream magnitude. It assigns
 magnitude of 2 for every initial channel. The magnitude of the following channel
 is the sum of magnitudes of its tributaries. The number of a particular link is
@@ -156,10 +156,10 @@
 (Scheidegger) is aviallable only in attribute table. To achive Consisted
 Associated Integers (Scheidegger) raster the result of Shreve's magnitude is to
 be multiplied by 2: 
-<P>
+<p>
 <code>r.mapcalc scheidegger=shreve*2</code>
-<P>
-<H4>Drwal's stream hierarchy (old style)</H4>
+<p>
+<h4>Drwal's stream hierarchy (old style)</h4>
 That ordering method is a compromise between Strahler ordering and Shreve
 magnitude. It assigns order of 1 for every initial channel. The order of the
 following channel is calculated according Strahler formula, except, that streams
@@ -170,17 +170,17 @@
 close to idealised binary tree. Drwal's order is aviallable only in attribute
 table.To achive Drwal's raster the result of Shreve's magnitude is to be
 recalculated according formula: <b>floor(log(shreve,2))+1</b>
-<P>
+<p>
 <code>r.mapcalc drwal=int(log(shreve,2))+1</code>
-<P>
-<B>Advantages and disadvantages of Drwal's hierarhy:</B> 
+<p>
+<b>Advantages and disadvantages of Drwal's hierarhy:</b> 
 The main advantages of Drwal's hierarchy is that it produces natural stream
 ordering with whcich takes into advantage both ordering and magnitude. It shows
 the real impact of particular links of the network run-off. The main
 desadvantage is that it minimise bifuraction ratio ot the network.
 
-<P>
-<H4>Hack's main streams or Gravelius order</H4>
+<p>
+<h4>Hack's main streams or Gravelius order</h4>
 This method of ordering calculates main streams of main catchment and every
 subcatchments. Main stream of every catchment is set to 1, and consequently all
 its tributaries receive order 2. Their tributaries receive order 3 etc. The
@@ -196,8 +196,8 @@
 unassigned confluence. It assigns order 2 to unordered tributaries and again
 goes upstream to the next initial stream. The process runs until all branches of
 all outlets are ordered. 
-<BR>
-<B>Advantages and disadvantages of main stream ordering:</B>
+<br>
+<b>Advantages and disadvantages of main stream ordering:</b>
 The biggest advantage of that method is the possibility to compare and analyze
 topology upstream, according to main streams. Because all tributaries of main
 channel have order of 2, streams can be quickly and easily filtered and its
@@ -205,12 +205,12 @@
 that method is the problem with the comparison of subcatchment topology of the
 same order. Subcatchments of the same order may be both highly branched and
 widespread in the catchment area and a small subcatchment with only one stream. 
-<H4>Topological dimension streams order</H4>
+<h4>Topological dimension streams order</h4>
 This method of ordering calculates topological distance of every stream from
 catchment outlet.
-<BR>
+<br>
 
-<H4>Stream network topology table description connected with vector file</H4>
+<h4>Stream network topology table description connected with vector file</h4>
 <ul>
 	<li><b>cat</b> integer: category;
 	<li><b>stream</b>integer: stream number, usually equal to cat;
@@ -239,8 +239,8 @@
 	<li><b>out_drop</b> double precision: drop at the outlet of the stream;
 	<li><b>gradient</b> double precision: drop/length;
 </ul>
-<h2>NOTES</H2>
-<P>
+<h2>NOTES</h2>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted. This
@@ -269,7 +269,7 @@
 <b>U.S. Geological Survey Professional Paper</b>, 294-B<p>
 Horton, R. E. (1945), <i>Erosional development of streams and their drainage
 basins: hydro-physical approach to quantitative morphology</i>,<b>Geological
-Society of America Bulletin</b> 56 (3): 275-370<BR>
+Society of America Bulletin</b> 56 (3): 275-370<br>
 Scheidegger A. E., (1966), <i>Statistical Description of River Networks</i>.
 <b>Water Resour. Res.</b>, 2(4): 785-790
 Shreve, R.,  (1966),<i>Statistical Law of Stream Numbers</i>, <b>J. Geol.</b>,

Modified: grass-addons/grass7/raster/r.stream/r.stream.segment/r.stream.segment.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.segment/r.stream.segment.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.segment/r.stream.segment.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
 <h2>DESCRIPTION</h2>
 
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-r</b></DT>
-<DD>Directions and azimut output in radians. Default is degrees.</DD>
-<DT><b>-m</b></DT>
-<DD>Only for very large data sets. Use segment library to optimize memory
-consumption during analysis</DD>
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map. Streams shall be ordered according
+<dl>
+<dt><b>-r</b></dt>
+<dd>Directions and azimut output in radians. Default is degrees.</dd>
+<dt><b>-m</b></dt>
+<dd>Only for very large data sets. Use segment library to optimize memory
+consumption during analysis</dd>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map. Streams shall be ordered according
 one of the r.stream.order ordering system as well as unordered (with original
 stream identifiers)  Because streams network produced by r.watershed and
 r.stream.extract may slighty differ in detail it is required to use both stream
@@ -16,9 +16,9 @@
 value or zero value. Background values of NULL are by default produced by
 r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
-<DT><b>dirs</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+</dd>
+<dt><b>dirs</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -27,109 +27,109 @@
 Also <em>stream</em> network map must have the same resolution. It is checked by
 default. If resolutions differ the module informs about it and stops. Region
 boundary and maps boundary may be differ but it may lead to unexpected
-results.</DD>
-<DT><b>elevation</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
+results.</dd>
+<dt><b>elevation</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
 DCELL. It is not restricted to resolution of region settings as streams and
-dirs.</DD>
-<DT><b>length</b></DT>
-<DD>Integer values indicating the search length (in cells) to determine stright
+dirs.</dd>
+<dt><b>length</b></dt>
+<dd>Integer values indicating the search length (in cells) to determine stright
 line. The longest length parameter the module treats more tolerant local stream
 undulation and inequalities. Default value of 15 is suitable for  30 meters
-DEMS. More detail DEMS may requre longer length.</DD>
+DEMS. More detail DEMS may requre longer length.</dd>
 
-<DT><b>skip</b></DT>
-<DD>Integer values indicating the length (in cells) local short segment to skip
+<dt><b>skip</b></dt>
+<dd>Integer values indicating the length (in cells) local short segment to skip
 and join them to the longer neigbour. The shortest length parameter the more
 short segments will be produced by the module due to undulation and
 inequalities. Default value of 5 is suitable for  30 meters DEMS. More details
-DEMS may requre longer length.</DD>
+DEMS may requre longer length.</dd>
 
-<DT><b>treshold</b></DT>
-<DD>real value indicates the internal angle between upstream and downsteam
-direction to treat actual cell as lying on the stright line. Grater value (up to
+<dt><b>treshold</b></dt>
+<dd>real value indicates the internal angle between upstream and downsteam
+direction to treat actual cell as lying on the stright line. greater value (up to
 180 degrees) produces more segments. Lesser values produced less segments.
 Values below 90 in most cases will not produce any addational segments to these
 resulting from ordering
-</DL>
-<DL>
+</dl>
+<dl>
 <h2>OUTPUTS</h2>
-<P>The module produces two vector maps: one representing original segments
+<p>The module produces two vector maps: one representing original segments
 (where segment is a streamline where its order remains unchanged) and second
 divided into near stright line sectors resulting form segmentation proccess.
 Most of segment and sectors attributes are the same as in r.stream.order vector
 output.</p>
-<DL>
-<DT><b>segments</b></DT>
-<DD>
+<dl>
+<dt><b>segments</b></dt>
+<dd>
 Vector map where every segment has its own category and following attributes:
 <ul>
-<li><B>segment</B>: integer, segment identifier
-<li><B>next_segment</B>: integer, topological next segment identifier
-<li><B>s_order</B>: integer, segment order
-<li><B>next_order</B>: integer, topological next segment order
-<li><B>direction</B>: double precision, full segment direction (0-360)
-<li><B>azimuth</B>: double precision, full segment azimuth (0-180) 
-<li><B>length</B>: double precision, segment length
-<li><B>stright</B>: double precision, length of stright line between segment
+<li><b>segment</b>: integer, segment identifier
+<li><b>next_segment</b>: integer, topological next segment identifier
+<li><b>s_order</b>: integer, segment order
+<li><b>next_order</b>: integer, topological next segment order
+<li><b>direction</b>: double precision, full segment direction (0-360)
+<li><b>azimuth</b>: double precision, full segment azimuth (0-180) 
+<li><b>length</b>: double precision, segment length
+<li><b>stright</b>: double precision, length of stright line between segment
 nodes
-<li><B>sinusoid</B>: double precision, sinusoid (length/stright)
-<li><B>elev_min</B>: double precision, minimum elevation (elevation at segment
+<li><b>sinusoid</b>: double precision, sinusoid (length/stright)
+<li><b>elev_min</b>: double precision, minimum elevation (elevation at segment
 start)
-<li><B>elev_max</B>: double precision, maximum elevation (elevation at segment
+<li><b>elev_max</b>: double precision, maximum elevation (elevation at segment
 end)
-<li><B>s_drop</B>: double precision, deifference between start and end of the
+<li><b>s_drop</b>: double precision, deifference between start and end of the
 segment
-<li><B>gradient</B>: double precision, drop/length
-<li><B>out_direction</B>: double precision, direction (0-360) of segment end
+<li><b>gradient</b>: double precision, drop/length
+<li><b>out_direction</b>: double precision, direction (0-360) of segment end
 sector
-<li><B>out_azimuth</B>: double precision,  azimuth (0-180) of segment end sector
-<li><B>out_length</B>: double precision, length of segment end sector
-<li><B>out_drop</B>: double precision, drop of segment end sector
-<li><B>out_gradient</B>: double precision, gradient of segment end sector
-<li><B>tangent_dir</B>: double precision, direction of tangent in segment outlet
+<li><b>out_azimuth</b>: double precision,  azimuth (0-180) of segment end sector
+<li><b>out_length</b>: double precision, length of segment end sector
+<li><b>out_drop</b>: double precision, drop of segment end sector
+<li><b>out_gradient</b>: double precision, gradient of segment end sector
+<li><b>tangent_dir</b>: double precision, direction of tangent in segment outlet
 to the next stream 
-<li><B>tangent_azimuth</B>: double precision, azimuth of tangent in segment
+<li><b>tangent_azimuth</b>: double precision, azimuth of tangent in segment
 outlet to the next stream 
-<li><B>next_direction</B>: double precision, direction of next stream in join
+<li><b>next_direction</b>: double precision, direction of next stream in join
 with current segment 
-<li><B>next_azimuth</B>: double precision, azimuth of next stream in join with
+<li><b>next_azimuth</b>: double precision, azimuth of next stream in join with
 current segment 
 </ul>
 <img src="dirs.png">
-</DD>
-<DT><b>sectors</b></DT>
-<DD>Vector map where every sector has its own category and following attributes:
+</dd>
+<dt><b>sectors</b></dt>
+<dd>Vector map where every sector has its own category and following attributes:
 <ul>
-<li><B>sector</B>: integer, sector category
-<li><B>segment</B>: integer, segment category (to estabilsh relationship)
-<li><B>s_order</B>: integer, segment order
-<li><B>direction</B>: double precision, sector direction
-<li><B>azimuth</B>: double precision, sector azimuth
-<li><B>length</B>: double precision, sector length
-<li><B>stright</B>: double precision, length of stright line between sector
+<li><b>sector</b>: integer, sector category
+<li><b>segment</b>: integer, segment category (to estabilsh relationship)
+<li><b>s_order</b>: integer, segment order
+<li><b>direction</b>: double precision, sector direction
+<li><b>azimuth</b>: double precision, sector azimuth
+<li><b>length</b>: double precision, sector length
+<li><b>stright</b>: double precision, length of stright line between sector
 nodes
-<li><B>sinusoid</B>: double precision, sinusoid (length/stright)
-<li><B>elev_min</B>: double precision, minimum elevation (elevation at sector
+<li><b>sinusoid</b>: double precision, sinusoid (length/stright)
+<li><b>elev_min</b>: double precision, minimum elevation (elevation at sector
 start)
-<li><B>elev_max</B>: double precision, minimum elevation (elevation at sector
+<li><b>elev_max</b>: double precision, minimum elevation (elevation at sector
 end)
-<li><B>s_drop</B>: double precision, deifference between start and end of the
+<li><b>s_drop</b>: double precision, deifference between start and end of the
 sector
-<li><B>gradient</B>: double precision, drop/length
+<li><b>gradient</b>: double precision, drop/length
 </ul>
 <img src="sectors.png">
 Relation between segments and sector may be set up by segment key.
-</DD>
-</DL>
-<P>
+</dd>
+</dl>
+<p>
 The main idea comes from works of Horton (1932) and Howard (1971, 1990). The
 module is designed to inverstigate network lineaments and calculate angle
 relations between tributaries and its major streams. The main problem in
 calculating directional parameters is that streams usually are not straight
 lines. Therefore as the first step of the procedure, partitioning of streams
 into near-straight-line segments is required.
-<P>
+<p>
 The segmentation process uses a method similar to the one used by Van & Ventura
 (1997) to detect corners and partition curves into straight lines and gentle
 arcs. Because it is almost impossible to determine exactly straight sections
@@ -159,7 +159,7 @@
 streams is not fully compatible with Horton's original criterion.
 
 <h2>NOTES</h2>
-<P>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted.  
@@ -181,13 +181,13 @@
 </em>
 
 <h2>REFERENCES</h2>
-<P>Horton, R. E., (1932). Drainage basin characteristics: Am. Geophys. Union
+<p>Horton, R. E., (1932). Drainage basin characteristics: Am. Geophys. Union
 Trans., (3), 350-361.
-<P>Howard, A.D. (1971). Optimal angles of stream junction: Geometric, Stability
+<p>Howard, A.D. (1971). Optimal angles of stream junction: Geometric, Stability
 to capture and Minimum Power Criteria, Water Resour. Res. 7(4), 863-873.
-<P>Howard, A.D. (1990). Theoretical model of optimal drainage networks Water
+<p>Howard, A.D. (1990). Theoretical model of optimal drainage networks Water
 Resour. Res., 26(9),  2107-2117.
-<P>Van, W., Ventura, J.A. (1997). Segmentation of Planar Curves into
+<p>Van, W., Ventura, J.A. (1997). Segmentation of Planar Curves into
 Straight-Line Segments and Elliptical Arcs, Graphical Models and Image
 Processing 59(6), 484-494.
 

Modified: grass-addons/grass7/raster/r.stream/r.stream.slope/r.stream.slope.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.slope/r.stream.slope.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.slope/r.stream.slope.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,42 +1,42 @@
 <h2>DESCRIPTION</h2>
 
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>dirs</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+<dl>
+<dt><b>dirs</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
 East in steps of 45 degrees). Direction map shall be of type CELL values. Region
-resolution and map resoultion must be the same.</DD>
+resolution and map resoultion must be the same.</dd>
 
-<DT><b>elevation</b></DT>
-<DD>Elevation: name of input elevation map or any other map we want to calculate
+<dt><b>elevation</b></dt>
+<dd>Elevation: name of input elevation map or any other map we want to calculate
 . Map can be of type CELL, FCELL or DCELL. It is not restricted to resolution of
-region settings like <b>dirs</b>. </DD>
-</DL>
+region settings like <b>dirs</b>. </dd>
+</dl>
 <h2>OUTPUTS</h2>
-<DL>
-<DT><b>difference</b></DT>
-<DD>Downstream elevation difference: Difference between elevation of current
+<dl>
+<dt><b>difference</b></dt>
+<dd>Downstream elevation difference: Difference between elevation of current
 cell and downstream cell. Shall always be posivtive. Negative values show, that
 current cell is pit or depression cell. Module is prepared to be used with
 elevation but can be also used to calculate local difference of any feature
 along watercourses in slope subsystem. In that way elevation map must be
-replaced by map we want to calculate. If we use differnt map than elevation,
-rest of parameters have no sense to calculate</DD>
-<DT><b>gradient</b></DT>
-<DD>Downstream gradinet: Downstream elevation difference divided by
-distance.</DD>
-<DT><b>maxcurv</b></DT>
-<DD>Maximum linear curvature along watercourse.Calculated along watercourse
+replaced by map we want to calculate. If we use different map than elevation,
+rest of parameters have no sense to calculate</dd>
+<dt><b>gradient</b></dt>
+<dd>Downstream gradinet: Downstream elevation difference divided by
+distance.</dd>
+<dt><b>maxcurv</b></dt>
+<dd>Maximum linear curvature along watercourse. Calculated along watercourse
 between highest upstream cell, current cell and downstream cell (there can be
-only one or no downstream cell but more than on upstream)</DD>
-<DT><b>maxcurv</b></DT>
-<DD>Calculated along watercourse between lowest upstream cell, current cell and
+only one or no downstream cell but more than on upstream)</dd>
+<dt><b>maxcurv</b></dt>
+<dd>Calculated along watercourse between lowest upstream cell, current cell and
 downstream cell (there can be only one or no downstream cell but more than on
-upstream)</DD>
-</DL>
+upstream)</dd>
+</dl>
 
 
 <h2>SEE ALSO</h2>

Modified: grass-addons/grass7/raster/r.stream/r.stream.snap/r.stream.snap.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.snap/r.stream.snap.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.snap/r.stream.snap.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,74 +1,74 @@
 <h2>DESCRIPTION</h2>
-<P>
-Module r.stream.snap is a suplementary module for r.stream.extract and
+<p>
+Module r.stream.snap is a supplementary module for r.stream.extract and
 r.stream.basins to correct position of outlets or stream init points as they do
-not lie on the streamliens.
-<BR>
-For outlets situation is clear. Points are snapped to nearest point whcich lies
-on the streamline. In situaltion where there can be a small tributuary nearer
+not lie on the streamlines.
+<br>
+For outlets situation is clear. Points are snapped to nearest point which lies
+on the streamline. In situation where there can be a small tributuary nearer
 than main stream accumulation treshold shall be high enough to force program
 ignoring this tributuary and snap to the main stream. If there is no
-accumulation map points will be snapped to nearest stream line whcich in
-particular situation may be wrong. Bacuase r.stream is perepared to work with
-MFD accum maps, both stream network and accum map is neccesary to resolve the
+accumulation map points will be snapped to nearest stream line which in
+particular situation may be wrong. Bacuase r.stream is prepared to work with
+MFD accum maps, both stream network and accum map is neccessary to resolve the
 problem.
-<BR>
+<br>
 While it is assumed accum map is a MFD map, if stream network is not supplied,
 snap point is calculated in different way: treshold is used to select only these
-points in search radius wchich are accum value is greater than treshold. Next
+points in search radius which are accum value is greater than treshold. Next
 mean value of these points is calculated and its value is taken as a new
 treshold. This procedure guarantee that points are snapped to the center of
 stream tube. While for inits small tresholds are in use, it is probable than
 points were snapped to the streamtube border instead of its center.
 </p>
 <p>
-It is strongly recommended, to use both stream network (even pre-genearted with
+It is strongly recommended, to use both stream network (even pre-generated with
 small accum treshold) and accumulation map, than accum or stream map only.
 </p>
 
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>streams</b></DT>
-<DD>Stream network created by r.stream.extract or r.watershed. If used, points
-are snapped to the nearest streamline point which accumulation is grater than
+<dl>
+<dt><b>streams</b></dt>
+<dd>Stream network created by r.stream.extract or r.watershed. If used, points
+are snapped to the nearest streamline point which accumulation is greater than
 treshold. If accumulation is not used point is snapped to the nearest stream.
-</DD>
+</dd>
 
-<DT><b>accum</b></DT>
-<DD>Accumulation map created with r.waterhed and used to genearte stream network
+<dt><b>accum</b></dt>
+<dd>Accumulation map created with r.watershed and used to generate stream network
 with r.stream.extract. If stream network is not in use, point is adaptively
 snapped to the to point where value is greater than mean values of accumulation
-grater than given treshold in a searcyh radius. See description for details.
-</DD>
-<DT><b>radius</b></DT>
-<DD>Search radius (in cells). If there are no streams in search radius, point is
-not snapped. If there are no cells with accumulation grater than accumtreshold
+greater than given treshold in a searcyh radius. See description for details.
+</dd>
+<dt><b>radius</b></dt>
+<dd>Search radius (in cells). If there are no streams in search radius, point is
+not snapped. If there are no cells with accumulation greater than accumtreshold
 point also is not snapped.
-</DD>
+</dd>
 
-<DT><b>accumtres</b></DT>
-<DD>Minimum value of accumulation which cell must have to snap point. This
+<dt><b>accumtres</b></dt>
+<dd>Minimum value of accumulation which cell must have to snap point. This
 option is added to snap stream inits to the stream tubes and to distinguish
-between local tributuaries and main streams.
-</DD>
+between local tributaries and main streams.
+</dd>
 
-<DT><b>input</b></DT>
-<DD>Vector file containing outlets or inits as vector points. Only point's
-categories are used Table attached to it is ignored. Every point shall heve his
+<dt><b>input</b></dt>
+<dd>Vector file containing outlets or inits as vector points. Only point's
+categories are used Table attached to it is ignored. Every point shall have his
 own unique category.
-</DD>
-</DL>
+</dd>
+</dl>
 
 
 <h2>OUTPUTS</h2>
-<P>Vector file containing outlets or inits after snapping. On layer 1 oryginal
+<p>Vector file containing outlets or inits after snapping. On layer 1 original
 categories are preserved, on layer 2 there are four categories which mean:</p>
 <ol>
 <li>skipped (not in use yet)
 <li>unresolved (points remain unsnapped due to lack of streams in search radius
 <li>snapped (points snapped to streamlines)
-<li>correct (points whcich remain on its original position, wchich was
-originally corected
+<li>correct (points whcich remain on its original position, which was
+originally corrected
 </ol>
 
 

Modified: grass-addons/grass7/raster/r.stream/r.stream.stats/r.stream.stats.html
===================================================================
--- grass-addons/grass7/raster/r.stream/r.stream.stats/r.stream.stats.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/raster/r.stream/r.stream.stats/r.stream.stats.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,25 +1,25 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-c</b></DT>
-<DD>Print only catchment's characteristics. Useful for shell script calculation
-or collecting data in external tables</DD>
-<DT><b>-o</b></DT>
-<DD>Print only prameters for every order. Usefull to visualise Horton's law with
-external software (see example)</DD>
-<DT><b>-m</b></DT>
-<DD>Only for very large data sets. Use segment library to optimise memory
-consumption during analysis</DD>
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed
+<dl>
+<dt><b>-c</b></dt>
+<dd>Print only catchment's characteristics. Useful for shell script calculation
+or collecting data in external tables</dd>
+<dt><b>-o</b></dt>
+<dd>Print only parameters for every order. Usefull to visualise Horton's law with
+external software (see example)</dd>
+<dt><b>-m</b></dt>
+<dd>Only for very large data sets. Use segment library to optimise memory
+consumption during analysis</dd>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed
 produced by r.watershed or r.stream.extract. Because streams network produced by
 r.watershed and r.stream.extract may slighty differ in detail it is required to
 use both stream and direction map produced by the same module. Stream background
 shall have NULL value or zero value. Background values of NULL are by default
 produced by r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+</dd>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -28,34 +28,34 @@
 Also <em>stream</em> network map must have the same resolution. It is checked by
 default. If resolutions differ the module informs about it and stops. Region
 boundary and maps boundary may be differ but it may lead to unexpected
-results.</DD>
+results.</dd>
 
-<DT><b>elevation</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
+<dt><b>elevation</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
 DCELL. It is not restricted to resolution of region settings as streams and
-dirs.</DD>
+dirs.</dd>
 
 <h2>OUTPUTS</h2>
 Output statistics are send to standard output. To redirect output to file use
 redirection operators: > or >>. If redirection is used, output messages are
-printed on stderr (ussually terminal) while statistics are written to the file.
+printed on stderr (usually terminal) while statistics are written to the file.
 Statistics can be print as a formatted summary information with number of
 parameters or as a catchement's descriptive statistics and table with statistics
 for every order. 
 
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.stats is prepared to calculate Hotron's statistics of drainage
 network.
-<P>
+<p>
 These statistics are calculated according formulas given by R.Horton (1945).
 Because Horton do not defined precisely what is stream slope, it has been
 proposed  proposed 2 different approaches: first (slope) use cell-by-cell slope
 calculation, second (gradient) use difference between elevation of outlet and
 source of every channel to its length to calculate formula. Bifurcation ratio
 for every order is calculated acording formula: 
-<CODE>n_streams[1]/n_stream[i+1]</CODE>
+<code>n_streams[1]/n_stream[i+1]</code>
 where i the current order and i+1 next higher order. For max order of the map
 number of streams is zero. Rest of the ratios are calculated in similar mode.
 The bifurcation and other ratios for the whole catchment (map) is calculated as
@@ -66,7 +66,7 @@
 performed but results may not have hydrological sense.
 
 For every order (std) means that statstic is calculated with standard deviation:
-<UL>
+<ul>
 <li>number of streams
 <li>total length of streams of  given order
 <li>total area of basins of given order 
@@ -79,46 +79,46 @@
 (std)
 <li>average area of basins of given order (std)
 <li>avarage elevation difference of given order (std)
-<P>ratios:
+<p>ratios:
 <li>bifuracation ratio
 <li>length ratio
 <li>sloope and gradient ratios
 <li>area ratio
-</UL>
+</ul>
 for the whole basin:
-<UL>
+<ul>
 <li>total number of streams
 <li>total length of streams 
 <li>total basin area
 <li>drainage density
 <li>stream density
-<P>ratios:
+<p>ratios:
 <li>bifurcation ratio (std)
 <li>length ratio (std)
 <li>slope and gradient ratios (std)
 <li>area ratio (std)
 </ul>
-<P>
+<p>
 For the whole basins ratios are calculated acording two formulas: as a mean of
 ratios for every order, or as a antilog of slope coeficient of the regression
 model: order vs. log10(parameter)
 
 <h2>NOTES</h2>
-<P>
-Module calculates statistics for all streams in input stream map.It is strongly
-recomended to extract only network of one basin, but it is not necessary for
-computation.  Streams for desired basin first can be extracted  with following
+<p>
+Module calculates statistics for all streams in input stream map. It is strongly
+recommended to extract only network of one basin, but it is not necessary for
+computation.  Streams for desired basin first can be extracted with following
 mapcalc formula:
 
-<P>
-<CODE>echo 'sel_streams=if(basin==xxx,streams,null())'|r.mapcalc #xxx category
-of desired basin</CODE>
-<P>
+<p>
+<code>echo 'sel_streams=if(basin==xxx,streams,null())'|r.mapcalc #xxx category
+of desired basin</code>
+<p>
 
 It is also possible to calculate Horton's statistics for Shreve ordering but it
 has no hydrological sense. Hack (or Gravelius hierarchy) main stream is not the
 same what so called Horton's reverse ordering (see: Horton 1945).
-<P>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted.  
@@ -127,10 +127,10 @@
 also MFD direction map must be used.
 
 <h2>EXAMPLE</h2>
-Create table with order statistics. This table can easily sended to exteranl
-program (like R) to be visulised:
-<PRE>
-<CODE>
+Create table with order statistics. This table can easily send to external
+program (like R) to be visualised:
+
+<div class="code"><pre>
 r.stream.stats -o streams=horton dirs=dirs elevation=elevation.10m > tmp_file
 R
 r=read.csv("tmp_file",skip=1,header=TRUE)
@@ -140,9 +140,8 @@
 		round(1/10^model$coefficients[2],3)))
 model=lm(log10(num_of_streams)~order,data=r)
 abline(model)
+</pre></div>
 
-</CODE>
-</PRE>
 <h2>SEE ALSO</h2>
 
 <em>

Modified: grass-addons/grass7/vector/v.colors2/v.colors2.html
===================================================================
--- grass-addons/grass7/vector/v.colors2/v.colors2.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/vector/v.colors2/v.colors2.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,22 +1,22 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.colors</EM> is much like <em>r.colors</em>, but may be used for vector maps.
+<em>v.colors</em> is much like <em>r.colors</em>, but may be used for vector maps.
 You give it a vector map and numeric data column, together with color rules
 like you would do for a raster. It creates a new column in the database with
 R:G:B values suitable for use with '<tt>d.vect -a</tt>'.
 
-<P>
+<p>
 How it works: it creates a dummy raster map with the same data range as
 the vector's column then runs <em>r.colors</em> for that temporary map.
 It then uses <em>r.what.colors</em> for each value found by <em>v.db.select</em>
 and uploads it a new column in the vector map's attribute database.
 
-<P>
+<p>
 It is planned that this script will be replaced with a C display module which
 renders thematic vector maps directly instead requiring the overhead of
 saving the colors into the DB.
 
-<P>
+<p>
 If the target column name given by the <b>rgb_column</b> option does
 not exist, it will be created. The default name is "<tt>GRASSRGB</tt>".
 
@@ -56,7 +56,7 @@
 </pre></div>
 
 
-<P>
+<p>
 Colorizing a TIN (polygons) generated by <em>v.delaunay</em>:
 
 <div class="code"><pre>
@@ -76,23 +76,23 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="d.vect.html">d.vect</a> -z<br>
-<A HREF="r.colors.html">r.colors</A><BR>
-<A HREF="r.colors.stddev.html">r.colors.stddev</A><BR>
-<A HREF="r.what.color.html">r.what.color</A><BR>
-<A HREF="v.db.addcolumn">v.db.addcolumn</A><BR>
-<A HREF="v.db.select.html">v.db.select</A><BR>
-<A HREF="db.execute.html">db.execute</A>
-</EM>
+<em>
+<a href="d.vect.html">d.vect</a> -z<br>
+<a href="r.colors.html">r.colors</a><br>
+<a href="r.colors.stddev.html">r.colors.stddev</a><br>
+<a href="r.what.color.html">r.what.color</a><br>
+<a href="v.db.addcolumn">v.db.addcolumn</a><br>
+<a href="v.db.select.html">v.db.select</a><br>
+<a href="db.execute.html">db.execute</a>
+</em>
 
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dunedin, New Zealand</i>
 
 <p>


Property changes on: grass-addons/grass7/vector/v.median/v.median.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/vector/v.pack/v.pack.html
===================================================================
--- grass-addons/grass7/vector/v.pack/v.pack.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/vector/v.pack/v.pack.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -33,4 +33,4 @@
 
 <h2>AUTHORS</h2>
 
-Luca Delucchi, Fondazione E. Mach (Italy), based on the <em>r.pack</em> code
\ No newline at end of file
+Luca Delucchi, Fondazione E. Mach (Italy), based on the <em>r.pack</em> code


Property changes on: grass-addons/grass7/vector/v.pack/v.pack.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/grass7/vector/v.unpack/v.unpack.html
===================================================================
--- grass-addons/grass7/vector/v.unpack/v.unpack.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/grass7/vector/v.unpack/v.unpack.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -33,4 +33,4 @@
 Luca Delucchi, Fondazione E. Mach (Italy), based on the <em>r.unpack</em> code
 
 <p>
-<i>Last changed: $Date: 2010-11-22 09:02:17 +0100 (Mon, 22 Nov 2010) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/grass7/vector/v.unpack/v.unpack.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/gipe/i.dn2potrad.l5/description.html
===================================================================
--- grass-addons/imagery/gipe/i.dn2potrad.l5/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.dn2potrad.l5/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,12 +1,12 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.dn2potrad.l5</EM> This module is a ET potential radiative method claculation for Landsat 5. It corrects every band (1,2,3,4,5,6,7) from DN to either reflectance at top of Atmosphere or Kinetic Temperature. Then it calculates the necessary things for a potential ET according to diurnal incoming solar radiation. 
+<em>i.dn2potrad.l5</em> This module is a ET potential radiative method claculation for Landsat 5. It corrects every band (1,2,3,4,5,6,7) from DN to either reflectance at top of Atmosphere or Kinetic Temperature. Then it calculates the necessary things for a potential ET according to diurnal incoming solar radiation. 
 
 Only one output: ET potential (radiative)
 
 one flag (-a) for a crude Albedo atmospheric correction is there.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Genereally, after downloading L5TM, the bands maybe in gz format.
 
 Run this shell command: "for file in *.gz; do gzip -d $file; done"
@@ -14,22 +14,22 @@
 then run this GRASS module: "for file in *.tif; do r.in.gdal input=$file output=$file title=Landsat5TM$file ; done"
 
 Finally run this GRASS module: "r.dn2potrad.l5 NLAPS_report_file.txt output=etpot"
-<H2>TODO</H2>
+<h2>TODO</h2>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.in.gdal.html">r.in.gdal</A><br>
-<A HREF="i.dn2ref.l7.html">i.dn2ref.l7</A><br>
-<A HREF="i.dn2full.l7.html">i.dn2full.l7</A><br>
-<A HREF="i.dn2potrad.l7.html">i.dn2potrad.l7</A><br>
-<A HREF="i.evapo.potrad.html">i.evapo.potrad</A><br>
+<a href="r.in.gdal.html">r.in.gdal</a><br>
+<a href="i.dn2ref.l7.html">i.dn2ref.l7</a><br>
+<a href="i.dn2full.l7.html">i.dn2full.l7</a><br>
+<a href="i.dn2potrad.l7.html">i.dn2potrad.l7</a><br>
+<a href="i.evapo.potrad.html">i.evapo.potrad</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, IRRI, The Philippines<BR>
+Yann Chemin, IRRI, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.dn2potrad.l7/description.html
===================================================================
--- grass-addons/imagery/gipe/i.dn2potrad.l7/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.dn2potrad.l7/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,10 +1,10 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.dn2potrad.l7</EM> This module is a ET potential radiative method claculation for Landsat 7. It corrects every band (1,2,3,4,5,6L,6H,7,8Pan) from DN to either reflectance at top of Atmosphere or Kinetic Temperature. Then it calculates the necessary things for a potential ET according to diurnal incoming solar radiation. 
+<em>i.dn2potrad.l7</em> This module is a ET potential radiative method claculation for Landsat 7. It corrects every band (1,2,3,4,5,6L,6H,7,8Pan) from DN to either reflectance at top of Atmosphere or Kinetic Temperature. Then it calculates the necessary things for a potential ET according to diurnal incoming solar radiation. 
 
 Only one output: ET potential (radiative)
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Genereally, after downloading L7ETM+, the bands are in gz format.
 
 Run this shell command: "for file in *.gz; do gzip -d $file; done"
@@ -12,21 +12,21 @@
 then run this GRASS module: "for file in *.tif; do r.in.gdal input=$file output=$file title=Landsat7ETM$file ; done"
 
 Finally run this GRASS module: "r.dn2potrad.l7 metfile.met output=etpot"
-<H2>TODO</H2>
+<h2>TODO</h2>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.in.gdal.html">r.in.gdal</A><br>
-<A HREF="i.dn2ref.l7.html">i.dn2ref.l7</A><br>
-<A HREF="i.dn2full.l7.html">i.dn2full.l7</A><br>
-<A HREF="i.evapo.potrad.html">i.evapo.potrad</A><br>
+<a href="r.in.gdal.html">r.in.gdal</a><br>
+<a href="i.dn2ref.l7.html">i.dn2ref.l7</a><br>
+<a href="i.dn2full.l7.html">i.dn2full.l7</a><br>
+<a href="i.evapo.potrad.html">i.evapo.potrad</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, AIT, Thailand<BR>
+Yann Chemin, AIT, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.deltat/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.deltat/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.deltat/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,22 +1,22 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.deltat</EM> calculates the difference of temperature between two heights. Generally considered between surface skin temperature and air temperature ~2m above the skin (soil/canopy/etc). This approximation is found in Pawan (2004) and is used for initialization of the sensible heat flux iterations in SEBAL (Bastiaanssen, 1995).
-<H2>NOTES</H2>
+<em>i.eb.deltat</em> calculates the difference of temperature between two heights. Generally considered between surface skin temperature and air temperature ~2m above the skin (soil/canopy/etc). This approximation is found in Pawan (2004) and is used for initialization of the sensible heat flux iterations in SEBAL (Bastiaanssen, 1995).
+<h2>NOTES</h2>
 This is found in Pawan (2004). This is the case of a Landsat satellite image of Oct 8, 2003, located in Portugal. He also mentions a strange equation for MODIS of January 13, 2003. delta T = -3440.37 +12.18404 * LST. Of course the intercept looks like the LST band is still in storage format (*10000).
 Additionally, it is worth menitoning that Pawan only created this map once, and used it all the time. This is certainly because he created the relationship from some field data and found it reliable enough not to modify this parameter anymore, leading to a simplified iteration process of SEBAL, changing only the rah parameter through the iterations of H,L,psi,rah. 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.h0.html">i.eb.h0</A><br>
+<a href="i.eb.h0.html">i.eb.h0</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.disp/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.disp/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.disp/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,22 +1,22 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.disp</EM> calculates the displacement height above the earth skin.
-<H2>NOTES</H2>
+<em>i.eb.disp</em> calculates the displacement height above the earth skin.
+<h2>NOTES</h2>
 This is found in Pawan (2004).  
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.psi.html">i.eb.psi</A><br>
-<A HREF="i.eb.ublend.html">i.eb.ublend</A><br>
+<a href="i.eb.psi.html">i.eb.psi</a><br>
+<a href="i.eb.ublend.html">i.eb.ublend</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.h0/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.h0/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.h0/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,24 +1,24 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.h0</EM> calculates the sensible heat flux approximation (h0), a flag allows the use of an affine transform from surface temperature after bastiaanssen (1995).
+<em>i.eb.h0</em> calculates the sensible heat flux approximation (h0), a flag allows the use of an affine transform from surface temperature after bastiaanssen (1995).
 It takes input of air density, air specific heat, difference of temperature between surface skin and a height of about 2m above, and the aerodynamic resistance to heat transport. 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.g0.html">i.eb.g0</A><br>
-<A HREF="i.eb.netrad.html">i.eb.netrad</A><br>
-<A HREF="i.albedo.html">i.albedo</A><br>
+<a href="i.eb.g0.html">i.eb.g0</a><br>
+<a href="i.eb.netrad.html">i.eb.netrad</a><br>
+<a href="i.albedo.html">i.albedo</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.h_SEBAL95/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.h_SEBAL95/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.h_SEBAL95/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,17 +9,17 @@
 
 <img src="grass.smlogo.gif" alt="GRASS logo"><hr align=center size=6 noshade>
 
-<H2>NAME</H2> <B><I>i.eb.h_SEBAL95 </I></B>- computation of <i>sensible heat flux</i> [W/m2] after Bastiaanssen, 1995 in [1].
+<h2>NAME</h2> <b><I>i.eb.h_SEBAL95 </I></b>- computation of <i>sensible heat flux</i> [W/m2] after Bastiaanssen, 1995 in [1].
 
-<P><I>(GRASS Raster Program)</I>
+<p><I>(GRASS Raster Program)</I>
 
-<H2>SYNOPSIS</H2>
-<B>i.eb.h_SEBAL95</B>
-<BR>
-<B>i.eb.h_SEBAL95</B> help</br>
-<BR>
+<h2>SYNOPSIS</h2>
+<b>i.eb.h_SEBAL95</b>
+<br>
+<b>i.eb.h_SEBAL95</b> help</br>
+<br>
 
-<B>i.eb.h_SEBAL95</b> <b>[ -qzn ]</b>
+<b>i.eb.h_SEBAL95</b> <b>[ -qzn ]</b>
 
 <b>DEM</b>=name
 <b>T</b>=name
@@ -29,9 +29,9 @@
 <b>Vh</b>=name
 <b>ETP</b>=name
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>i.eb.h_SEBAL95</EM> given the vegetation height (hc), humidity (RU), 
+<p><em>i.eb.h_SEBAL95</em> given the vegetation height (hc), humidity (RU), 
 wind speed at two meters height (WS), temperature (T), digital terrain model (DEM), 
 and net radiation (NSR) raster input maps, 
 calculates the sensible heat flux map (h0).
@@ -53,13 +53,13 @@
 <p>For more details on the algorithms see [1].
 
 
-<H2>OPTIONS</H2>
+<h2>OPTIONS</h2>
 
 The program will run non-interactively if the user specifies program
 arguments and flag settings on the command line using the following
 form:
 
-<P><B>i.eb.h_SEBAL95</b> <b>[ -qzd ]</b>
+<p><b>i.eb.h_SEBAL95</b> <b>[ -qzd ]</b>
 <b>DEM</b>=name
 <b>T</b>=name
 <b>RH</b>=name
@@ -70,27 +70,27 @@
 
 
 
-<P>Alternatively, the user can simply type <EM>i.eb.h_SEBAL95</EM> on the
+<p>Alternatively, the user can simply type <em>i.eb.h_SEBAL95</em> on the
 command line and the program will ask for parameter values and flag
 settings interactively, using the standard GRASS parser interface.
 
 
-<H3>Flags:</H3>
+<h3>Flags:</h3>
 <dl>
-  <dt><B>-q</B>
+  <dt><b>-q</b>
    <dd>Run quietly (do not display status messages). By default
-   <EM>r.evapo.PM</EM> is run verbosely.
- <dt><B>-z</B>
+   <em>r.evapo.PM</em> is run verbosely.
+ <dt><b>-z</b>
   <dd>Set negative calculated evapotranspiration values to zero.
- <dt><B>-n</B>
+ <dt><b>-n</b>
   <dd>Calculate soil heat flux for night time. By default 
-  <EM>r.evapo.PM</EM> calculate it for day time.
+  <em>r.evapo.PM</em> calculate it for day time.
 </dl>
 
 
-<H3>Parameters:</H3>
+<h3>Parameters:</h3>
 <dl>
- <dt><B>DEM</B>=<I>name</I>
+ <dt><b>DEM</b>=<I>name</I>
  <dd>Input elevation raster [m a.s.l.]. Required.</dd>
 
  <dt><b>T</b>=<I>name</I>
@@ -114,7 +114,7 @@
 </dl>
       
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 <p>Net solar radiation map in MJ/(m2*h) can be computed from the combination of the r.sun , 
 run in mode 1, and the r.mapcalc commands.
@@ -122,13 +122,13 @@
 <p>The sum of the three radiation components outputted by r.sun (beam, diffuse, and reflected) 
 multiplied by the Wh->Mj conversion factor (0.0036) and optionally by a 
 clear sky factor [0-1] allows the generation of a map to be used as 
-an NSR input for the <EM>r.evapo.PM</EM> command.
+an NSR input for the <em>r.evapo.PM</em> command.
 <dt>example:
 <br><dd>r.sun -s elevin=dem aspin=aspect slopein=slope lin=2 albedo=alb_Mar incidout=out beam_rad=beam diff_rad=diffuse refl_rad=reflected day=73 time=13:00 dist=100;
 <br><dd>r.mapcalc 'NSR=0.0036*(beam+diffuse+reflected)';
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <ul>
   <li><a href=i.eb.h_iter.html>i.eb.h_iter</a>,
       <a href=i.eb.h0.html>i.eb.h0</a>
@@ -136,7 +136,7 @@
 
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
   <p>
   <i>
    <br>Yann Chemin, International Rice Research Institute, Los Banos, The Philippines.
@@ -144,7 +144,7 @@
   <p>Contact: <a href="mailto:y.chemin at cgiar.org"> Yann chemin</a>
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
   <p>[1] Bastiaanssen, W.G.M., 1995.
   Estimation of Land surface paramters by remote sensing under clear-sky conditions. PhD thesis, Wageningen University, Wageningen, The Netherlands.

Modified: grass-addons/imagery/gipe/i.eb.h_iter/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.h_iter/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.h_iter/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,24 +1,24 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.h_iter</EM> calculates the sensible heat flux approximation (h0), a flag allows the use of an affine transform from surface temperature after bastiaanssen (1995).
+<em>i.eb.h_iter</em> calculates the sensible heat flux approximation (h0), a flag allows the use of an affine transform from surface temperature after bastiaanssen (1995).
 It takes input of air density, air specific heat, difference of temperature between surface skin and a height of about 2m above, and the aerodynamic resistance to heat transport.  This version runs an iteration loop to stabilize psychrometric data for the aerodynamic resistance to heat flux.
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.g0.html">i.eb.g0</A><br>
-<A HREF="i.eb.netrad.html">i.eb.netrad</A><br>
-<A HREF="i.albedo.html">i.albedo</A><br>
+<a href="i.eb.g0.html">i.eb.g0</a><br>
+<a href="i.eb.netrad.html">i.eb.netrad</a><br>
+<a href="i.albedo.html">i.albedo</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.molength/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.molength/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.molength/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,21 +1,21 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.molength</EM> calculates the Monin-Obukov Length. 
-<H2>NOTES</H2>
+<em>i.eb.molength</em> calculates the Monin-Obukov Length. 
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.psi.html">i.eb.psi</A><br>
+<a href="i.eb.psi.html">i.eb.psi</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.psi/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.psi/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.psi/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,25 +1,25 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.psi</EM> calculates the psichrometric components for heat (psih, as seen in r.eb.rah) and momentum (psim, as seen in r.eb.ustar).
+<em>i.eb.psi</em> calculates the psichrometric components for heat (psih, as seen in r.eb.rah) and momentum (psim, as seen in r.eb.ustar).
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.rah.html">i.eb.rah</A><br>
-<A HREF="i.eb.ustar.html">i.eb.ustar</A><br>
-<A HREF="i.eb.h0.html">i.eb.h0</A><br>
+<a href="i.eb.rah.html">i.eb.rah</a><br>
+<a href="i.eb.ustar.html">i.eb.ustar</a><br>
+<a href="i.eb.h0.html">i.eb.h0</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.rah/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.rah/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.rah/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,29 +1,29 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.rah</EM> calculates the aerodynamic resistance to heat transport (rah).
+<em>i.eb.rah</em> calculates the aerodynamic resistance to heat transport (rah).
 
 
 
 
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.g0.html">i.eb.g0</A><br>
-<A HREF="i.eb.netrad.html">i.eb.netrad</A><br>
-<A HREF="i.eb.h0.html">i.eb.h0</A><br>
+<a href="i.eb.g0.html">i.eb.g0</a><br>
+<a href="i.eb.netrad.html">i.eb.netrad</a><br>
+<a href="i.eb.h0.html">i.eb.h0</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.rohair/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.rohair/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.rohair/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,21 +1,21 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.rohair</EM> calculates the Atmospheric Air Density.
-<H2>NOTES</H2>
+<em>i.eb.rohair</em> calculates the Atmospheric Air Density.
+<h2>NOTES</h2>
 This is found in Bastiaanssen (1995).
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.h_iter.html">i.eb.h_iter</A><br>
+<a href="i.eb.h_iter.html">i.eb.h_iter</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin<BR>
+Yann Chemin<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.ublend/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.ublend/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.ublend/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,27 +1,27 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.ublend</EM> calculates the wind speed at blending height.
+<em>i.eb.ublend</em> calculates the wind speed at blending height.
 
 
 
 
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.ustar.html">i.eb.ustar</A><br>
+<a href="i.eb.ustar.html">i.eb.ustar</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.ustar/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.ustar/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.ustar/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,28 +1,28 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.ustar</EM> calculates the nominal wind speed.
+<em>i.eb.ustar</em> calculates the nominal wind speed.
 
 
 
 
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.rah.html">i.eb.rah</A><br>
-<A HREF="i.eb.psi.html">i.eb.psi</A><br>
+<a href="i.eb.rah.html">i.eb.rah</a><br>
+<a href="i.eb.psi.html">i.eb.psi</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.wetdrypix/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.wetdrypix/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.wetdrypix/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,17 +9,17 @@
 
 <img src="grass.smlogo.gif" alt="GRASS logo"><hr align=center size=6 noshade>
 
-<H2>NAME</H2> <B><I>i.eb.h_SEBAL95 </I></B>- computation of <i>sensible heat flux</i> [W/m2] after Bastiaanssen, 1995 in [1].
+<h2>NAME</h2> <b><I>i.eb.h_SEBAL95 </I></b>- computation of <i>sensible heat flux</i> [W/m2] after Bastiaanssen, 1995 in [1].
 
-<P><I>(GRASS Raster Program)</I>
+<p><I>(GRASS Raster Program)</I>
 
-<H2>SYNOPSIS</H2>
-<B>i.eb.h_SEBAL95</B>
-<BR>
-<B>i.eb.h_SEBAL95</B> help</br>
-<BR>
+<h2>SYNOPSIS</h2>
+<b>i.eb.h_SEBAL95</b>
+<br>
+<b>i.eb.h_SEBAL95</b> help</br>
+<br>
 
-<B>i.eb.h_SEBAL95</b> <b>[ -qzn ]</b>
+<b>i.eb.h_SEBAL95</b> <b>[ -qzn ]</b>
 
 <b>DEM</b>=name
 <b>T</b>=name
@@ -29,9 +29,9 @@
 <b>Vh</b>=name
 <b>ETP</b>=name
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>i.eb.h_SEBAL95</EM> given the vegetation height (hc), humidity (RU), 
+<p><em>i.eb.h_SEBAL95</em> given the vegetation height (hc), humidity (RU), 
 wind speed at two meters height (WS), temperature (T), digital terrain model (DEM), 
 and net radiation (NSR) raster input maps, 
 calculates the sensible heat flux map (h0).
@@ -53,13 +53,13 @@
 <p>For more details on the algorithms see [1].
 
 
-<H2>OPTIONS</H2>
+<h2>OPTIONS</h2>
 
 The program will run non-interactively if the user specifies program
 arguments and flag settings on the command line using the following
 form:
 
-<P><B>i.eb.h_SEBAL95</b> <b>[ -qzd ]</b>
+<p><b>i.eb.h_SEBAL95</b> <b>[ -qzd ]</b>
 <b>DEM</b>=name
 <b>T</b>=name
 <b>RH</b>=name
@@ -70,27 +70,27 @@
 
 
 
-<P>Alternatively, the user can simply type <EM>i.eb.h_SEBAL95</EM> on the
+<p>Alternatively, the user can simply type <em>i.eb.h_SEBAL95</em> on the
 command line and the program will ask for parameter values and flag
 settings interactively, using the standard GRASS parser interface.
 
 
-<H3>Flags:</H3>
+<h3>Flags:</h3>
 <dl>
-  <dt><B>-q</B>
+  <dt><b>-q</b>
    <dd>Run quietly (do not display status messages). By default
-   <EM>r.evapo.PM</EM> is run verbosely.
- <dt><B>-z</B>
+   <em>r.evapo.PM</em> is run verbosely.
+ <dt><b>-z</b>
   <dd>Set negative calculated evapotranspiration values to zero.
- <dt><B>-n</B>
+ <dt><b>-n</b>
   <dd>Calculate soil heat flux for night time. By default 
-  <EM>r.evapo.PM</EM> calculate it for day time.
+  <em>r.evapo.PM</em> calculate it for day time.
 </dl>
 
 
-<H3>Parameters:</H3>
+<h3>Parameters:</h3>
 <dl>
- <dt><B>DEM</B>=<I>name</I>
+ <dt><b>DEM</b>=<I>name</I>
  <dd>Input elevation raster [m a.s.l.]. Required.</dd>
 
  <dt><b>T</b>=<I>name</I>
@@ -114,7 +114,7 @@
 </dl>
       
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 <p>Net solar radiation map in MJ/(m2*h) can be computed from the combination of the r.sun , 
 run in mode 1, and the r.mapcalc commands.
@@ -122,13 +122,13 @@
 <p>The sum of the three radiation components outputted by r.sun (beam, diffuse, and reflected) 
 multiplied by the Wh->Mj conversion factor (0.0036) and optionally by a 
 clear sky factor [0-1] allows the generation of a map to be used as 
-an NSR input for the <EM>r.evapo.PM</EM> command.
+an NSR input for the <em>r.evapo.PM</em> command.
 <dt>example:
 <br><dd>r.sun -s elevin=dem aspin=aspect slopein=slope lin=2 albedo=alb_Mar incidout=out beam_rad=beam diff_rad=diffuse refl_rad=reflected day=73 time=13:00 dist=100;
 <br><dd>r.mapcalc 'NSR=0.0036*(beam+diffuse+reflected)';
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <ul>
   <li><a href=i.eb.h_iter.html>i.eb.h_iter</a>,
       <a href=i.eb.h0.html>i.eb.h0</a>
@@ -136,7 +136,7 @@
 
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
   <p>
   <i>
    <br>Yann Chemin, International Rice Research Institute, Los Banos, The Philippines.
@@ -144,7 +144,7 @@
   <p>Contact: <a href="mailto:y.chemin at cgiar.org"> Yann chemin</a>
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
   <p>[1] Bastiaanssen, W.G.M., 1995.
   Estimation of Land surface paramters by remote sensing under clear-sky conditions. PhD thesis, Wageningen University, Wageningen, The Netherlands.

Modified: grass-addons/imagery/gipe/i.eb.z0m/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.z0m/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.z0m/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,23 +1,23 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.z0m</EM> calculates the momentum roughness length (z0m) and optionally the surface roughness for heat transport (z0h) as per SEBAL requirements from bastiaanssen (1995).
+<em>i.eb.z0m</em> calculates the momentum roughness length (z0m) and optionally the surface roughness for heat transport (z0h) as per SEBAL requirements from bastiaanssen (1995).
 This version is calculating from a SAVI with an empirical equation, as seen in Pawan (2004).
 This is a typical input to sensible heat flux computations of any energy balance modeling.
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.h0.html">i.eb.h0</A><br>
+<a href="i.eb.h0.html">i.eb.h0</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.eb.z0m0/description.html
===================================================================
--- grass-addons/imagery/gipe/i.eb.z0m0/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.eb.z0m0/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,31 +1,31 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.eb.z0m0</EM> calculates the momentum roughness length (z0m) and optionally the surface roughness for heat transport (z0h) as per SEBAL requirements from bastiaanssen (1995).
+<em>i.eb.z0m0</em> calculates the momentum roughness length (z0m) and optionally the surface roughness for heat transport (z0h) as per SEBAL requirements from bastiaanssen (1995).
 This version is calculating from a NDVI with an deterministic equation, as seen in Bastiaanssen (1995).
 This is a typical input to sensible heat flux computations of any energy balance modeling.
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The NDVI map input and the ndvi_max operation set, is only to get a linear relationship from NDVI to vegetation height. The latter being related to z0m by a factor 7. 
 
 If you happen to have a vegetation height (hv) map, then z0m=hv/7 and z0h=0.1*z0m. There, fixed.
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.eb.h0.html">i.eb.h0</A><br>
-<A HREF="i.eb.h_SEBAL95.html">i.eb.h_SEBAL95</A><br>
-<A HREF="i.eb.h_iter.html">i.eb.h_iter</A><br>
-<A HREF="i.eb.z0m.html">i.eb.z0m</A><br>
+<a href="i.eb.h0.html">i.eb.h0</a><br>
+<a href="i.eb.h_SEBAL95.html">i.eb.h_SEBAL95</a><br>
+<a href="i.eb.h_iter.html">i.eb.h_iter</a><br>
+<a href="i.eb.z0m.html">i.eb.z0m</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.evapo.TSA/description.html
===================================================================
--- grass-addons/imagery/gipe/i.evapo.TSA/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.evapo.TSA/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,24 +1,24 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.evapo.TSA</EM> Calculates the diurnal actual evapotranspiration after Chen et al. (2005). 
+<em>i.evapo.TSA</em> Calculates the diurnal actual evapotranspiration after Chen et al. (2005). 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 The tsa_tempk C code is wrong, not working. the rest is apparently fine.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.evapo.PM.html">i.evapo.PM</A><br>
-<A HREF="i.evapo.potrad.html">i.evapo.potrad</A><br>
-<A HREF="i.eb.netrad.html">i.eb.netrad</A><br>
+<a href="i.evapo.PM.html">i.evapo.PM</a><br>
+<a href="i.evapo.potrad.html">i.evapo.potrad</a><br>
+<a href="i.eb.netrad.html">i.eb.netrad</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, GRASS Development team, 2007<BR>
+Yann Chemin, GRASS Development team, 2007<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.evapo.potrad/i.evapo.potrad.html
===================================================================
--- grass-addons/imagery/gipe/i.evapo.potrad/i.evapo.potrad.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.evapo.potrad/i.evapo.potrad.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.evapo.potrad</EM> Calculates the diurnal potential evapotranspiration after bastiaanssen (1995). This is converting all Net radiation from the diurnal period into ET.
+<em>i.evapo.potrad</em> Calculates the diurnal potential evapotranspiration after bastiaanssen (1995). This is converting all Net radiation from the diurnal period into ET.
 It takes input maps of Albedo, surface skin temperature, latitude, day of year, single-way transmissivity and takes input value of the density of fresh water. 
 
 The "-r" flag permits output map of Diurnal net radiation to use in r.eb.eta.
@@ -9,23 +9,23 @@
 
 The "-d" flag is a slope/aspect correction, not really tested, reports and tests are most welcome.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 Slope/aspect correction to be screened and tested by somebody in the known.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.sun.html">r.sun</A><br>
-<A HREF="i.albedo.html">i.albedo</A><br>
-<A HREF="i.eb.eta.html">i.eb.eta</A><br>
+<a href="r.sun.html">r.sun</a><br>
+<a href="i.albedo.html">i.albedo</a><br>
+<a href="i.eb.eta.html">i.eb.eta</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.evapo.senay/i.evapo.senay.html
===================================================================
--- grass-addons/imagery/gipe/i.evapo.senay/i.evapo.senay.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.evapo.senay/i.evapo.senay.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.evapo.SENAY</EM> Calculates the diurnal actual evapotranspiration after Senay (2007). This is converting all Net radiation from the diurnal period into ET, then uses Senay equation for evaporative fraction.
+<em>i.evapo.SENAY</em> Calculates the diurnal actual evapotranspiration after Senay (2007). This is converting all Net radiation from the diurnal period into ET, then uses Senay equation for evaporative fraction.
 
 It takes input maps of Albedo, surface skin temperature, latitude, day of year, single-way transmissivity and takes input value of the density of fresh water. 
 
@@ -9,30 +9,30 @@
 The "-s" flag permits output map of evaporative fraction from Senay.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 If you are trying to map irrigated crops, and you know there is at least one crop pixel that is evapotranspiring at maximum (ETa=ETpot), then read this.
 
 i.evapo.SENAY is highly dependent on the wet pixel being the lowest temperature in the crop pixels to work for non water stressed crops, force it that way, even if it breaks non crop areas. I suggest you reduce your region to the irrigation system boundaries, checking that it includes a bit of dry area for the hot/dry pixel.
 
 Since it is a direct relationship to LST, evaporative fraction can be very sensitive to the kind of pixel sample you feed it with.
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.sun.html">r.sun</A><br>
-<A HREF="i.albedo.html">i.albedo</A><br>
-<A HREF="i.eb.eta.html">i.eb.eta</A><br>
-<A HREF="i.eb.evapfr.html">i.eb.evapfr</A><br>
-<A HREF="i.evapo.potrad.html">i.evapo.potrad</A><br>
+<a href="r.sun.html">r.sun</a><br>
+<a href="i.albedo.html">i.albedo</a><br>
+<a href="i.eb.eta.html">i.eb.eta</a><br>
+<a href="i.eb.evapfr.html">i.eb.evapfr</a><br>
+<a href="i.evapo.potrad.html">i.evapo.potrad</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines.<BR>
+Yann Chemin, International Rice Research Institute, The Philippines.<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.evapo.zk/i.evapo.zk.html
===================================================================
--- grass-addons/imagery/gipe/i.evapo.zk/i.evapo.zk.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.evapo.zk/i.evapo.zk.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.evapo.zk</EM> Calculates the global diurnal evapotranspiration after Zhang, Kimball, Nemani and Running (2010).
+<em>i.evapo.zk</em> Calculates the global diurnal evapotranspiration after Zhang, Kimball, Nemani and Running (2010).
  
 Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W. (2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. WRR 46, W09522
 
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<EM>Main function</EM>
+<em>Main function</em>
 
 ETa (biome_type, ndvi, tday, sh, patm, Rn, G)
 
@@ -22,7 +22,7 @@
   <li>G	day soil heat flux	[MJ/m2/d]</li>
 </ul>
 
-<EM>IGBP Biome types with ID used in this model</EM>
+<em>IGBP Biome types with ID used in this model</em>
 <ul>
   <li>Code	ID	Description</li>
   <li>BENF	0	Boreal Evergreen Needleleaf Forest (less or eq 212 frost-free days)</li>
@@ -37,7 +37,7 @@
   <li>CRP	12	Cropland</li>
 </ul>
 
-<EM>IGBP Classification</EM>
+<em>IGBP Classification</em>
 <ul>
   <li>01	Evergreen Needleleaf Forest</li>
   <li>02	Evergreen Broadleaf Forest</li>
@@ -59,7 +59,7 @@
 </ul>
 * Not used in this model
 
-<EM>IGBP Biome types and configuration of internal parameters of the model</EM>
+<em>IGBP Biome types and configuration of internal parameters of the model</em>
 <ul>
   <li>Code	Description	TcloseMinC	TopenMaxC	VPDClosePa	VPDOpenPa	ToptC	BetaC	kPa	GaMs-1	GtotMs-1	GchMs-1	B1Sm-1	B2Sm-1	B3	b1*	b2*	b3*	b4*</li>
   <li>BENF	Boreal Evergreen Needleleaf Forest	-8	40	2800	500	12	25	150	0.03	0.002	0.08	208.3	8333.3	10</li>
@@ -77,24 +77,24 @@
 * For WSV when NDVI superior to 0.64"
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="i.evapo.pm.html">i.evapo.pm</A><br>
-<A HREF="i.evapo.mh.html">i.evapo.mh</A><br>
-<A HREF="i.evapo.senay.html">i.evapo.senay</A><br>
-<A HREF="i.eb.netrad.html">i.eb.netrad</A><br>
-<A HREF="i.eb.soilheatflux.html">i.eb.soilheatflux</A><br>
-</EM>
+<em>
+<a href="i.evapo.pm.html">i.evapo.pm</a><br>
+<a href="i.evapo.mh.html">i.evapo.mh</a><br>
+<a href="i.evapo.senay.html">i.evapo.senay</a><br>
+<a href="i.eb.netrad.html">i.eb.netrad</a><br>
+<a href="i.eb.soilheatflux.html">i.eb.soilheatflux</a><br>
+</em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, GRASS Development team, 2011<BR>
+Yann Chemin, GRASS Development team, 2011<br>
 
 
 <p>
-<i>Last changed: $Date: 2011-05-12 21:29:43 +0530 (Wed, 12 Jan 2011) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/imagery/gipe/i.evapo.zk/i.evapo.zk.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/gipe/i.lmf/description.html
===================================================================
--- grass-addons/imagery/gipe/i.lmf/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.lmf/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,10 +1,10 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.lmf</EM> calculates the Local maximum fitting of a temporal time-series, intially for vegetation indices, it also works for surface reflectance.
+<em>i.lmf</em> calculates the Local maximum fitting of a temporal time-series, intially for vegetation indices, it also works for surface reflectance.
 
 This is a first level port, only a fast fitting is done, see TODO.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Original links are found here
 
 SAWADA, 2001:
@@ -17,19 +17,19 @@
 http://www.rsgis.ait.ac.th/~honda/lmf/lmf.html
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 Port the full detailed algorithm from Fortran, and vastly unemcomber/clean it.
 It will make the algorithm must slower though, gaining only a marginal fitting strength, for my actual experience with VIs curves.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.sattime/i.sattime.html
===================================================================
--- grass-addons/imagery/gipe/i.sattime/i.sattime.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.sattime/i.sattime.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,24 +1,24 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.sattime</EM> creates a map of the time of satellite overpass. It takes input from sun elevation, latitude and DOY.
+<em>i.sattime</em> creates a map of the time of satellite overpass. It takes input from sun elevation, latitude and DOY.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.latitude.html">i.latitude</A><br>
+<a href="i.latitude.html">i.latitude</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, GRASS Development Team<BR>
+Yann Chemin, GRASS Development Team<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.vi.grid/description.html
===================================================================
--- grass-addons/imagery/gipe/i.vi.grid/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.vi.grid/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.vi</EM> calculates vegetation indices based on biophysical parameters. 
+<em>r.vi</em> calculates vegetation indices based on biophysical parameters. 
 
 1. RVI: ratio vegetation index: 
 2. NDVI: Normalized Difference Vegetation Index
@@ -28,7 +28,7 @@
 (AVHRR) NDVI = (channel 2 - channel 1) / (channel 2 + channel 1)
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Originally from kepler.gps.caltech.edu
 A FAQ on Vegetation in Remote Sensing 
 Written by Terrill W. Ray
@@ -41,19 +41,19 @@
 	     Mail Code 170-25
 	     Pasadena, CA  91125
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.albedo.html">r.albedo</A><br>
+<a href="r.albedo.html">r.albedo</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
-Baburao Kamble, Asian Institute of Technology, Thailand<BR>
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+<h2>AUTHORS</h2>
+Baburao Kamble, Asian Institute of Technology, Thailand<br>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.vi.grid/description_grid.html
===================================================================
--- grass-addons/imagery/gipe/i.vi.grid/description_grid.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.vi.grid/description_grid.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.vi.grid</EM> How to run the code.
+<em>r.vi.grid</em> How to run the code.
 
 1. Client Side:
 	i.the Client module is actually the r.vi.grid module which will run as GRASS module.
@@ -17,8 +17,8 @@
 		make -f VI_Server.mak
 	iii. then copy the xxx.xx.xx.ngdef file to the Client side r.vi.grid directory.
 
-<H2>AUTHORS</H2>
-Shamim Akhter, Tokyo Institute of Technology, Japan<BR>
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+<h2>AUTHORS</h2>
+Shamim Akhter, Tokyo Institute of Technology, Japan<br>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 

Modified: grass-addons/imagery/gipe/i.vi.mpi/description.html
===================================================================
--- grass-addons/imagery/gipe/i.vi.mpi/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.vi.mpi/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.vi</EM> calculates vegetation indices based on biophysical parameters. 
+<em>i.vi</em> calculates vegetation indices based on biophysical parameters. 
 
 
 	  <ul>
@@ -19,7 +19,7 @@
 		<li>GVI: Green Vegetation Index</li>
 	  </ul>
 
-<H2>Description</H2>
+<h2>Description</h2>
 
 NDVI
 	  <ul> 
@@ -32,7 +32,7 @@
 	      <li> example: (AVHRR) NDVI = (channel 2 - channel 1) / (channel 2 + channel 1)</li>
 	  </ul>
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Originally from kepler.gps.caltech.edu <br>
 A FAQ on Vegetation in Remote Sensing  <br>
 Written by Terrill W. Ray <br>
@@ -45,19 +45,19 @@
 	     Mail Code 170-25<br>
 	     Pasadena, CA  91125<br>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.albedo.html">i.albedo</A><br>
+<a href="i.albedo.html">i.albedo</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
-Baburao Kamble, Asian Institute of Technology, Thailand<BR>
-Yann Chemin, Asian Institute of Technology, Thailand<BR>
+<h2>AUTHORS</h2>
+Baburao Kamble, Asian Institute of Technology, Thailand<br>
+Yann Chemin, Asian Institute of Technology, Thailand<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.water/description.html
===================================================================
--- grass-addons/imagery/gipe/i.water/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.water/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,31 +1,31 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.water</EM> calculates a water layer after Xiao et al (2005) and Roy et al (2005).
+<em>i.water</em> calculates a water layer after Xiao et al (2005) and Roy et al (2005).
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Xiao X., Boles S., Liu J., Zhuang D., Frokling S., Li C., Salas W., Moore III B. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment 95:480-492.
 
 
 Roy D.P., Jin Y., Lewis P.E., Justice C.O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment 97:137-162.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.sun.html">r.sun</A><br>
-<A HREF="i.albedo.html">i.albedo</A><br>
-<A HREF="i.vi.html">i.vi</A><br>
+<a href="r.sun.html">r.sun</a><br>
+<a href="i.albedo.html">i.albedo</a><br>
+<a href="i.vi.html">i.vi</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Insitute, The Philippines<BR>
+Yann Chemin, International Rice Research Insitute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/i.wi/description.html
===================================================================
--- grass-addons/imagery/gipe/i.wi/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/i.wi/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,25 +1,25 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.wi</EM> calculates water indices based on biophysical parameters. 
+<em>i.wi</em> calculates water indices based on biophysical parameters. 
 
 1. LSWI: Land Surface Water Index 
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Created the module following the i.vi modular architechture to add more water indices as they come in literature.
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 Find other water indices and add them.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.vi.html">i.vi</A><br>
+<a href="i.vi.html">i.vi</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+<h2>AUTHORS</h2>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/m.gem/description.html
===================================================================
--- grass-addons/imagery/gipe/m.gem/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/m.gem/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,15 +1,15 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>m.gem</EM> is a simple script to install GRASS extensions
+<em>m.gem</em> is a simple script to install GRASS extensions
 
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 Yann Chemin
 
 <p><i>Last changed: $Date$</i>

Modified: grass-addons/imagery/gipe/r.gaswap.serial/description.html
===================================================================
--- grass-addons/imagery/gipe/r.gaswap.serial/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/r.gaswap.serial/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,13 +1,13 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 r.gaswap is a GRASS data interface to a genetic algorithm for assimilating soil-Water-air-plant parameters from SWAP models.<br><br>
 
 More description from Shamim when the different functions for Cluster and Grid implementations will be included in the code.<br><br>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Shamim Akhter (shamimakhter at gmail.com) <br>
-Yann Chemin (ychemin at gmail.com)<BR>
+Yann Chemin (ychemin at gmail.com)<br>
 
 <p><i>Last changed: Date: 2005/06/14 </i>

Modified: grass-addons/imagery/gipe/r.out.vic/description.html
===================================================================
--- grass-addons/imagery/gipe/r.out.vic/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/r.out.vic/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.out.vic</EM> creates a set of VIC hydrological model meteorological input ascii files.
+<em>r.out.vic</em> creates a set of VIC hydrological model meteorological input ascii files.
 
 1 - Meteorological: Three time series of GIS data are needed: Precipitation (mm/d), Tmax(C) and Tmin(C).
 
@@ -25,20 +25,20 @@
 4 - Routing file from GRASS flow direction file: Recoding to rout input file for VIC post-processing of hydrological surface runoff flow.
 http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Bernt/rout/mainframe_rout1.htm
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 Soil files input creation is incomplete, a lot to do here.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin<BR>
+Yann Chemin<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/r.soiltex2prop/description.html
===================================================================
--- grass-addons/imagery/gipe/r.soiltex2prop/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/r.soiltex2prop/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,23 +1,23 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.soiltex2prop</EM> calculates the soil porosity (volume fraction), saturated hydraulic conductivity (cm/h) and wetting front suction (cm ; Green-Ampt) after Rawls et al, 1990.
+<em>r.soiltex2prop</em> calculates the soil porosity (volume fraction), saturated hydraulic conductivity (cm/h) and wetting front suction (cm ; Green-Ampt) after Rawls et al, 1990.
 
 It takes input of soil texture proportions (sand, clay) in range [0.0-100.0]. 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.uslek.html">r.uslek</A><br>
+<a href="r.uslek.html">r.uslek</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/gipe/r.soilusda2tex/description.html
===================================================================
--- grass-addons/imagery/gipe/r.soilusda2tex/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/gipe/r.soilusda2tex/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,9 +1,9 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.soilusda2tex</EM> calculates the soil texture fractions using USDA soil classes.
+<em>r.soilusda2tex</em> calculates the soil texture fractions using USDA soil classes.
 
 It outputs soil texture proportions (sand, silt, clay) in range [0.0-1.0]. 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Soil Classes
 ------------
@@ -20,20 +20,20 @@
 10 silt loam
 11 silt
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="r.uslek.html">r.uslek</A><br>
-<A HREF="r.soiltex2prop.html">r.soiltex2prop</A><br>
+<a href="r.uslek.html">r.uslek</a><br>
+<a href="r.soiltex2prop.html">r.soiltex2prop</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Yann Chemin, International Rice Research Institute, The Philippines<BR>
+Yann Chemin, International Rice Research Institute, The Philippines<br>
 
 
 <p>

Modified: grass-addons/imagery/i.landsat.acca/description.html
===================================================================
--- grass-addons/imagery/i.landsat.acca/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.landsat.acca/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,7 +1,7 @@
 <h2>DESCRIPTION</h2>
 
 <em>i.landsat.acca</em> implements the <b>Automated Cloud-Cover
-Assessment</B> (ACCA) Algorithm from Irish (2000) with the constant
+Assessment</b> (ACCA) Algorithm from Irish (2000) with the constant
 values for pass filter one from Irish et al. (2006). To do this, it
 needs Landsat band numbers 2, 3, 4, 5, and 6 (or band 61 for Landsat-7
 ETM+) which have already been processed from DN into reflectance and
@@ -62,7 +62,7 @@
     4049: 348-355.</li>
 </ol>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
   <a href="i.landsat.toar.html">i.landsat.toar</a>

Modified: grass-addons/imagery/i.landsat.dehaze/description.html
===================================================================
--- grass-addons/imagery/i.landsat.dehaze/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.landsat.dehaze/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,16 +1,16 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.landsat.dehaze</EM> applies a bandwise haze correction using tasscap4 (haze) 
+<em>i.landsat.dehaze</em> applies a bandwise haze correction using tasscap4 (haze) 
 and linear regression.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The regression based technique which determines a 'best fit' line for
 multispectral plots of pixels within homogenous cover types. The slope of
 the plot is proportional to the ratio of the reflective material (Crippen
 1987).
 
-<H2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 
 <div class="code"><pre>
 # preparation of Tasseled Cap "haze" map
@@ -37,19 +37,19 @@
 Dehazed subset of Trentino, Italy (LANDSAT TM7, 13 Sep 1999). d.rgb view after i.tasscap, i.landsat.dehaze, i.landsat.rgb application.
 </center>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="d.rgb.html">d.rgb</A>,
-<A HREF="g.region.html">g.region</A>,
-<A HREF="i.landsat.rgb.html">i.landsat.rgb</A>,
-<A HREF="i.tasscap.html">i.tasscap</A>,
-<A HREF="r.colors.html">r.colors</A>,
-<A HREF="r.composite.html">r.composite</A>,
-<A HREF="r.regression.line.html">r.regression.line</A>
-</EM>
+<em>
+<a href="d.rgb.html">d.rgb</a>,
+<a href="g.region.html">g.region</a>,
+<a href="i.landsat.rgb.html">i.landsat.rgb</a>,
+<a href="i.tasscap.html">i.tasscap</a>,
+<a href="r.colors.html">r.colors</a>,
+<a href="r.composite.html">r.composite</a>,
+<a href="r.regression.line.html">r.regression.line</a>
+</em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Markus Neteler
 

Modified: grass-addons/imagery/i.landsat.toar/description.html
===================================================================
--- grass-addons/imagery/i.landsat.toar/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.landsat.toar/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -208,9 +208,9 @@
 <h2>SEE ALSO</h2>
 
 <em>
-  <A href="i.atcorr.html">i.atcorr</a>,
-  <A href="r.mapcalc.html">r.mapcalc</a>,
-  <A href="r.in.gdal.html">r.in.gdal</a>
+  <a href="i.atcorr.html">i.atcorr</a>,
+  <a href="r.mapcalc.html">r.mapcalc</a>,
+  <a href="r.in.gdal.html">r.in.gdal</a>
 </em>
 
 <h2>AUTHOR</h2>

Modified: grass-addons/imagery/i.points.auto/description.html
===================================================================
--- grass-addons/imagery/i.points.auto/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.points.auto/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 This module allows a search of GCP's on two raster-maps with differents levels 
 of automation.
@@ -50,6 +50,6 @@
 click on -OTHER-, so you go on the shell and digit the value from keyboard and confirm 
 with ENTER.
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-<p><i>Last changed: $Date: 2006/06/22 07:46:46 $</i></p>
+<p><i>Last changed: $Date$</i></p>


Property changes on: grass-addons/imagery/i.points.auto/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/i.pr/i.pr_features/description.html
===================================================================
--- grass-addons/imagery/i.pr/i.pr_features/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.pr/i.pr_features/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,20 +1,20 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>i.pr.features</EM> This module is used to preprocess and extract the training features. It is necessary to specify the training file, which contains the names of the raster maps (explanatory variables) to be used in subsequent modules. The training file can either be the output from from <em><a href="i.pr.training.html">i.pr.training</a></em> (Recommended) or an ascii file containing the names of rasters.  
+<em>i.pr.features</em> This module is used to preprocess and extract the training features. It is necessary to specify the training file, which contains the names of the raster maps (explanatory variables) to be used in subsequent modules. The training file can either be the output from from <em><a href="i.pr.training.html">i.pr.training</a></em> (Recommended) or an ascii file containing the names of rasters.  
 <p>
 This module allows for the calculation of a range of statistics pertaining to the explanatory variables, which include the mean and variance. In addition the features can be normalized to a similar scale. In each case, it is possible to specify the numbers of features for which these statistics should be computed (i.e. number in list). There is also the possibility to compute principal components for the explanatory variables. The default calculates them for all layers, or else only on selected classes specified by 'class_pc'. Variables can be standardised using parameter 'standardize', this is linked to the features previously calculated and not layers in the training file. 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="i.pr.training.html">i.pr.training</A></EM><br>
-<EM><A HREF="i.pca.html">i.pca</A></EM><br>
+<em><a href="i.pr.training.html">i.pr.training</a></em><br>
+<em><a href="i.pca.html">i.pca</a></em><br>
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
 Stefano Merler, FBK, Trento, Italy<br>
 Documentation: Daniel McInerney (daniel.mcinerney ucd.ie)
 <p>
-<p><i>Last changed: $Date: 2007/12/04 09:50:03 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/imagery/i.pr/i.pr_features/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/i.pr/i.pr_training/description.html
===================================================================
--- grass-addons/imagery/i.pr/i.pr_training/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.pr/i.pr_training/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -6,83 +6,83 @@
 
 
 <h3>Flags:</h3>
-<DL>
-<DD><b>Flags:</b></DD>
-<DD>--v	Verbose module output</DD>
-<DD>--q Quiet module output</DD>
-</DL>
+<dl>
+<dd><b>Flags:</b></dd>
+<dd>--v	Verbose module output</dd>
+<dd>--q Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>input</b>=<em>string[,<i>string</i>,...]</em>
-<DD>Input raster maps (max 25) for extracting the training examples. The first one will be used for graphical output, where 'vis_map' is specified</DD>
+<dl>
+<dt><b>input</b>=<em>string[,<i>string</i>,...]</em>
+<dd>Input raster maps (max 25) for extracting the training examples. The first one will be used for graphical output, where 'vis_map' is specified</dd>
 
-<DT><b>vis_map</b>=<em>string</em>
-<DD>Raster Map for visualisation</DD>
+<dt><b>vis_map</b>=<em>string</em>
+<dd>Raster Map for visualisation</dd>
 
-<DT><b>training</b>=<em>string</em>
-<DD>Name of the output file containing the training raster maps. If this file already exists, the new data will be appended to the end of the file.<DD>
+<dt><b>training</b>=<em>string</em>
+<dd>Name of the output file containing the training raster maps. If this file already exists, the new data will be appended to the end of the file.<dd>
 
-<DT><b>site_file</b>=<em>string</em>
-<DD>Name of the site file containing the labelled location. Typically a point vector layer or polygon centroids</DD>
+<dt><b>site_file</b>=<em>string</em>
+<dd>Name of the site file containing the labelled location. Typically a point vector layer or polygon centroids</dd>
 
-<DT><b>rows</b>=<em>value</em>
-<DD>Number of rows (required odd) of the training samples</DD>
+<dt><b>rows</b>=<em>value</em>
+<dd>Number of rows (required odd) of the training samples</dd>
 
-<DT><b>cols</b>=<em>value</em>
-<DD>Number of columns (required odd) of the training samples</DD>
+<dt><b>cols</b>=<em>value</em>
+<dd>Number of columns (required odd) of the training samples</dd>
 
-<DT><b>class</b>=<em>value</em>
-<DD>Numerical label to be attached to the training examples. Option not required with the site_file option.</DD>
-</DL>
-<H2>DESCRIPTION</H2>
+<dt><b>class</b>=<em>value</em>
+<dd>Numerical label to be attached to the training examples. Option not required with the site_file option.</dd>
+</dl>
+<h2>DESCRIPTION</h2>
 
 
-<EM>i.pr.training</EM> This module is the first to be run when using i.pr.* modules. It is necessary to list all maps that will be used as explanatory variables and whose values will be assigned to the training samples. Two options for extracting data for the training samples are available. The first can be done interactively using the graphical interface. In this instance, the first GRASS raster map specified in the list is visualised in the GRASS monitor, however, this can be altered by specifying the 'vis_map' option. In this case, the user must digitise locations training samples in the GRASS monitor. A Class parameter will be assigned to each training sample, the class labels must be positive integers and must progressively increase. 
+<em>i.pr.training</em> This module is the first to be run when using i.pr.* modules. It is necessary to list all maps that will be used as explanatory variables and whose values will be assigned to the training samples. Two options for extracting data for the training samples are available. The first can be done interactively using the graphical interface. In this instance, the first GRASS raster map specified in the list is visualised in the GRASS monitor, however, this can be altered by specifying the 'vis_map' option. In this case, the user must digitise locations training samples in the GRASS monitor. A Class parameter will be assigned to each training sample, the class labels must be positive integers and must progressively increase. 
 <pr>
 The second option for generating the training sample file can be done non-interactively. This is done by specifying a GRASS sites file. This file should represent the locations of training samples and ought to have been previously generated either by digitising (<em><a href="v.digit">v.digit</a></em>) or else by <em><a href="v.in.ascii">v.in.ascii</a></em>. Features will be extracted for these locations in a similar fashion as previously described. The class will be assigned to the examples based on the information stored in the sites file. 
 <p>
 The output of this module will be an ascii file of type xy.z. The number of columns will relate to the number of rasters specified on the command line. If the output file already exists, the new data values will be appended to it. 
 
-<H3>Flags:</H3>
-<DL>
-<DD><b>--v</b>	Verbose module output. Print information pertaining to module progress and completion.</DD>
-<DD><b>--p</b>	Run Quietly. Suppress program output that would include program percent complete messages and time elapsed.</DD>
-<H3>Parameters:</H3>
+<h3>Flags:</h3>
+<dl>
+<dd><b>--v</b>	Verbose module output. Print information pertaining to module progress and completion.</dd>
+<dd><b>--p</b>	Run Quietly. Suppress program output that would include program percent complete messages and time elapsed.</dd>
+<h3>Parameters:</h3>
 
 
-<DT><B>input=</B><EM>name,name</EM>[<EM>,name,name</EM>,...]</DT> 
-<DD>Name of raster maps (maximum 25) for extracting the training examples. The first will be used for graphical output. The extent of all raster maps should be the same. CELL, DCELL and FCELL raster maps can be used. </DD>
+<dt><b>input=</b><em>name,name</em>[<em>,name,name</em>,...]</dt> 
+<dd>Name of raster maps (maximum 25) for extracting the training examples. The first will be used for graphical output. The extent of all raster maps should be the same. CELL, DCELL and FCELL raster maps can be used. </dd>
 
 
-<DT><B>vis_map</B><EM>name</EM> 
-<DD>This parameter is optional. If used, the raster that is specified will be displayed in the GRASS monitor and used as a background raster file. It should be used to identify the location of training samples.</DD> 
+<dt><b>vis_map</b><em>name</em> 
+<dd>This parameter is optional. If used, the raster that is specified will be displayed in the GRASS monitor and used as a background raster file. It should be used to identify the location of training samples.</dd> 
 
-<DT><B>training=</B><EM>name</EM> 
-<DD>This parameter is required. It creates the training file, which is an ascii file containing all of the x,y locations of the traning samples and their associated class labels and values from the explanatory variables (GRASS raster maps). If the name specified on the command line refers to a training file that already exists in the working directory, the new data are appended to it. </DD> 
+<dt><b>training=</b><em>name</em> 
+<dd>This parameter is required. It creates the training file, which is an ascii file containing all of the x,y locations of the traning samples and their associated class labels and values from the explanatory variables (GRASS raster maps). If the name specified on the command line refers to a training file that already exists in the working directory, the new data are appended to it. </dd> 
 
-<DT><B>site_file=</B><EM>name</EM> 
-<DD>This parameter is required if the non-interactive mode is required. It should relate to a GRASS Vector map (Version 6 vector data) and there should be a class label (numeric value) for each site. This file should be created prior to running i.pr.training either using v.digit or v.in.ascii. The latter is more straightforward provided the input ascii file contains data in the following format: x,y,z(class label). 
-</DD>
+<dt><b>site_file=</b><em>name</em> 
+<dd>This parameter is required if the non-interactive mode is required. It should relate to a GRASS Vector map (Version 6 vector data) and there should be a class label (numeric value) for each site. This file should be created prior to running i.pr.training either using v.digit or v.in.ascii. The latter is more straightforward provided the input ascii file contains data in the following format: x,y,z(class label). 
+</dd>
 
-<DT><B>rows=</B><EM>value</EM> 
-<DD>The number of rows in the training samples, this must be odd.</DD>
-<DT><B>cols=</B><EM>value</EM> 
-<DD>The number of colums in the training samples, this must be odd.</DD>
+<dt><b>rows=</b><em>value</em> 
+<dd>The number of rows in the training samples, this must be odd.</dd>
+<dt><b>cols=</b><em>value</em> 
+<dd>The number of colums in the training samples, this must be odd.</dd>
 
-<DT><B>class=</B><EM>value</EM> 
-<DD>The numerical label to be attached to the training examples. This is only required when the interactive mode of i.pr.training is used. </DD>
+<dt><b>class=</b><em>value</em> 
+<dd>The numerical label to be attached to the training examples. This is only required when the interactive mode of i.pr.training is used. </dd>
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="i.features.html">i.cca</A></EM><br>
+<em><a href="i.features.html">i.cca</a></em><br>
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
 Stefano Merler, FBK, Trento, Italy<br>
 Documentation: Daniel McInerney (daniel.mcinerney ucd.ie)
 
-<p><i>Last changed: $Date: 2007/12/04 10:04:03 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/imagery/i.pr/i.pr_training/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/i.spec.sam/description.html
===================================================================
--- grass-addons/imagery/i.spec.sam/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.spec.sam/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>i.spec.sam</EM> is used to perform Spectral Angle Mapping.
+<p><em>i.spec.sam</em> is used to perform Spectral Angle Mapping.
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 <div class="code"><pre>
 TODO
 </pre></div>
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Neteler, M. (1999): Spectral Mixture Analysis von Satellitendaten zur Bestimmung von Bodenbedeckungsgraden im Hinblick auf die Erosionsmodellierung. M.Sc. thesis, University of Hannover.
 
@@ -16,11 +16,11 @@
 
 Neteler, M., D. Grasso, I. Michelazzi, L. Miori, S. Merler, and C. Furlanello, 2005. An integrated toolbox for image registration, fusion and classification. International Journal of Geoinformatics. Special Issue on FOSS/GRASS 2004 and GIS-IDEAS 2004, 1(1), pp. 51-61, March 2005.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Markus Neteler, University of Hannover.
 
 <p>
-<i>Last changed: $Date: 2008/02/10 00:00:00 $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/imagery/i.spec.sam/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/i.spec.unmix/description.html
===================================================================
--- grass-addons/imagery/i.spec.unmix/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.spec.unmix/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>i.spec.unmix</EM> is used to Spectral Unmixing.
+<p><em>i.spec.unmix</em> is used to Spectral Unmixing.
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 <div class="code"><pre>
 TODO
 </pre></div>
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Neteler, M. (1999): Spectral Mixture Analysis von Satellitendaten zur Bestimmung von Bodenbedeckungsgraden im Hinblick auf die Erosionsmodellierung. M.Sc. thesis, University of Hannover.
 
@@ -16,11 +16,11 @@
 
 Neteler, M., D. Grasso, I. Michelazzi, L. Miori, S. Merler, and C. Furlanello, 2005. An integrated toolbox for image registration, fusion and classification. International Journal of Geoinformatics. Special Issue on FOSS/GRASS 2004 and GIS-IDEAS 2004, 1(1), pp. 51-61, March 2005.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Markus Neteler, University of Hannover.
 
 <p>
-<i>Last changed: $Date: 2008/02/10 00:00:00 $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/imagery/i.spec.unmix/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/imagery/i.topo.corr/description.html
===================================================================
--- grass-addons/imagery/i.topo.corr/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/imagery/i.topo.corr/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,7 +1,7 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<p><EM>i.topo.corr</EM> is used to topographically correct reflectance
-from imagery files, e.g. obtained with <EM>i.landsat.toar</EM>, using a
+<p><em>i.topo.corr</em> is used to topographically correct reflectance
+from imagery files, e.g. obtained with <em>i.landsat.toar</em>, using a
 sun illumination terrain model. This illumination model represents the
 cosine of the incident angle, i.e. the  angle between the normal to the
 ground and the sun rays. It can be obtained with <em>r.sun</em>
@@ -65,7 +65,7 @@
 <li>The elevation map to calculate the illumination model should be metric.</li>
 </ol>
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 First, make a illumination model from the elevation map (here, SRTM), and
 then make topographic correction of the bands toar.5, toar.4 and toar.3 with
@@ -102,12 +102,12 @@
 <h2>SEE ALSO</h2>
 
 <em>
-<A HREF="i.landsat.toar">i.landsat.toar</A>,
-<A HREF="r.mapcalc.html">r.mapcalc</A>,
-<A HREF="r.sun.html">r.sun</A>
+<a href="i.landsat.toar">i.landsat.toar</a>,
+<a href="r.mapcalc.html">r.mapcalc</a>,
+<a href="r.sun.html">r.sun</a>
 </em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 E. Jorge Tizado  (ej.tizado unileon es)<br>
 Dept. Biodiversity and Environmental Management, University of Le&oacute;n, Spain

Modified: grass-addons/misc/m.eigensystem/m.eigensystem.html
===================================================================
--- grass-addons/misc/m.eigensystem/m.eigensystem.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/misc/m.eigensystem/m.eigensystem.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,46 +9,46 @@
 
 <img src="grass_logo.png" alt="GRASS logo"><hr align=center size=6 noshade>
 
-<H2>NAME</H2>
+<h2>NAME</h2>
 
-<EM><b>m.eigensystem</b></EM>  - Computes eigen values and eigen vectors
+<em><b>m.eigensystem</b></em>  - Computes eigen values and eigen vectors
 for square matricies.
 
-<BR>
+<br>
 
-<EM>(GRASS Data Import/Processing Program)</EM>
+<em>(GRASS Data Import/Processing Program)</em>
 
-<H2>SYNOPSIS</H2>
+<h2>SYNOPSIS</h2>
 
-<B>m.eigensystem &lt; </B><EM>inputfile </EM>
+<b>m.eigensystem &lt; </b><em>inputfile </em>
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>m.eigensystem</EM>
+<em>m.eigensystem</em>
 determines the eigen values and eigen vectors for square matricies.
 The
-<EM>inputfile</EM>
+<em>inputfile</em>
 must have the following format:
 the first line contains an integer K
 which is the number of rows and columns in the matrix;
 the remainder of the file is the matrix, i.e.,
 K lines, each containing K real numbers.
 
-For example:<BR>
+For example:<br>
 <I>(Examples in this help page use the Spearfish-imagery sample dataset
 maps spot.ms.1, spot.ms.2, and spot.ms.3)</I>
-<P>
-<PRE>
+<p>
+<pre>
           3
           462.876649   480.411218   281.758307
           480.411218   513.015646   278.914813
           281.758307   278.914813   336.326645
 
-</PRE>
-<P>
+</pre>
+<p>
 
 The output will be K groups of lines;  each group will have the format:
-<PRE>
+<pre>
           E   real part imaginary part   relative importance
           V   real part imaginary part
                    ... K lines ...
@@ -57,27 +57,27 @@
           W   real part imaginary part
                    ... K lines ...
 
-</PRE>
+</pre>
 
 The
-<EM>E</EM>
+<em>E</em>
 line is the eigen value.
 The
-<EM>V</EM>
+<em>V</em>
 lines are the eigen vector associated with E.
 The
-<EM>N</EM>
+<em>N</em>
 lines are the V vector normalized to have a magnitude of 1.
 The
-<EM>W</EM>
+<em>W</em>
 lines are the N vector multiplied by the square root of the
 magnitude of the eigen value (E).
 
 
-<P>
+<p>
 
 For the example input matrix above, the output would be:
-<PRE>
+<pre>
           E  1159.7452017844    0.0000000000   88.38
           V     0.6910021591    0.0000000000
           V     0.7205280412    0.0000000000
@@ -111,16 +111,16 @@
           W     4.4598880523    0.0000000000
           W   -10.8698904856    0.0000000000
 
-</PRE>
+</pre>
 
-<H2>PROGRAM NOTES</H2>
+<h2>PROGRAM NOTES</h2>
 
 The relative importance of the eigen value (E) is the ratio (percentage)
 of the eigen value to the sum of the eigen values.  Note that the output
 is not sorted by relative importance.
 
 
-<P>
+<p>
 
 In general, the solution to the eigen system results in complex
 numbers (with both real and imaginary parts).  However, in the example
@@ -133,62 +133,62 @@
 and thus has only real eigen values and vectors.
 
 
-<H2>PRINCIPLE COMPONENTS</H2>
+<h2>PRINCIPLE COMPONENTS</h2>
 
 To perform principle component transformation on GRASS data layers,
 one would use
-<EM>r.covar</EM>
+<em>r.covar</em>
 to get the covariance (or correlation) matrix for a set of data layers,
-<EM>m.eigensystem</EM>
+<em>m.eigensystem</em>
 to extract the related eigen vectors, and
-<EM>r.mapcalc</EM>
+<em>r.mapcalc</em>
 to form the desired components.
 For example, to get the eigen vectors for 3 layers:
 
-<div class="code"><PRE>
-   <B>(echo 3; r.covar map.1,map.2,map.3) | m.eigensystem</B>
-</PRE></div>
+<div class="code"><pre>
+   <b>(echo 3; r.covar map.1,map.2,map.3) | m.eigensystem</b>
+</pre></div>
 
 Note that since m.covar only outputs the matrix, we must manually prepend
 the matrix size (3) using the echo command.
 
 
-<P>
+<p>
 
 Then, using the W vector, new maps are created:
 
 
-<div class="code"><PRE>
-   <B>r.mapcalc</B> 'pc.1 = 21.2395*map.1 + 22.1470*map.2 + 14.7696*map.3'
-   <B>r.mapcalc</B> 'pc.2 =  2.9083*map.1 +  4.4599*map.2  - 10.8699*map.3'
-   <B>r.mapcalc</B> 'pc.3 =  1.8175*map.1  -  1.6232*map.2 -  0.1797*map.3'
-</PRE></div>
+<div class="code"><pre>
+   <b>r.mapcalc</b> 'pc.1 = 21.2395*map.1 + 22.1470*map.2 + 14.7696*map.3'
+   <b>r.mapcalc</b> 'pc.2 =  2.9083*map.1 +  4.4599*map.2  - 10.8699*map.3'
+   <b>r.mapcalc</b> 'pc.3 =  1.8175*map.1  -  1.6232*map.2 -  0.1797*map.3'
+</pre></div>
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The source code for this program requires a Fortran compiler.
 
-<P>
+<p>
 The equivalent <em>i.pca</em> command is:
-<div class="code"><PRE>
+<div class="code"><pre>
    i.pca in=spot.ms.1,spot.ms.2,spot.ms.3 out=spot_pca
-</PRE></div>
+</pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="i.pca.html">i.pca</A><br>
-<A HREF="r.covar.html">r.covar</A><br>
-<A HREF="r.mapcalc.html">r.mapcalc</A><br>
-<A HREF="r.rescale.html">r.rescale</A>
-</EM>
+<em>
+<a href="i.pca.html">i.pca</a><br>
+<a href="r.covar.html">r.covar</a><br>
+<a href="r.mapcalc.html">r.mapcalc</a><br>
+<a href="r.rescale.html">r.rescale</a>
+</em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-This code uses routines from the EISPACK system.<BR>
+This code uses routines from the EISPACK system.<br>
 The interface was coded by Michael Shapiro, U.S.Army Construction Engineering
  Research Laboratory
 

Modified: grass-addons/ossim_grass/d.png.legend/description.html
===================================================================
--- grass-addons/ossim_grass/d.png.legend/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/ossim_grass/d.png.legend/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -62,16 +62,16 @@
 
 <h2>REFERENCES</h2>
  
-<em><A HREF="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</A></em> Google Summer of Code - OSGEO - Massimo Di Stefano.
+<em><a href="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</a></em> Google Summer of Code - OSGeo - Massimo Di Stefano.
 
 <h2>SEE ALSO</h2>
 
-<em><A HREF="v.planet.html">v.planet.py</A></em>
-<em><A HREF="r.planet.html">r.planet.py</A></em>
+<em><a href="v.planet.html">v.planet.py</a></em>
+<em><a href="r.planet.html">r.planet.py</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Massimo Di Stefano - <EM><A HREF="mailto:massimodisasha at gmail.com">@-mail</A></EM> <br>
+Massimo Di Stefano - <em><a href="mailto:massimodisasha at gmail.com">@-mail</a></em> <br>
 
 
 <p><i>Last changed: $Date$</i>

Modified: grass-addons/ossim_grass/r.planet/description.html
===================================================================
--- grass-addons/ossim_grass/r.planet/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/ossim_grass/r.planet/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -64,15 +64,15 @@
 
 <h2>REFERENCES</h2>
  
-<em><A HREF="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</A></em> Google Summer of Code - OSGEO - Massimo Di Stefano.
+<em><a href="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</a></em> Google Summer of Code - OSGeo - Massimo Di Stefano.
 
 <h2>SEE ALSO</h2>
 
-<em><A HREF="v.planet.html">v.planet.py</A></em>
+<em><a href="v.planet.html">v.planet.py</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Massimo Di Stefano - <EM><A HREF="mailto:massimodisasha at gmail.com">@-mail</A></EM> <br>
+Massimo Di Stefano - <em><a href="mailto:massimodisasha at gmail.com">@-mail</a></em> <br>
 
 
 <p><i>Last changed: $Date$</i>

Modified: grass-addons/ossim_grass/v.planet/description.html
===================================================================
--- grass-addons/ossim_grass/v.planet/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/ossim_grass/v.planet/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -20,15 +20,15 @@
 
 <h2>REFERENCES</h2>
  
-<em><A HREF="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</A></em> Google Summer of Code - OSGEO - Massimo Di Stefano.
+<em><a href="http://web.me.com/epiesasha/PlanetSasha/">PlanetSasha</a></em> Google Summer of Code - OSGeo - Massimo Di Stefano.
 
 <h2>SEE ALSO</h2>
 
-<em><A HREF="r.planet.html">r.planet.py</A></em>
+<em><a href="r.planet.html">r.planet.py</a></em>
 
 <h2>AUTHOR</h2>
 
-Massimo Di Stefano - <em><A HREF="mailto:massimodisasha at gmail.com">@-mail</A></em> <br>
+Massimo Di Stefano - <em><a href="mailto:massimodisasha at gmail.com">@-mail</a></em> <br>
 
 
 <p><i>Last changed: $Date$</i>

Modified: grass-addons/postscript/ps.output/description.html
===================================================================
--- grass-addons/postscript/ps.output/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/postscript/ps.output/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,121 +1,121 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>ps.output</EM> is a cartographic mapping program for producing high quality
+<em>ps.output</em> is a cartographic mapping program for producing high quality
 hardcopy maps in PostScript-3 format. Output can include a combination of two raster maps, any
 number of vector overlays, notes, decorations, and other spatial data.
 
-<P>
+<p>
 A file of mapping instructions that describes the various spatial and textual
-information to be printed must be prepared prior to running <EM>ps.out</EM>.
+information to be printed must be prepared prior to running <em>ps.out</em>.
 Then, the better use is writing a script file as:
 
-<PRE>
+<pre>
 ps.out [flags] output=FILE << EOF
 (ps.out commands)
 EOF
-</PRE>
+</pre>
 
-<P>
+<p>
 The hash character ('<tt>#</tt>') may be used at the beginning of a line
 to indicate that the line is a comment. Blank lines will also be ignored.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<P>
+<p>
 The order of commands is generally unimportant but may affect how some layers
-are drawn. <EM>ps.out</EM> first draw the masked areas, lines, points, and labels,
+are drawn. <em>ps.out</em> first draw the masked areas, lines, points, and labels,
 second the unmasked areas and lines, and finally the grids, unmasked points and unmasked labels.
 Raster maps are always drawn first, and only a raster map command may be used.
 
-<P>
+<p>
 Be aware that some mapping instructions require the <i>end</i> command
 and some do not. Any instruction that allows subcommands will require
 it.
 
-<P>
-The resolution and extent of raster maps plotted with <EM>ps.out</EM> are controlled by the current region settings via the <a href="g.region.html">g.region</a> module. The output filesize is largely a function of the region resolution, so special care should be taken if working with large raster datasets.
+<p>
+The resolution and extent of raster maps plotted with <em>ps.out</em> are controlled by the current region settings via the <a href="g.region.html">g.region</a> module. The output filesize is largely a function of the region resolution, so special care should be taken if working with large raster datasets.
 For example if the desired output is Letter sized paper at 300dpi, with 1" margins and the raster filling the entire page, the usable area on the page will be 6.5" x 9", which at 300 dots/inch is equivalent to a region of 1950 columns x 2700 rows (see "<tt>g.region -p</tt>"). Any higher resolution settings will make the output file larger, but with a consumer printer you probably won't be able to resolve any better detail in the hardcopy.
 
-<P>
+<p>
 The user can specify negative or greater than 100 percentage values for positioning several map decorations and embedded EPS-files, to move them outside the current map box region (for example to position a caption, barscale, or legend above or below the map box).
 
-<P>
+<p>
 One "pixel" is 1/72 of an inch or 127/360 (aprox. 0.35) of a millimetre.
 
-<P>
+<p>
 For users wanting to use special characters (such as accented characters) it is important to note that <em>ps.out</em> uses <tt>ISO-8859-1</tt> encoding. This means that your instructions file will have to be encoded in this encoding. If you normally work in a different encoding environment (such as <tt>UTF-8</tt>), you have to transform your file to the <tt>ISO-8859-1</tt> encoding, for example by using the <tt>iconv</tt> utility:
 </P>
 
-<DIV class="code"><PRE>
+<DIV class="code"><pre>
 iconv -f UTF-8 -t ISO_8859-1 utf_file > iso_file
-</PRE></DIV>
+</pre></DIV>
 
 
-<P><P>
+<p><p>
 
-<H2>MAPPING INSTRUCTIONS</H2>
+<h2>MAPPING INSTRUCTIONS</h2>
 
 The mapping instructions allow the user to specify various spatial data to be plotted. These instructions are normally prepared in a regular text file using a system editor. Except <em>scale</em>, all instructions are multiple line followed by a subsection of one or more additional instructions and are terminated with an <i>end</i> instruction.
 
-<P>
-<H3>Instruction keywords:</H3>
+<p>
+<h3>Instruction keywords:</h3>
 
-<a href="#draw">draw</a>&nbsp;<BR>
-<a href="#geogrid">geogrid</a>&nbsp; ERROR IN SOUTH HEMISPHERE?<BR>
-<a href="#grid">grid</a>&nbsp;<BR>
-<a href="#maparea">maparea</a>&nbsp;<BR>
-<a href="#note">note</a>&nbsp;<BR>
-<a href="#palette">palette</a>&nbsp;<BR>
-<a href="#paper">paper</a>&nbsp;<BR>
-<a href="#raster">raster</a>&nbsp;<BR>
-<a href="#rlegend">rlegend</a>&nbsp;<BR>
-<a href="#scale">scale</a>&nbsp;<BR>
-<a href="#scalebar">scalebar</a>&nbsp;<BR>
-<a href="#vareas">vareas</a>&nbsp;<BR>
-<a href="#vlabels">vlabel</a>&nbsp;<BR>
-<a href="#vlines">vlines</a>&nbsp;<BR>
-<a href="#vpoints">vpoints</a>&nbsp;<BR>
-<a href="#vlegend">vlegend</a>&nbsp;<BR>
+<a href="#draw">draw</a>&nbsp;<br>
+<a href="#geogrid">geogrid</a>&nbsp; ERROR IN SOUTH HEMISPHERE?<br>
+<a href="#grid">grid</a>&nbsp;<br>
+<a href="#maparea">maparea</a>&nbsp;<br>
+<a href="#note">note</a>&nbsp;<br>
+<a href="#palette">palette</a>&nbsp;<br>
+<a href="#paper">paper</a>&nbsp;<br>
+<a href="#raster">raster</a>&nbsp;<br>
+<a href="#rlegend">rlegend</a>&nbsp;<br>
+<a href="#scale">scale</a>&nbsp;<br>
+<a href="#scalebar">scalebar</a>&nbsp;<br>
+<a href="#vareas">vareas</a>&nbsp;<br>
+<a href="#vlabels">vlabel</a>&nbsp;<br>
+<a href="#vlines">vlines</a>&nbsp;<br>
+<a href="#vpoints">vpoints</a>&nbsp;<br>
+<a href="#vlegend">vlegend</a>&nbsp;<br>
 
 
 <h3>Convention in description of some instructions:</h3>
 
-<DL>
-<DT><B>#</B> <EM>number without dimension</EM>
-<DD>The number is considered in points.
-</DD><P>
-<DT><B>#-</B> <EM>number with dimension</EM>
-<DD> Acceptable units are <em>mm</em> (millimeters), <em>cm</em> (centimeters), <em>inch</em> (inches), and <em>%</em> (percent of map dimensions).
-</DD><P>
-<DT><B>CAT</B> <EM>List of categories</EM> e.g. 1,3,5-7
-<P>
-<DT><B>SQL</B> <EM>SQL where statement</EM> like: vlastnik = 'Cimrman'
-<P>
-<DT><b>T</b> <em>Text</em>
-<P>
-<DT><b>R</b> <em>Raster</em> file or group name if the first character is ':'
-<P>
-<DT><b>V</b> <em>Vector</em> file name if equal to '(none)' then don't draw but there is present in vlegend.
-<P>
-<DT><b>color</b> <em>Color</em> name
-<DD>The color may be either a standard <a name="NAMED_COLORS">GRASS color</a>, a <tt>R:G:B</tt> triplet (e.g '<tt>255:0:0</tt>'), or <tt>none</tt>. In all cases could be follow by <em>$alpha</em> to set the opacity (if use -g flag).
- The following colors names are accepted by <EM>ps.out</EM>: <tt>aqua, black, blue, brown, cyan, gray, grey, green, indigo, magenta, orange, purple, red, violet, white, yellow</tt>.
-<P>
-<DT><b>COOR</b> <em>Coordinates</em> as pair of <b>east north</b>
-<P>
-</DD>
+<dl>
+<dt><b>#</b> <em>number without dimension</em>
+<dd>The number is considered in points.
+</dd><p>
+<dt><b>#-</b> <em>number with dimension</em>
+<dd> Acceptable units are <em>mm</em> (millimeters), <em>cm</em> (centimeters), <em>inch</em> (inches), and <em>%</em> (percent of map dimensions).
+</dd><p>
+<dt><b>CAT</b> <em>List of categories</em> e.g. 1,3,5-7
+<p>
+<dt><b>SQL</b> <em>SQL where statement</em> like: vlastnik = 'Cimrman'
+<p>
+<dt><b>T</b> <em>Text</em>
+<p>
+<dt><b>R</b> <em>Raster</em> file or group name if the first character is ':'
+<p>
+<dt><b>V</b> <em>Vector</em> file name if equal to '(none)' then don't draw but there is present in vlegend.
+<p>
+<dt><b>color</b> <em>Color</em> name
+<dd>The color may be either a standard <a name="NAMED_COLORS">GRASS color</a>, a <tt>R:G:B</tt> triplet (e.g '<tt>255:0:0</tt>'), or <tt>none</tt>. In all cases could be follow by <em>$alpha</em> to set the opacity (if use -g flag).
+ The following colors names are accepted by <em>ps.out</em>: <tt>aqua, black, blue, brown, cyan, gray, grey, green, indigo, magenta, orange, purple, red, violet, white, yellow</tt>.
+<p>
+<dt><b>COOR</b> <em>Coordinates</em> as pair of <b>east north</b>
+<p>
+</dd>
 
-<DT><B>font</B> command:
-<PRE>
+<dt><b>font</b> command:
+<pre>
 font
     name   [T]
     size   [#-]
     color  (color)
     extend [#]
 end
-</PRE>
+</pre>
 
-<DD>
+<dd>
 The name of the PostScript font. Fonts present in all PostScript implementations are:
 <tt>
 Times-Roman,
@@ -132,10 +132,10 @@
 and
 Courier-BoldOblique
 </tt>.
-</DD><P>
+</dd><p>
 
-<DT><B>frame</B> command:
-<PRE>
+<dt><b>frame</b> command:
+<pre>
 frame
     where  [#- #-]
     ref    [left|right|center upper|lower|center]
@@ -145,48 +145,48 @@
     fcolor (color)
     margin [#-]
 end
-</PRE>
+</pre>
 
-<DT><B>line</B> command:
-<PRE>
+<dt><b>line</b> command:
+<pre>
 line
     width [#-]
     color (color)
     style [solid|dashed|dotted|dashdotted|#...]
     cap   [butt|round|extended_butt]
 end
-</PRE>
+</pre>
 
-</DL>
+</dl>
 
 
-<P>
-<H2>COMPOSE THE MAP</H2>
+<p>
+<h2>COMPOSE THE MAP</h2>
 
 <a name="paper"><h3>paper</h3></a> Specifies paper size, margins and orientation.
 
-<P><PRE>
+<p><pre>
 USAGE
-<B>paper</B> [paper type]: default A4
-    <B>height</B> [#-]
-    <B>width</B>  [#-]
-    <B>left</B>   [#-]: default 0.5inch
-    <B>right</B>  [#-]: default 0.5inch
-    <B>bottom</B> [#-]: default 1.0inch
-    <B>top</B>    [#-]: default 1.0inch
-    <B>landscape</B> [y|N]: default N
-    <B>draw</B>   (draw)
-    <B>font</B>   (font): set the default font
-<B>end</B>
-</PRE>
+<b>paper</b> [paper type]: default A4
+    <b>height</b> [#-]
+    <b>width</b>  [#-]
+    <b>left</b>   [#-]: default 0.5inch
+    <b>right</b>  [#-]: default 0.5inch
+    <b>bottom</b> [#-]: default 1.0inch
+    <b>top</b>    [#-]: default 1.0inch
+    <b>landscape</b> [y|N]: default N
+    <b>draw</b>   (draw)
+    <b>font</b>   (font): set the default font
+<b>end</b>
+</pre>
 
-<UL>
-<LI><em>paper types</em>: A0-6, B0-6, Executive, Folio, Ledger, Legal, Letter, Tabloid.</LI>
-<LI><em>left</em> and <em>top</em>: They are referenced to upper-left margin of the paper and they specify the position of the map area (i.e. grids growth outside this limits).
-<LI><em>draw</em>: This paints the features before any part of map. Usefull to draw logos, watermarks...</LI>
-</UL>
+<ul>
+<li><em>paper types</em>: A0-6, B0-6, Executive, Folio, Ledger, Legal, Letter, Tabloid.</LI>
+<li><em>left</em> and <em>top</em>: They are referenced to upper-left margin of the paper and they specify the position of the map area (i.e. grids growth outside this limits).
+<li><em>draw</em>: This paints the features before any part of map. Usefull to draw logos, watermarks...</LI>
+</ul>
 
-<P><PRE>
+<p><pre>
 <i>EXAMPLE</i>
 paper A4
     left 2cm
@@ -197,53 +197,53 @@
         size 8
     end
 end
-</PRE>
+</pre>
 
 This example set the size of paper to landscape A4 and Univers 8 point as defualt font.
 
-<P>
+<p>
 <a name="scale"><h3>scale</h3></a>. Selects a scale for the output map.
 
-<PRE>
+<pre>
 USAGE
-<B>scale</B> 1:[#]
-</PRE>
+<b>scale</b> 1:[#]
+</pre>
 
 The scale is selected as a relative ratio, e.g. 1:25000. Use maparea to select a specific width of map.
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
     scale 1:25000
-</PRE>
-<P>
+</pre>
+<p>
 
 This example would set the scale of the map to 1 unit = 25000 units.
 
 
 <a name="maparea"><h3>maparea</h3></a>
-Position of the map area on the page.<BR>
-The upper left corner of the map will be positioned <EM>left</EM> units from the left edge of the page and <EM>top</EM> units from the top of the page. If <EM>width</EM> and <EM>height</EM> are present, the map will be rescaled, if necessary, to fit.
-<P>
+Position of the map area on the page.<br>
+The upper left corner of the map will be positioned <em>left</em> units from the left edge of the page and <em>top</em> units from the top of the page. If <em>width</em> and <em>height</em> are present, the map will be rescaled, if necessary, to fit.
+<p>
 
-<PRE>
+<pre>
 USAGE
-<B>maparea</B>
-    <B>left</B>   [#-]
-    <B>top</B>    [#-]
-    <B>width</B>  [#-]
-    <B>height</B> [#-]
-    <B>border</B> [#-]
-    <B>color</B>  [color]
-    <B>fcolor</B> [color]
- <B>end</B>
-</PRE>
+<b>maparea</b>
+    <b>left</b>   [#-]
+    <b>top</b>    [#-]
+    <b>width</b>  [#-]
+    <b>height</b> [#-]
+    <b>border</b> [#-]
+    <b>color</b>  [color]
+    <b>fcolor</b> [color]
+ <b>end</b>
+</pre>
 
-<UL>
-<LI><em>border</em> and <em>color</em>: To control the which and color of the line is drawn around the map area.</LI>
-<LI><em>fcolor</em>: Fill map-area with color (or none), e.g. aqua to sea color.
+<ul>
+<li><em>border</em> and <em>color</em>: To control the which and color of the line is drawn around the map area.</LI>
+<li><em>fcolor</em>: Fill map-area with color (or none), e.g. aqua to sea color.
 </LI>
 
-<P><PRE>
+<p><pre>
 <i>EXAMPLE</i>
 maparea
     left 2cm
@@ -252,35 +252,35 @@
     color black
     fcolor none
 end
-</PRE>
+</pre>
 
 This example positions the upper left corner of the map 2.0 cm from the left edge and 3.5 cm from the top edge of the map. And draw a black border of 1 mm of width around the map area.
 
 
 
-<H2>ADDING COMPONENTS</H2>
+<h2>ADDING COMPONENTS</h2>
 
 <h3>grid</h3>
 <a name="grid"></a>
 Overlays a coordinate grid onto the output map.
 
-<PRE>
+<pre>
 USAGE
-<B>grid</B>
-    <B>major</B>  [#] (line)
-    <B>minor</B>  [#] (line)
-    <B>cross</B>  [#]
-    <B>font</B>   [font]
-    <B>fcolor</B> [color]
-    <B>format</B> ['in', 'out', '+out' or 'iho']
-    <B>cutoff</B> [#]
- <B>end</B>
-</PRE>
+<b>grid</b>
+    <b>major</b>  [#] (line)
+    <b>minor</b>  [#] (line)
+    <b>cross</b>  [#]
+    <b>font</b>   [font]
+    <b>fcolor</b> [color]
+    <b>format</b> ['in', 'out', '+out' or 'iho']
+    <b>cutoff</b> [#]
+ <b>end</b>
+</pre>
 
 <table border=1 cellspacing=10>
 <td>
 <I>EXAMPLE</I>
-<PRE>
+<pre>
 grid
     format in
     major 1000
@@ -301,7 +301,7 @@
     fcolor black
     cutoff 3
 end
-</PRE>
+</pre>
 </td>
 <td></td>
 <td><image src="ps.out_in.jpg"><br><br>format: in</td>
@@ -316,18 +316,18 @@
 <h3>geogrid</h3>
 <a name="geogrid"></a>
 
-<PRE>
+<pre>
 USAGE
-<B>geogrid</B>
-    <B>major</B>  [#] (line)
-    <B>minor</B>  [#] (line)
-    <B>font</B>   [font]
-    <B>fcolor</B> [color]
-    <B>format</B> ['in' or 'out' or '+out']
- <B>end</B>
-</PRE>
+<b>geogrid</b>
+    <b>major</b>  [#] (line)
+    <b>minor</b>  [#] (line)
+    <b>font</b>   [font]
+    <b>fcolor</b> [color]
+    <b>format</b> ['in' or 'out' or '+out']
+ <b>end</b>
+</pre>
 
-<PRE>
+<pre>
 <I>EXAMPLE</I>
 geogrid
     format out
@@ -348,29 +348,29 @@
     end
     fcolor none
 end
-</PRE>
+</pre>
 
 
-<H3>scalebar</H3>
+<h3>scalebar</h3>
 <a name="scalebar"></a>
 
-<PRE>
+<pre>
 <I>USAGE</I>
-<B>scalebar</B>   [scalebar type]
-    <B>length</B> [#]
-    <B>units</B>  [code T]
-    <B>major</B>  [# #], divisions and label separation
-    <B>minor</B>  [# #], divisions and label separation
-    <B>frame</B>  [frame]
-    <B>font</B>   [font]
-    <B>height</B> [#-]
-    <B>fcolor</B> [color]
-<B>end</B>
-</PRE>
+<b>scalebar</b>   [scalebar type]
+    <b>length</b> [#]
+    <b>units</b>  [code T]
+    <b>major</b>  [# #], divisions and label separation
+    <b>minor</b>  [# #], divisions and label separation
+    <b>frame</b>  [frame]
+    <b>font</b>   [font]
+    <b>height</b> [#-]
+    <b>fcolor</b> [color]
+<b>end</b>
+</pre>
 
 Scalebar types: I F f S s
 
-<PRE>
+<pre>
 <I>EXAMPLE</I>
 scalebar f
     frame
@@ -392,21 +392,21 @@
     minor 2 2
     height 2mm
 end
-</PRE>
+</pre>
 
 
 <h3>note</h3>
 <a name="note"></a>
 
-<PRE>
+<pre>
 USAGE
-<B>note</B> [code T]
-    <B>frame</B> [frame]
-    <B>font</B> [font]
-    <B>angle</B> [#] in degrees
-    <B>width</B> [#-]
- <B>end</B>
-</PRE>
+<b>note</b> [code T]
+    <b>frame</b> [frame]
+    <b>font</b> [font]
+    <b>angle</b> [#] in degrees
+    <b>width</b> [#-]
+ <b>end</b>
+</pre>
 
 Note codes: :file (filename),
     :maplim,
@@ -415,7 +415,7 @@
     or simple text use '|' to break lines (max 1024 characters)
 
 
-<PRE>
+<pre>
 <I>EXAMPLE</I>
 note :scale scale
     frame
@@ -433,7 +433,7 @@
         color gray
     end
 end
-</PRE>
+</pre>
 
 
 <a name="palette"><h3>palette</h3></a>
@@ -441,57 +441,57 @@
 
 <a name="draw"><h3>draw</h3></a>
 
-<PRE>
+<pre>
 USAGE
-<B>draw</B> [free]
-    <b>direct</B> (T)
-    <B>color</B> (color)
-    <B>fcolor</B> (fill color)
-    <B>linewidth</B> line_width
-    <B>linedash</B> line_width
-    <B>font</B> name size [extend]
+<b>draw</b> [free]
+    <b>direct</b> (T)
+    <b>color</b> (color)
+    <b>fcolor</b> (fill color)
+    <b>linewidth</b> line_width
+    <b>linedash</b> line_width
+    <b>font</b> name size [extend]
 
-    <B>[l,r,c,x,v,]text</B> east north label or -1 angle label
-    <B>textc</B> east north label
-    <B>labels</B> filename
+    <b>[l,r,c,x,v,]text</b> east north label or -1 angle label
+    <b>textc</b> east north label
+    <b>labels</b> filename
 
-    <B>moveto</B> east north
-    <B>lineto</B> east north
-    <B>endline</B>
+    <b>moveto</b> east north
+    <b>lineto</b> east north
+    <b>endline</b>
 
-    <B>line</B> east1 north1 east2 north2
-    <B>rectangle</B> east1 north1 east2 north2 [fillcolor]
-    <B>circle</B> east north radius
-    <B>arc</B> east1, noth1, diameter, east2, north2
-    <B>border</B> width
+    <b>line</b> east1 north1 east2 north2
+    <b>rectangle</b> east1 north1 east2 north2 [fillcolor]
+    <b>circle</b> east north radius
+    <b>arc</b> east1, noth1, diameter, east2, north2
+    <b>border</b> width
 
-    <B>psfile</B> scale east north filename
+    <b>psfile</b> scale east north filename
 
-    <B>maplimits</B>
-    <b>north</B> east north radius
-    <B>compass</B> east north radius
-    <B>rute</B> east north label
-<B>end</B>
-</PRE>
+    <b>maplimits</b>
+    <b>north</b> east north radius
+    <b>compass</b> east north radius
+    <b>rute</b> east north label
+<b>end</b>
+</pre>
 
 
 <h2>ADDING RASTER MAPS</h2>
 
-<a name="raster"><H3>raster</H3></a>
+<a name="raster"><h3>raster</h3></a>
 Selects a raster map for output.
 
-<PRE>
+<pre>
 <I>USAGE</I>
-<B>raster</B> [R|R R R], required: one raster, one group name (:name) or three raster (R G B)
-    <B>grey</B>      [y|N]. Output in shades of grey.
-    <B>maskcolor</B> [color]. Color to be used for mask.
-    <B>maskcell</B>  [R (R)]. Raster used as mask and optionally a raster for background.
-    <B>outline</B>   [line]. Specifications of outline.
-    <B>setcolor</B>  [CAT color]. Overrides the color of cat
+<b>raster</b> [R|R R R], required: one raster, one group name (:name) or three raster (R G B)
+    <b>grey</b>      [y|N]. Output in shades of grey.
+    <b>maskcolor</b> [color]. Color to be used for mask.
+    <b>maskcell</b>  [R (R)]. Raster used as mask and optionally a raster for background.
+    <b>outline</b>   [line]. Specifications of outline.
+    <b>setcolor</b>  [CAT color]. Overrides the color of cat
 end
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <I>EXAMPLE</I>
 raster geology
     grey n
@@ -503,21 +503,21 @@
     end
     setcolor 28 200:123:200
 end
-</PRE>
+</pre>
 
 
 <h2>ADDING VECTOR MAPS</h2>
 
-<a name="vareas"><H3>vareas</H3></a>
+<a name="vareas"><h3>vareas</h3></a>
 
 Draw a vector of areas with optional pattern. Fill or pattern color can be fixed or reed from database.
 A line vector could be drawn as an area when lwidth is not zero (positive or negative).
 
 If label = "" not block title.
 
-<PRE>
+<pre>
 USAGE
-<B>vareas</B> [V]
+<b>vareas</b> [V]
     <b>lwidth</b> [#-], default: 0 (area).
 
     <b>line</b>   (line)
@@ -538,15 +538,15 @@
 
     <b>setrule</b> [ID.CAT[:ID] TXT]. Set a label for the CAT.
 <b>end</b>
-</PRE>
+</pre>
 
-<a name="vlines"><H3>vlines</H3></a>
+<a name="vlines"><h3>vlines</h3></a>
 
 Perhaps offset dont run well in Lat/Lon
 
-<PRE>
+<pre>
 USAGE
-<B>vlines</B> [V].
+<b>vlines</b> [V].
     <b>type</b>   [line|boundary], default: line
 
     <b>line</b>   (line)
@@ -561,9 +561,9 @@
     <b>label</b>  [T]. For description in vlegend
     <b>lpos</b>   [# #]. Position where vector is plotted in legend and block
 <b>end</b>
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
 vlines railroads
     type line
@@ -578,16 +578,16 @@
     end
     masked n
 end
-</PRE>
+</pre>
 
-<a name="vpoints"><H3>vpoints</H3></a>
+<a name="vpoints"><h3>vpoints</h3></a>
 
 Draw a vector of points with a symbol.<br>
 A line vector could be drawn as a lines ...
 
-<PRE>
+<pre>
 USAGE
-<B>vpoints</B> [V].
+<b>vpoints</b> [V].
     <b>type</b>   [point|centroid|line|boundary], default: point
 
     <b>symbol</b> [T]. Symbol standard or EPS file.
@@ -599,7 +599,7 @@
 
     <b>dist</b>   [#-]. Distance between symbol on the cline
     <b>offset</b> [#-]. Vertical offset of the symbol
-    <b>cline</B> (line). Conection line of the symbols
+    <b>cline</b> (line). Conection line of the symbols
 
     <b>layer</b>  [#], default: 1. Layer number used with cats/where option
     <b>cats</b>   [CAT]
@@ -610,9 +610,9 @@
 
     <b>setrule</b> [SIZE.CAT[:ID] TXT]. Set a label for the CAT.
 <b>end</b>
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
 vpoints precip_30ynormals
     type centroid
@@ -625,13 +625,13 @@
     size 10 ANNUAL
     scale .01
 end
-</PRE>
+</pre>
 
-<a name="vlabels"><H3>vlabels</H3></a>
+<a name="vlabels"><h3>vlabels</h3></a>
 
-<PRE>
+<pre>
 USAGE
-<B>vlabels</B> [V].
+<b>vlabels</b> [V].
     <b>labelcol</b> [T]
     <b>font</b>  (font)
     <b>decimals</b> [#]
@@ -644,23 +644,23 @@
     <b>label</b>  [T]
     <b>lpos</b>   [#]
 <b>end</b>
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
 vlabels railroads
     labelcol cat
     masked n
 end
-</PRE>
+</pre>
 
 <h2>ADDING LEGENDS</h2>
 
-<a name="rlegend"><H3>rlegend</H3></a>
+<a name="rlegend"><h3>rlegend</h3></a>
 
-<PRE>
+<pre>
 USAGE
-<B>rlegend</B>
+<b>rlegend</b>
     <b>raster</b>
     <b>title</b>
     <b>frame</b>
@@ -673,9 +673,9 @@
     <b>whiteframe</b>
     <b>gradient</b>
 <b>end</b>
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
 rlegend
     title Land Class 1996
@@ -705,13 +705,13 @@
     tick 3
     whiteframe 1
 end
-</PRE>
+</pre>
 
-<a name="vlegend"><H3>vlegend</H3></a>
+<a name="vlegend"><h3>vlegend</h3></a>
 
-<PRE>
+<pre>
 USAGE
-<B>vlegend</B> [T] Title of legend
+<b>vlegend</b> [T] Title of legend
     <b>frame</b>
     <b>title_font</b>
     <b>font</b>
@@ -719,9 +719,9 @@
     <b>swidth</b>
     <b>dy</b>
 <b>end</b>
-</PRE>
+</pre>
 
-<PRE>
+<pre>
 <i>EXAMPLE</i>
 vlegend
     title .Leyenda
@@ -740,17 +740,17 @@
         size 9
     end
 end
-</PRE>
+</pre>
 
 
 <a name="vlabel"><h3>vlabel</h3></a>
 
-<PRE>
+<pre>
 USAGE
-<B>vlabel</B> [code T]
-    <B>font</B> [font]
-    <B>labelcol</B> [T]
-    <B>decimals</B> [#]
+<b>vlabel</b> [code T]
+    <b>font</b> [font]
+    <b>labelcol</b> [T]
+    <b>decimals</b> [#]
 
     <b>layer</b>  [#], default: 1. Layer number used with cats/where option
     <b>cats</b>   [CAT]
@@ -758,14 +758,14 @@
     <b>masked</b> [y|N]. Masked by raster mask
     <b>label</b>  [T]. For description in vlegend
     <b>lpos</b>   [#]. Position vector is plotted in legend
-<B>end</B>
-</PRE>
+<b>end</b>
+</pre>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 E. Jorge Tizado  (ej.tizado unileon es)<br>
-Dept. Biodiversity and Environmental Management, University of León, Spain<BR>
+Dept. Biodiversity and Environmental Management, University of León, Spain<br>
 
 <p>
 <i>Last changed: $Date$</i>

Modified: grass-addons/raster/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html
===================================================================
--- grass-addons/raster/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,8 +9,8 @@
 	<META NAME="CHANGED" CONTENT="20100422;11051600">
 </HEAD>
 <BODY LANG="en-US" DIR="LTR">
-<H2>DESCRIPTION</H2>
-<P><EM>r.landscape.evol</EM> takes as input a raster digital
+<h2>DESCRIPTION</h2>
+<p><em>r.landscape.evol</em> takes as input a raster digital
 elevation model (DEM) of surface topography and an input raster DEM
 of bedrock elevations, as well as several environmental variables,
 and computes the net change in elevation due to erosion and
@@ -28,54 +28,54 @@
 deposition) or subtracted from (for erosion) the topography map of
 the previous time step, to create a new topography map (i.e., as a
 DEM) after a cycle of landuse and landscape change.</P>
-<P><B>R</B>, <B>K</B>, and <B>C</B> are environmental factors in the
+<p><b>R</b>, <b>K</b>, and <b>C</b> are environmental factors in the
 USPED equation that relate to the intensity of yearly rainfall, the
 erodability of soil, and the degree to which vegetation cover
 prevents erosion (See below for a detailed description of these
 factors). These factors largely determine the amount of erosion or
-deposition that occur on the hill-slopes. <B>cutoff1</B>, <B>cutoff2,
-</B><SPAN STYLE="font-weight: normal">and </SPAN><B>cutoff3</B> are
+deposition that occur on the hill-slopes. <b>cutoff1</b>, <b>cutoff2,
+</b><SPAN STYLE="font-weight: normal">and </SPAN><b>cutoff3</b> are
 values of flow accumulation (amount of upslope area in square meters)
 that determine where surface processes change from soil-creep to
 laminar overland flow (sheetwash), from laminar overland flow to
 channelized overland flow (rills/gullies), and from channelized
-overland flow to full stream flow respectively. <B>kappa</B> is the
-rate of diffusion for soil-creep in meters per 1000 years. <B>sdensity</B>
-is the density of the soil in grams per cubic centimeters. <B>rain</B><SPAN STYLE="font-weight: normal">
+overland flow to full stream flow respectively. <b>kappa</b> is the
+rate of diffusion for soil-creep in meters per 1000 years. <b>sdensity</b>
+is the density of the soil in grams per cubic centimeters. <b>rain</b><SPAN STYLE="font-weight: normal">
 is the total annual precipitation measured in meters (or the average
-annual rainfall in meters per year). </SPAN><B>raindays</B><SPAN STYLE="font-weight: normal">
+annual rainfall in meters per year). </SPAN><b>raindays</b><SPAN STYLE="font-weight: normal">
 is the total number of days on which it rained in one year (or an
-average value of days per year). </SPAN><B>infilt</B><SPAN STYLE="font-weight: normal">
+average value of days per year). </SPAN><b>infilt</b><SPAN STYLE="font-weight: normal">
 is the proportion of rainfall that infiltrates into the soil and thus
-does not contribute to runoff (values are between 0 and 1). </SPAN><B>Kt</B><SPAN STYLE="font-weight: normal">
+does not contribute to runoff (values are between 0 and 1). </SPAN><b>Kt</b><SPAN STYLE="font-weight: normal">
 is the stream transport efficiency variable that describes the
 cohesivness of the stream channel beds (0.001 for normal
 gravel/sandy/silt channel bed to 0.000001 for a bedrock channel bed).
-</SPAN><B>loadexp</B><SPAN STYLE="font-weight: normal"> is the stream
+</SPAN><b>loadexp</b><SPAN STYLE="font-weight: normal"> is the stream
 transport type variable that determines the type of stream transport
 modeled (1.5 for bedload transport, or 2.5 for suspended load
-transport). </SPAN><B>alpha</B><SPAN STYLE="font-weight: normal"> is
+transport). </SPAN><b>alpha</b><SPAN STYLE="font-weight: normal"> is
 the critical slope threshold above which the model will simulate the
 cumulative effects of mass wasting (landsliding). These</SPAN>
 measures all need to be determined empirically for a given landscape
 under a given climatic condition, but the defaults are average values
 for the Circum-Mediterranean Basin. 
 </P>
-<P>By default, <EM>r.watershed</EM> is used to calculate flow
+<p>By default, <em>r.watershed</em> is used to calculate flow
 accumulation modeling using the MFD alglrithm included in  GRASS 6.4
 and higher. This can be made backwards compatable by checking the -f
 flag, which will use <I>r.terraflow </I><SPAN STYLE="font-style: normal">to
 compute a flow accumulation model using the SFD algorithm. This will,
 however, produce much less accurate results, and users are therefore
 encouraged to used GRASS 6.4 or higher.</SPAN></P>
-<P> The user may use the <B>statsout</B> option to define the name of
+<p> The user may use the <b>statsout</b> option to define the name of
 the file that contains the statistics of erosion, deposition, and
 soil depths over all iterations. The default name is
 <TT>&quot;mapset&quot;_&quot;prefix&quot;_lsevol_stats.txt</TT> (in
 the users home directory). 
 </P>
-<H2>CALCULATING SURFACE EROSION AND DEPOSITION</H2>
-<P>Because physical laws that govern the flow of water across
+<h2>CALCULATING SURFACE EROSION AND DEPOSITION</h2>
+<p>Because physical laws that govern the flow of water across
 landscapes and its ability to erode, entrain, transport, and deposit
 sediments can be expressed in mathematical form, they can be
 translated into a scripting algorithm that modifies raster landscapes
@@ -95,16 +95,16 @@
 1996; Mitasova, et al. 2004; Singh and Phadke 2006; Warren, et al.
 2005; Wischmeier 1976; Wischmeier, et al. 1971; Wischmeier and Smith
 1978), to calculate net erosion and deposiiton across each landscape
-cell above the flow accumualtion breakpoint <B>cutoff3</B>. USPED was
+cell above the flow accumualtion breakpoint <b>cutoff3</b>. USPED was
 developed for hillslopes, small watersheds, and small channels (i.e.,
 rills and gullies) (Warren, et al. 2005), and is less applicable to
 larger streams and rivers. Therefore we use a different process
 equation to model erosion and deposition in stream channels (see
 below). 
 </P>
-<P>Net erosion and deposition rates on hillslopes are computed from
+<p>Net erosion and deposition rates on hillslopes are computed from
 the change in sediment flow across cells of a DEM that have flow
-accumulation values less than <B>cutoff3</B>. We approximate sediment
+accumulation values less than <b>cutoff3</b>. We approximate sediment
 flow rate from sediment transport capacity, assuming that water
 flowing over landscapes normally carries sediment at capacity.
 Transport capacity is calculated by combining a rainfall coefficient
@@ -112,17 +112,17 @@
 mm), and coefficient for the ability of vegetation to prevent erosion
 (C, unitless) from RUSLE with with an estimate of topographically
 driven stream power as shown in equation (1)</P>
-<P><IMG SRC="m11de82c.gif" NAME="Object2" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=157 HEIGHT=21></P>
-<P>where <I>A</I> is the upslope contributing area (a measure of
-water flowing through a cell) and <EM>B</EM> is the slope of the
-cell. The exponents <EM>m</EM> and <EM>n</EM> are empirically derived
+<p><IMG SRC="m11de82c.gif" NAME="Object2" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=157 HEIGHT=21></P>
+<p>where <I>A</I> is the upslope contributing area (a measure of
+water flowing through a cell) and <em>B</em> is the slope of the
+cell. The exponents <em>m</em> and <em>n</em> are empirically derived
 and vary for water flowing over nearly level ground, on hillslopes,
 in water catchments at the heads of gullies, or in small channels.
 The sediment flow rate is largely determined by the amount of water
 flowing (contributing area), its velocity (a function of slope), the
 erodability of the substrate (K factor), and the ability of the
 vegetation cover to prevent erosion (C factor).</P>
-<P>Implementing the USPED algorithm in a GRASS script combines GIS
+<p>Implementing the USPED algorithm in a GRASS script combines GIS
 modules for calculating slope, aspect, and flow accumulation (the
 amount of water that flows across each cell) using map algebra. Data
 used by the script includes a map of initial surface topography (a
@@ -139,15 +139,15 @@
 Essa 2004; Hammad, et al. 2004; Renard, et al. 1997; Renard and
 Freimund 1994). 
 </P>
-<P>For areas of the DEM that have flow accumulation values greater
-than  <B>cutoff3 </B><SPAN STYLE="font-weight: normal">(ie. areas
+<p>For areas of the DEM that have flow accumulation values greater
+than  <b>cutoff3 </b><SPAN STYLE="font-weight: normal">(ie. areas
 that are proper streams), we use a case of the transport limited
 process law that is formulated for water flowing in stream channels
 (Howard 1980; Tucker and Hancock 2010). This is done by first
 calculating the reach average shear stress (</SPAN><FONT FACE="Times New Roman, serif"><SPAN STYLE="font-weight: normal">Ï„</SPAN></FONT><SPAN STYLE="font-weight: normal">),
 here estimated for a cellular landscape simply as:</SPAN></P>
-<P><IMG SRC="m2f9c13ec.gif" NAME="Object1" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=119 HEIGHT=22></P>
-<P> <SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">9806.65</SPAN></I><SPAN STYLE="font-weight: normal">
+<p><IMG SRC="m2f9c13ec.gif" NAME="Object1" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=119 HEIGHT=22></P>
+<p> <SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">9806.65</SPAN></I><SPAN STYLE="font-weight: normal">
 is a constant related to the gravitational acceleration of water, </SPAN><I><SPAN STYLE="font-weight: normal">B</SPAN></I><SPAN STYLE="font-weight: normal">
 is the slope of the cell in degrees, and  </SPAN><I><SPAN STYLE="font-weight: normal">D</SPAN></I><SPAN STYLE="font-weight: normal">
 is the instantaneous depth of flowing water in the cell. </SPAN><I><SPAN STYLE="font-weight: normal">D
@@ -155,7 +155,7 @@
 here assumed to be roughly equivalent to the depth of flow during the
 average minute of rainfall, calculated by:</SPAN></P>
 <P STYLE="font-weight: normal"><IMG SRC="m2c6cce6a.gif" NAME="Object3" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=137 HEIGHT=42></P>
-<P><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">R</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">m</SPAN></I></SUB><SPAN STYLE="font-weight: normal">
+<p><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">R</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">m</SPAN></I></SUB><SPAN STYLE="font-weight: normal">
 is the total annual precipitation in meters, </SPAN><I><SPAN STYLE="font-weight: normal">i</SPAN></I><SPAN STYLE="font-weight: normal">
 is the proportion of rainfall that infiltrates rather than </SPAN><SPAN STYLE="font-weight: normal">runs
 off, </SPAN><I><SPAN STYLE="font-weight: normal">A</SPAN></I><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
@@ -167,42 +167,42 @@
 <P STYLE="font-style: normal; font-weight: normal">Then the transport
 capacity is calculated by:</P>
 <P STYLE="font-style: normal; font-weight: normal"><IMG SRC="m100fb7e.gif" NAME="Object4" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=76 HEIGHT=28></P>
-<P><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">K</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">t</SPAN></I></SUB><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
+<p><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">K</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">t</SPAN></I></SUB><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
 is the transport efficiency factor related to the character of the
 stream bed (0.001 for normal sediment to 0.000001 for bedrock), and </SPAN></SPAN><I><SPAN STYLE="font-weight: normal">n</SPAN></I><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
 is an empirically determined exponent related to the dominant type of
 transport in the stream system (1.5 for bedload transport or 2.5
 suspended load transport).</SPAN></SPAN></P>
-<P>Net erosion and deposition rates are then computed across the
+<p>Net erosion and deposition rates are then computed across the
 entire DEM  as change in sediment flow in the x and y directions
 across a cell as follows”</P>
-<P><IMG SRC="m8e0f3ca.gif" NAME="Object6" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=204 HEIGHT=38></P>
-<P><SPAN STYLE="font-weight: normal">where ED is net erosion or
-deposition rate for sediment and </SPAN><EM><FONT FACE="Times New Roman, serif"><SPAN STYLE="font-weight: normal">α</SPAN></FONT></EM><SPAN STYLE="font-weight: normal">
+<p><IMG SRC="m8e0f3ca.gif" NAME="Object6" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=204 HEIGHT=38></P>
+<p><SPAN STYLE="font-weight: normal">where ED is net erosion or
+deposition rate for sediment and </SPAN><em><FONT FACE="Times New Roman, serif"><SPAN STYLE="font-weight: normal">α</SPAN></FONT></em><SPAN STYLE="font-weight: normal">
 is the topographic aspect (i.e., direction of slope) for a cell.
 Whether flowing water will erode or deposit sediment in a particular
-cell is determined by the </SPAN><EM><SPAN STYLE="font-style: normal"><U><SPAN STYLE="font-weight: normal">change</SPAN></U></SPAN></EM><SPAN STYLE="font-weight: normal">
+cell is determined by the </SPAN><em><SPAN STYLE="font-style: normal"><U><SPAN STYLE="font-weight: normal">change</SPAN></U></SPAN></em><SPAN STYLE="font-weight: normal">
 in sediment flow (transport capacity) from one cell to the next. If
 the transport capacity increases (for example, due to an increase in
 the steepness of the slope or amount of flowing water), more sediment
 will be entrained and erosion will occur; if the transport capacity
 decreases (for example, due to a decrease in slope or water flow)
 sediment will be deposited.</SPAN></P>
-<P>The output of this GRASS implementation of  these transport
+<p>The output of this GRASS implementation of  these transport
 equations must be modified in several ways in order to make it
 appropriate for landscape evolution simulation. First, because of the
-way slope is calculated in <EM>r.slope.aspect</EM>, the flux <I>T</I>
+way slope is calculated in <em>r.slope.aspect</em>, the flux <I>T</I>
 is actually calculated one cell downslope from where is really
 occurs. This causes problems when USPED is iterated over many cycles,
 and creates oscillating &quot;spikes&quot; in positive and negative
 flux values resulting in the calculation of alternating deep pits and
 high mounds at sensitive areas on the landscape. To overcome this,
-<EM>r.landscape.evol</EM> uses a nieghborhood algorithm in <EM>r.mapcalc</EM>
+<em>r.landscape.evol</em> uses a nieghborhood algorithm in <em>r.mapcalc</em>
 to put the calculated value of <I>T</I> back into the cell that is
 most uplsope from where it is originally calculated. 
 </P>
-<P>Additionally, control must be kept for the amount of erodible
-sediment available to moved. <EM>r.landscape.evol</EM> explicitly
+<p>Additionally, control must be kept for the amount of erodible
+sediment available to moved. <em>r.landscape.evol</em> explicitly
 tracks this by taking the difference between the input bedrcok
 elevation DEM, and the current surface topography DEM, and creating a
 map of &quot;soil&quot; depth. This map tracks the amount of material
@@ -213,40 +213,40 @@
 or <I>K</I><SUB><I>t </I></SUB>is made to be very small, resulting in
 only extremely small amounts of erosion. 
 </P>
-<P>Another major issue is that the total flux <I>T </I>is in units of
+<p>Another major issue is that the total flux <I>T </I>is in units of
 Tons/Ha, which means it must be converted in order to calculate the
 change in elevation at each cell (<I>m</I><SUB><I>vert</I></SUB>).
 This is done via a simple algorithm that uses the density of the soil
 and the cell resolution:</P>
-<P><IMG SRC="585d862d.gif" NAME="Object5" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=174 HEIGHT=20></P>
-<P>Where: <I>10000</I> is the number of meters per hectare, <I>Sd </I>is
+<p><IMG SRC="585d862d.gif" NAME="Object5" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=174 HEIGHT=20></P>
+<p>Where: <I>10000</I> is the number of meters per hectare, <I>Sd </I>is
 the  density of the soil, and <I>Res </I>is the cell resolution
 (width). In order to convert the output back to Tons/Ha (standard
-rate for USPED/RUSLE equations), you can multiply the <B>netchange</B>
+rate for USPED/RUSLE equations), you can multiply the <b>netchange</b>
 output map by &quot;(10000 x resolution x soil density)&quot; to
 create a map of soil erosion/deposition rates across the landscape. 
 </P>
-<H2>SEE ALSO</H2>
-<UL>
-	<LI><P STYLE="margin-bottom: 0in">The <A HREF="http://medland.asu.edu/">MEDLAND</A>
+<h2>SEE ALSO</h2>
+<ul>
+	<li><P STYLE="margin-bottom: 0in">The <a href="http://medland.asu.edu/">MEDLAND</a>
 	project at Arizona State University 
 	</P>
-	<LI><P><A HREF="r.watershed.html">r.watershed</A>, <A HREF="r.terraflow.html">r.terraflow</A>,
-	<A HREF="r.mapcalc.html">r.mapcalc</A> 
+	<li><p><a href="r.watershed.html">r.watershed</a>, <a href="r.terraflow.html">r.terraflow</a>,
+	<a href="r.mapcalc.html">r.mapcalc</a> 
 	</P>
-</UL>
-<H2>REFERENCES</H2>
-<P>American Society of Agricultural Engineers 2003 Honoring the
+</ul>
+<h2>REFERENCES</h2>
+<p>American Society of Agricultural Engineers 2003 Honoring the
 Universal Soil Loss Equation: Historic Landmark Dedication Pamphlet.
 Purdue University Department of Agricultural and Biological
 Engineering. 
 </P>
-<P>Clevis, Q., G. E. Tucker, G. Lock, S. T. Lancaster, N. Gasparini,
+<p>Clevis, Q., G. E. Tucker, G. Lock, S. T. Lancaster, N. Gasparini,
 A. Desitter and R. L. Bras 2006 Geoarchaeological simulation of
 meandering river deposits and settlement distributions: A
 three-dimensional approach. Geoarchaeology 21(8):843-874. 
 </P>
-<P>Degani, A., L. A. Lewis and B. B. Downing 1979 Interactive
+<p>Degani, A., L. A. Lewis and B. B. Downing 1979 Interactive
 Computer Simulation of the Spatial Process of Soil Erosion.
 Professional Geographer 31(2):184-190. 
 </P>
@@ -254,16 +254,16 @@
 1980. Thresholds in river regimes. <SPAN STYLE="font-style: normal">Thresholds
 in geomorphology</SPAN>, 227–258. 
 </P>
-<P>Mitas, L. and H. Mitasova 1998 Distributed soil erosion simulation
+<p>Mitas, L. and H. Mitasova 1998 Distributed soil erosion simulation
 for effective erosion prevention. Water Resources Research
 34(3):505-516. 
 </P>
-<P>Mitasova, H., J. Hofierka, M. Zlocha and L. R. Iverson 1996
+<p>Mitasova, H., J. Hofierka, M. Zlocha and L. R. Iverson 1996
 Modelling topographic potential for erosion and deposition using GIS.
 International Journal of Geographical Information Systems
 10(5):629-641. 
 </P>
-<P>Mitasova, H. and L. Mitas 2001a Modeling Physical Systems. In
+<p>Mitasova, H. and L. Mitas 2001a Modeling Physical Systems. In
 Geographic Information Systems and Environmental Modeling, edited by
 B. O. Parks, M. Crane and K. C. Clarke, pp. 189-210. Prentice Hall,
 New York. 2001b Multiscale soil erosion simulations for land use
@@ -271,7 +271,7 @@
 edited by R. Harmon and W. Doe, pp. 321-347. Kluwer Academic/Plenum
 Publishers, New York. 
 </P>
-<P>Mitasova, H., L. Mitas and W. M. Brown 2001 Multiscale simulation
+<p>Mitasova, H., L. Mitas and W. M. Brown 2001 Multiscale simulation
 of land use impact on soil erosion and deposition patterns. In
 Sustaining the Global Farm. Selected Papers from the 10th
 International Soil Conservation Organization Meeting, May 1999,
@@ -279,12 +279,12 @@
 Steinhardt, pp. 1163-1169. USDA-ARS National Soil Erosion Research
 Laboratory, Purdue. 
 </P>
-<P>Mitasova, H., L. Mitas, W. M. Brown and D. Johnston 1996
+<p>Mitasova, H., L. Mitas, W. M. Brown and D. Johnston 1996
 Multidimensional Soil Erosion/Deposition Modeling Part III: Process
 based erosion simulation. Geographic Modeling and Systems Laboratory,
 University of Illinois at Urban-Champaign. 
 </P>
-<P>Mitasova, H., C. Thaxton, J. Hofierka, R. McLaughlin, A. Moore and
+<p>Mitasova, H., C. Thaxton, J. Hofierka, R. McLaughlin, A. Moore and
 M. L 2004 Path sampling method for modeling overland water flow,
 sediment transport and short term terrain evolution in Open Source
 GIS. In Proceedings of the XVth International Conference on
@@ -292,50 +292,50 @@
 Miller, M. W. Farthing, V. G. Gray and G. F. Pinder, pp. 1479-1490.
 Elsevier, Chapel Hill, NC, USA. 
 </P>
-<P>Peeters, I., T. Rommens, G. Verstraeten, G. Govers, A. Van
+<p>Peeters, I., T. Rommens, G. Verstraeten, G. Govers, A. Van
 Rompaey, J. Poesen and K. Van Oost 2006 Reconstructing ancient
 topography through erosion modelling. Geomorphology 78(3-4):250-264. 
 </P>
-<P>Rawls, W. J. 1983 Estimating soil bulk denisty from particle size
+<p>Rawls, W. J. 1983 Estimating soil bulk denisty from particle size
 analysis and organic matter content. Soil Science 135(2):123. 
 </P>
-<P>Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool and D. C.
+<p>Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool and D. C.
 Yoder 1997 Predicting soil erosion by water: a guide to conservation
 planning with the Revised Universal Soil Loss Equation (RUSLE). In
 Agriculture Handbook, pp. 1–251. vol. 703. US Department of
 Agriculture, Washington, DC. 
 </P>
-<P>Renard, K. G. and J. R. Freimund 1994 Using monthly precipitation
+<p>Renard, K. G. and J. R. Freimund 1994 Using monthly precipitation
 data to estimate the R-factor in the revised USLE. Journal of
 Hydrology 157(1-4):287-306. 
 </P>
-<P>Singh, R. and V. S. Phadke 2006 Assessing soil loss by water
+<p>Singh, R. and V. S. Phadke 2006 Assessing soil loss by water
 erosion in Jamni River Basin, Bundelkhand region, India, adopting
 universal soil loss equation using GIS. Current Science
 90(10):1431-1435. 
 </P>
-<P>Tucker, G. E.  and G. R Hancock 2010 Modelling landscape
+<p>Tucker, G. E.  and G. R Hancock 2010 Modelling landscape
 evolution. <SPAN STYLE="font-style: normal">Earth Surface Processes
 and Landforms</SPAN> 35(1): 28–50.  
 </P>
-<P>Warren, S. D., H. Mitasova, M. G. Hohmann, S. Landsberger, F. Y.
+<p>Warren, S. D., H. Mitasova, M. G. Hohmann, S. Landsberger, F. Y.
 Iskander, T. S. Ruzycki and G. M. Senseman 2005 Validation of a 3-D
 enhancement of the Universal Soil Loss Equation for prediction of
 soil erosion and sediment deposition. Catena 64:281-296. 
 </P>
-<P>Wischmeier, W. H. 1976 Use and Misuse of the Universal Soil Loss
+<p>Wischmeier, W. H. 1976 Use and Misuse of the Universal Soil Loss
 Equation. Journal of Soil and Water Conservation 31:5-9. 
 </P>
-<P>Wischmeier, W. H., C. B. Johnson and B. V. Cross 1971 A Soil
+<p>Wischmeier, W. H., C. B. Johnson and B. V. Cross 1971 A Soil
 Erodibility Nomograph for Farmland and Construction Sites. Journal of
 Soil and Water Conservation 26:189-92. 
 </P>
-<P>Wischmeier, W. H. and D. D. Smith 1978 Predicting Rainfall-Erosion
+<p>Wischmeier, W. H. and D. D. Smith 1978 Predicting Rainfall-Erosion
 Losses - A Guide to Conservation Planning. USDA Agriculture Handbook
 282. 
 </P>
-<P><BR><BR>
+<p><br><br>
 </P>
-<P><I>Last changed: $Date$</I></P>
+<p><I>Last changed: $Date$</I></P>
 </BODY>
 </HTML>

Modified: grass-addons/raster/mcda/r.in.drsa/r.in.drsa.html
===================================================================
--- grass-addons/raster/mcda/r.in.drsa/r.in.drsa.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.in.drsa/r.in.drsa.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,35 +1,35 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-The <EM>r.un.drsa</EM> module will read a  *rls file output from
+The <em>r.un.drsa</em> module will read a  *rls file output from
 jMAF, JAMM or 4eMka2 sofware <a href="http://idss.cs.put.poznan.pl/">
 Laboratory of Intelligent Decision Support Systems - Poznan University.</a>
 and returns maps of the rules 
-<P>
-<EM>(GRASS python Script)</EM>
+<p>
+<em>(GRASS python Script)</em>
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="r.roughset.html">r.roughset</A>,
-<A HREF="r.mcda.regime.html">r.mcda.regime</A>,
-<A HREF="r.mcda.fuzzy.html">r.mcda.fuzzy</A>
-<A HREF="r.mcda.electre.html">r.mcda.electre</A>,
-<A HREF="r.to.drsa.html">r.in.drsa</A>
-</EM>
+<em>
+<a href="r.roughset.html">r.roughset</a>,
+<a href="r.mcda.regime.html">r.mcda.regime</a>,
+<a href="r.mcda.fuzzy.html">r.mcda.fuzzy</a>
+<a href="r.mcda.electre.html">r.mcda.electre</a>,
+<a href="r.to.drsa.html">r.in.drsa</a>
+</em>
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
-<P>
+<p>
 
 <i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/mcda/r.in.drsa/r.in.drsa.html
___________________________________________________________________
Deleted: svn:executable
   - *
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/mcda/r.mcda.electre/description.html
===================================================================
--- grass-addons/raster/mcda/r.mcda.electre/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.mcda.electre/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.mcda.electre</em> is the implementation of the ELECTRE multicriteria
 algorithm in GRASS GIS environment. It is one of the available tools in the
@@ -13,26 +13,26 @@
 discordance value at the same time.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 The module does not standardize the raster-criteria. Therefore, they must
 be prepared before by using, for example, r.mapcalc. The weights vector
 is always normalized so that the sum of the weights is 1.
 
 
-<H2>REFERENCE</H2>
-<P>Roy, B. (1971) Problem and methods with multiple objective functions
+<h2>REFERENCE</h2>
+<p>Roy, B. (1971) Problem and methods with multiple objective functions
  Mathematical programming 1, 239-266.</P>
-<P>Roy, B. (1990): The outranking approach and the foundations of Electre
+<p>Roy, B. (1990): The outranking approach and the foundations of Electre
  methods , Document du LAMSADE, Paris.</P>
-<P>Janssen R. (1994) - Multiobjective decision support for environmental
+<p>Janssen R. (1994) - Multiobjective decision support for environmental
  management, Kluwer Academic Publishers.</P>
-<P>GRASS Development Team (2008)</P>
+<p>GRASS Development Team (2008)</P>
 
-<H2>SEE ALSO</H2>
-<EM>r.mcda.fuzzy, r.mcda.electre, r.roughet, r.mapcalc</EM>
+<h2>SEE ALSO</h2>
+<em>r.mcda.fuzzy, r.mcda.electre, r.roughet, r.mapcalc</em>
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
 
 

Modified: grass-addons/raster/mcda/r.mcda.fuzzy/description.html
===================================================================
--- grass-addons/raster/mcda/r.mcda.fuzzy/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.mcda.fuzzy/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.mcda.fuzzy</em> is the implementation of the FUZZY multicriteria
 algorithm proposed by Yager R., in GRASS GIS environment. It is one of the
@@ -12,24 +12,24 @@
 union operator and the ordered weighted averaging (OWA) operator.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 The module does not standardize the raster-criteria. Therefore, they must
 be prepared before by using, for example, r.mapcalc. The linguistic
 modifiers vector is always normalized so that the sum of the weights is 1.
 
 
-<H2>REFERENCE</H2>
-<P>Yager R. (1977) - Multiple objective decision making using fuzzy set,
+<h2>REFERENCE</h2>
+<p>Yager R. (1977) - Multiple objective decision making using fuzzy set,
  International Journal of Man-Machine Studies, 12, 299-322;</P>
-<P>GRASS Development Team (2008)</P>
+<p>GRASS Development Team (2008)</P>
 
 
-<H2>SEE ALSO</H2>
-<EM>r.mcda.regime, r.mcda.electre, r.roughet, r.mapcalc</EM>
+<h2>SEE ALSO</h2>
+<em>r.mcda.regime, r.mcda.electre, r.roughet, r.mapcalc</em>
 
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
 
 <p>

Modified: grass-addons/raster/mcda/r.mcda.regime/description.html
===================================================================
--- grass-addons/raster/mcda/r.mcda.regime/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.mcda.regime/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,19 +1,19 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 <em>r.mcda.regime </em> is the implementation of the REGIME multicriteria algorithm in GRASS GIS environment. It is one of the available tools in the r.mcda suite. It requires as an input the list of raster representing the criteria to be assessed in the multicriteria evaluation and the vector of weights to be assigned. Every single cell of the GRASS region is considered as one of the possible alternatives to evaluate and it is described with the value assumed for the same cell by the raster used as criteria. </P>
-<BR>
-<H2>NOTES</H2>
-<P>The module does not standardize the raster-criteria. Therefore, they must be prepared before by using, for example, r.mapcalc. The weights vector is always normalized so that the sum of the weights is 1.</P>
-<BR>
-<H2>REFERENCE</H2>
-<P>Janssen R. (1994) - Multiobjective decision support for environmental management, Kluwer Academic Publishers;</P>
-<P>GRASS Development Team (2008);</P>
-<BR>
-<H2>SEE ALSO</H2>
-<P><EM>r.mcda.fuzzy, r.mcda.electre, r.roughet, r.mapcalc</EM></P>
-<BR>
-<H2>AUTHORS</H2>
-<P>Antonio Boggia - Gianluca Massei
-<BR>Department of Economics and Appraisal - University of Perugia - Italy 
+<br>
+<h2>NOTES</h2>
+<p>The module does not standardize the raster-criteria. Therefore, they must be prepared before by using, for example, r.mapcalc. The weights vector is always normalized so that the sum of the weights is 1.</P>
+<br>
+<h2>REFERENCE</h2>
+<p>Janssen R. (1994) - Multiobjective decision support for environmental management, Kluwer Academic Publishers;</P>
+<p>GRASS Development Team (2008);</P>
+<br>
+<h2>SEE ALSO</h2>
+<p><em>r.mcda.fuzzy, r.mcda.electre, r.roughet, r.mapcalc</em></P>
+<br>
+<h2>AUTHORS</h2>
+<p>Antonio Boggia - Gianluca Massei
+<br>Department of Economics and Appraisal - University of Perugia - Italy 
 </P>
 <p>
 <i>Last changed: $Date$</i>

Modified: grass-addons/raster/mcda/r.mcda.roughset/description.html
===================================================================
--- grass-addons/raster/mcda/r.mcda.roughset/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.mcda.roughset/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,30 +1,30 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.mcda.roughset</em> is the python implementation of the dominance rough set approach (Domlem algorithm) in GRASS GIS environment. It requires the following input:
-<BR>1. the geographical criteria constituting the information system for the rough set analysis; they have to describe environmental, economic or social issues(<B>criteria</B>=<EM>name[,name,...]</EM>);<BR> 2. the preference (<B>preferences</B>=<EM>character</EM>)for each criteria used in analysis (gain or cost with comma separator)<BR>3. the theme in which areas with the issues to be studied are classified (with crescent preference values) (<B>decision</B>=<EM>string</EM>).
+<br>1. the geographical criteria constituting the information system for the rough set analysis; they have to describe environmental, economic or social issues(<b>criteria</b>=<em>name[,name,...]</em>);<br> 2. the preference (<b>preferences</b>=<em>character</em>)for each criteria used in analysis (gain or cost with comma separator)<br>3. the theme in which areas with the issues to be studied are classified (with crescent preference values) (<b>decision</b>=<em>string</em>).
 
-<P>An information system is generated and Domlem algorithm is applied for extraction a minimal set of rules.</P>  The algorithm builds two text  files (<B>outputTxt</B>=<EM>name</EM>): the first with isf extension for more deep  analysis with non geographic software like 4emka and  JAMM ; the second file with rls extension hold all the set of rules generate. An output map (<B>outputMap</B>=<EM>string</EM>)is generated for  region  classification with the rules finded and the criteria stored in GRASS geodb.
+<p>An information system is generated and Domlem algorithm is applied for extraction a minimal set of rules.</P>  The algorithm builds two text  files (<b>outputTxt</b>=<em>name</em>): the first with isf extension for more deep  analysis with non geographic software like 4emka and  JAMM ; the second file with rls extension hold all the set of rules generate. An output map (<b>outputMap</b>=<em>string</em>)is generated for  region  classification with the rules finded and the criteria stored in GRASS geodb.
 
-<H2>NOTES</H2>
-<P> The module can work very slowly with high number of criteria and sample. For bug please contact Gianluca Massei (g_mass at libero.it)</P>
+<h2>NOTES</h2>
+<p> The module can work very slowly with high number of criteria and sample. For bug please contact Gianluca Massei (g_mass at libero.it)</P>
 
 
-<H2>REFERENCE</H2>
-<OL>
-	<LI><P>Greco S., Matarazzo B., Slowinski R.: <i>Rough sets theory for multicriteria decision analysis</i>. European Journal of Operational Research, 129, 1 (2001) 1-47.</P>
-	<LI><P>Greco S., Matarazzo B., Slowinski R.:<i> Multicriteria classification by dominance-based rough set approach</i>. In: W.Kloesgen and J.Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Oxford University Press, New York, 2002.</P>
-	<LI><P>Greco S., Matarazzo B., Slowinski, R., Stefanowski, J.: <i>An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle</i>. In W. Ziarko, Y. Yao (eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 2005 (2001) 304 - 313. Springer-Verlag</P>
-	<LI><P>Greco, S., B. Matarazzo, R. Slowinski and J. Stefanowski:<i> Variable consistency model of dominance-based rough set approach.</i> In W.Ziarko, Y.Yao (eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 2005 (2001) 170 - 181. Springer-Verlag</P>
-	<LI><P><A HREF="http://en.wikipedia.org/wiki/Dominance-based_rough_set_approach">http://en.wikipedia.org/wiki/Dominance-based_rough_set_approach</A> - &ldquo;Dominance-based rough set approach&rdquo;</P>
-	<LI><P><A HREF="http://idss.cs.put.poznan.pl/site/software.html">http://idss.cs.put.poznan.pl/site/software.html</A> - Software from Laboratory of intelligent decision support system in Poznam University of Technology
+<h2>REFERENCE</h2>
+<ol>
+	<li><p>Greco S., Matarazzo B., Slowinski R.: <i>Rough sets theory for multicriteria decision analysis</i>. European Journal of Operational Research, 129, 1 (2001) 1-47.</P>
+	<li><p>Greco S., Matarazzo B., Slowinski R.:<i> Multicriteria classification by dominance-based rough set approach</i>. In: W.Kloesgen and J.Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Oxford University Press, New York, 2002.</P>
+	<li><p>Greco S., Matarazzo B., Slowinski, R., Stefanowski, J.: <i>An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle</i>. In W. Ziarko, Y. Yao (eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 2005 (2001) 304 - 313. Springer-Verlag</P>
+	<li><p>Greco, S., B. Matarazzo, R. Slowinski and J. Stefanowski:<i> Variable consistency model of dominance-based rough set approach.</i> In W.Ziarko, Y.Yao (eds.): Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 2005 (2001) 170 - 181. Springer-Verlag</P>
+	<li><p><a href="http://en.wikipedia.org/wiki/Dominance-based_rough_set_approach">http://en.wikipedia.org/wiki/Dominance-based_rough_set_approach</a> - &ldquo;Dominance-based rough set approach&rdquo;</P>
+	<li><p><a href="http://idss.cs.put.poznan.pl/site/software.html">http://idss.cs.put.poznan.pl/site/software.html</a> - Software from Laboratory of intelligent decision support system in Poznam University of Technology
 	</P>
-</OL>
+</ol>
 
-<H2>SEE ALSO</H2>
-<P><EM>r.mcda.fuzzy, r.mcda.electre, r.mcda.regime, r.to.drsa, r.in.drsa</EM></P>
+<h2>SEE ALSO</h2>
+<p><em>r.mcda.fuzzy, r.mcda.electre, r.mcda.regime, r.to.drsa, r.in.drsa</em></P>
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
 
 <p>


Property changes on: grass-addons/raster/mcda/r.mcda.roughset/description.html
___________________________________________________________________
Deleted: svn:executable
   - *
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/mcda/r.roughset/description.html
===================================================================
--- grass-addons/raster/mcda/r.roughset/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.roughset/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,67 +1,67 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.roughset</em> is the implementation of the rough set theory [1,2] in GRASS GIS environment. It requires the following input:
-<BR>1. the geographical attributes constituting the information system for the rough set analysis; they have to describe environmental, economic or social issues(<B>attributes</B>=<EM>string[,string,...]</EM>);<BR> 2.the theme in which areas with the issues to be studied are identified (<B>decision</B>=<EM>string</EM>).
+<br>1. the geographical attributes constituting the information system for the rough set analysis; they have to describe environmental, economic or social issues(<b>attributes</b>=<em>string[,string,...]</em>);<br> 2.the theme in which areas with the issues to be studied are identified (<b>decision</b>=<em>string</em>).
 
-<P>An information system is generated and the functions of version 2 of rough set library (RSL, ver. 2.0) [3] are applied, following one of the decision strategies available with the option<B>strgy</B>=<EM>string.</EM></P>
-<P><EM>The choice of the classification strategy, </EM><EM><B>clssfy</B></EM><EM>=string
-</EM><EM> is necessary to generate a map based on the attributes and the decision rules. Three options are available:</EM><EM><I>Classify1,Classify2,Classify3</I></EM><EM> </EM><EM>each of them is referred to a different algorithm. [3]. </EM><BR><BR>It is possible to get three different output files; two of them are text files, the third is a raster file: </P>
-<P>a. <I>text file</I> structured following the standard of the rough set library, having the name registered in the  <B>outTXT</B><I><SPAN STYLE="font-weight: normal">=string</I> without any additional extension. The file can be used as well with RSL implementation out of GIS environment.</P>
-<P><I>NAME:  name of the information system </I></P>
-<P><I>ATTRIBUTES: 4 (number of attributes) </I></P>
-<P><I>OBJECTS: 8 (number of objects)</I></P>
-<P><I>0 0 0 0 </I>
+<p>An information system is generated and the functions of version 2 of rough set library (RSL, ver. 2.0) [3] are applied, following one of the decision strategies available with the option<b>strgy</b>=<em>string.</em></P>
+<p><em>The choice of the classification strategy, </em><em><b>clssfy</b></em><em>=string
+</em><em> is necessary to generate a map based on the attributes and the decision rules. Three options are available:</em><em><I>Classify1,Classify2,Classify3</I></em><em> </em><em>each of them is referred to a different algorithm. [3]. </em><br><br>It is possible to get three different output files; two of them are text files, the third is a raster file: </P>
+<p>a. <I>text file</I> structured following the standard of the rough set library, having the name registered in the  <b>outTXT</b><I><SPAN STYLE="font-weight: normal">=string</I> without any additional extension. The file can be used as well with RSL implementation out of GIS environment.</P>
+<p><I>NAME:  name of the information system </I></P>
+<p><I>ATTRIBUTES: 4 (number of attributes) </I></P>
+<p><I>OBJECTS: 8 (number of objects)</I></P>
+<p><I>0 0 0 0 </I>
 </P>
-<P><I>1 0 1 1</I></P>
-<P><I>1 1 0 0 </I>
+<p><I>1 0 1 1</I></P>
+<p><I>1 1 0 0 </I>
 </P>
-<P><I>0 2 0 1 </I>
+<p><I>0 2 0 1 </I>
 </P>
-<P><I>1 2 0 1 </I>
+<p><I>1 2 0 1 </I>
 </P>
-<P><I>1 0 0 0 </I>
+<p><I>1 0 0 0 </I>
 </P>
-<P><I>1 2 0 1 </I>
+<p><I>1 2 0 1 </I>
 </P>
-<P><I>0 0 1 1 </I>
+<p><I>0 0 1 1 </I>
 </P>
 
-<P>The number of attributes is the number of raster given as input at <B>attributes</B>=<EM>string[,string,...]
-</EM><EM> plus the decision raster </EM><EM>(</EM><EM><B>decision</B></EM><EM>=string) </EM><EM>located in the last column of the information system, by default. </EM></P>
-<P>b. <I>text file</I>, having the name defined in  <B>outTXT</B><I><SPAN STYLE="font-weight: normal">=string</I>
+<p>The number of attributes is the number of raster given as input at <b>attributes</b>=<em>string[,string,...]
+</em><em> plus the decision raster </em><em>(</em><em><b>decision</b></em><em>=string) </em><em>located in the last column of the information system, by default. </em></P>
+<p>b. <I>text file</I>, having the name defined in  <b>outTXT</b><I><SPAN STYLE="font-weight: normal">=string</I>
 and the .<I>out</I>, extension. It contains the decision rules extracted from the geographic information system; decision rules are expressed as: 
-&nbsp;<I>if ... then </I> and they are easy to read and to be interpreted by the user; <BR>c. <I>raster, </I>having the name defined in the field  <B>outMAP</B><I>=string,
-</I> resulting from the application of the decision rules generated by the geographic information system following one of the classification strategies in  <EM><B>clssfy</B></EM><EM>=string.
-</EM><EM> Rules to apply can derive from an information system generated from the data entered in </EM><EM><B>attributes</B></EM><EM>=</EM><EM>string
-</EM><EM>and</EM><EM>
-</EM><EM><B>decision</B></EM><EM>=string
-</EM><EM>or from a text file generated from a previous processing stage. In this case the file structure must be as the one reported in box 1. </EM></P>
+&nbsp;<I>if ... then </I> and they are easy to read and to be interpreted by the user; <br>c. <I>raster, </I>having the name defined in the field  <b>outMAP</b><I>=string,
+</I> resulting from the application of the decision rules generated by the geographic information system following one of the classification strategies in  <em><b>clssfy</b></em><em>=string.
+</em><em> Rules to apply can derive from an information system generated from the data entered in </em><em><b>attributes</b></em><em>=</em><em>string
+</em><em>and</em><em>
+</em><em><b>decision</b></em><em>=string
+</em><em>or from a text file generated from a previous processing stage. In this case the file structure must be as the one reported in box 1. </em></P>
 
 
-<H2>NOTES</H2>
-<P>The module can process CELL raster, and calculations can be made only with integer (int) variables. This is a constraint imposed by the rough set library. The decision rules, therefore, provide only integer information. </P>
+<h2>NOTES</h2>
+<p>The module can process CELL raster, and calculations can be made only with integer (int) variables. This is a constraint imposed by the rough set library. The decision rules, therefore, provide only integer information. </P>
 
 
-<H2>REFERENCE</H2>
-<OL>
-	<LI><P>Pawlak Z. Rough Sets, International Journal of
+<h2>REFERENCE</h2>
+<ol>
+	<li><p>Pawlak Z. Rough Sets, International Journal of
 	Information&nbsp;and Computer Science Vol. 11, No. 5, 1982, pp.
 	344-356.</P>
-	<LI><P>Pawlak Z. Rough Sets, Theoretical Aspects of
+	<li><p>Pawlak Z. Rough Sets, Theoretical Aspects of
 	Reasoning&nbsp;about Data, Kluwer Academic Publishers, 1991.</P>
-	<LI><P>Gawrys M.,&nbsp;Sienkiewicz J. Rough Set
+	<li><p>Gawrys M.,&nbsp;Sienkiewicz J. Rough Set
 	Library - User's manual&nbsp;(ver. 2.0), September 1993</P>
-	<LI><P><A HREF="http://en.wikipedia.org/wiki/Rough_set">http://en.wikipedia.org/wiki/Rough_set</A>
+	<li><p><a href="http://en.wikipedia.org/wiki/Rough_set">http://en.wikipedia.org/wiki/Rough_set</a>
 	- &ldquo;rough set&rdquo;</P>
-	<P>
+	<p>
 	</P>
-</OL>
+</ol>
 
-<H2>SEE ALSO</H2>
-<P><EM>r.mcda.fuzzy, r.mcda.electre, r.mcda.regime</EM></P>
+<h2>SEE ALSO</h2>
+<p><em>r.mcda.fuzzy, r.mcda.electre, r.mcda.regime</em></P>
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
 
 <p>

Modified: grass-addons/raster/mcda/r.to.drsa/r.to.drsa.html
===================================================================
--- grass-addons/raster/mcda/r.to.drsa/r.to.drsa.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/mcda/r.to.drsa/r.to.drsa.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,35 +1,35 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-The <EM>r.ro.drsa</EM> module will export raster maps as a *isf file
+The <em>r.ro.drsa</em> module will export raster maps as a *isf file
 readable in jMAF, JAMM or 4eMka2 sofware <a href="http://idss.cs.put.poznan.pl/">Laboratory of Intelligent Decision Support Systems - Poznan University.</a>
-<P>
-<EM>(GRASS python Script)</EM>
+<p>
+<em>(GRASS python Script)</em>
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 
-<P>
+<p>
 This module, as all GRASS raster modules, will export cells based on the
-current region settings. See the <EM>g.region</EM> module for details.
+current region settings. See the <em>g.region</em> module for details.
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="r.roughset.html">r.roughset</A>,
-<A HREF="r.mcda.regime.html">r.mcda.regime</A>,
-<A HREF="r.mcda.fuzzy.html">r.mcda.fuzzy</A>
-<A HREF="r.mcda.electre.html">r.mcda.electre</A>,
-<A HREF="r.in.drsa.html">r.in.drsa</A>
-</EM>
+<em>
+<a href="r.roughset.html">r.roughset</a>,
+<a href="r.mcda.regime.html">r.mcda.regime</a>,
+<a href="r.mcda.fuzzy.html">r.mcda.fuzzy</a>
+<a href="r.mcda.electre.html">r.mcda.electre</a>,
+<a href="r.in.drsa.html">r.in.drsa</a>
+</em>
 
-<H2>AUTHORS</H2>
-Antonio Boggia - Gianluca Massei<BR>
+<h2>AUTHORS</h2>
+Antonio Boggia - Gianluca Massei<br>
 Department of Economics and Appraisal - University of Perugia - Italy 
-<P>
+<p>
 <i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/mcda/r.to.drsa/r.to.drsa.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.area/description.html
===================================================================
--- grass-addons/raster/r.area/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.area/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,13 +1,13 @@
 <h2>OPTIONS</h2>
-<DT><b>input</b></DT>
-<DD>Name of input created with r.clump or another cell category map.</DD>
-<DT><b>treshold</b></DT>
-<DD>Remove areas smaller than treshold, set null for removing areas</DD>
-<DT><b>binary</b></DT>
-<DD>Output map has only 0 and 1 values. If treshold is applied small areas are emoved and replaced by 0</DD>
+<dt><b>input</b></dt>
+<dd>Name of input created with r.clump or another cell category map.</dd>
+<dt><b>treshold</b></dt>
+<dd>Remove areas smaller than treshold, set null for removing areas</dd>
+<dt><b>binary</b></dt>
+<dd>Output map has only 0 and 1 values. If treshold is applied small areas are emoved and replaced by 0</dd>
 
-<DT><b>output</b></DT>
-<DD>Original categories replaced with number of cells for each category. If areas belonging to category are not continuous every area belonging to the same category has the same area value.</DD>
+<dt><b>output</b></dt>
+<dd>Original categories replaced with number of cells for each category. If areas belonging to category are not continuous every area belonging to the same category has the same area value.</dd>
 <p>
 <h2>DESCRIPTION</h2>
 <p>module can be used to remove, areas smaller than treshold, reclass according areas (similar to r.reclass area, but work in cells, not hectares and allow create more classes)</p>


Property changes on: grass-addons/raster/r.area/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native


Property changes on: grass-addons/raster/r.basin/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.boxcount/description.html
===================================================================
--- grass-addons/raster/r.boxcount/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.boxcount/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>r.boxcount</H2>
+<h2>r.boxcount</h2>
 
 
 NAME
@@ -193,8 +193,8 @@
 
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 GRASS Development Team
 
-<p><i>Last changed: $Date: 2005/04/19 16:12:34 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/r.boxcount/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.boxcount.sh/description.html
===================================================================
--- grass-addons/raster/r.boxcount.sh/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.boxcount.sh/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,7 +1,7 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 
-<EM>r.boxcount</EM>Allows the user to study how the boxcounting fractal dimension varies across a raster map.
+<em>r.boxcount</em>Allows the user to study how the boxcounting fractal dimension varies across a raster map.
 <br>
 <pre>
 boxcount.sh is a shell script which allows the user to study how the
@@ -49,8 +49,8 @@
 </pre>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Mark Lake, 1/9/99
 adaptations for GRASS GIS 6.3: Florian Kindl, 2006-10-04
-<p><i>Last changed: $Date: 2006/10/04 16:50:17 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/r.boxcount.sh/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native


Property changes on: grass-addons/raster/r.burn.frict/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.clim/description.html
===================================================================
--- grass-addons/raster/r.clim/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.clim/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.clim</EM> calculates solar radiation and percentage relative
+<em>r.clim</em> calculates solar radiation and percentage relative
 humidity maps. The calculation of the two values for each raster cell
 is based on the C code cclimm.c a simplified version of mtclim43.c by
 Peter Thornton (2000) of the NTSG, School of Forestry University of
@@ -25,19 +25,19 @@
 <li>Radiation:              W/m2, average over daylight period
 </ul>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="g.region.html">g.region</A><br>
-<A HREF="r.slope.aspect.html">r.slope.aspect</A><br>
-<A HREF="r.sun.html">r.sun</A><br>
+<a href="g.region.html">g.region</a><br>
+<a href="r.slope.aspect.html">r.slope.aspect</a><br>
+<a href="r.sun.html">r.sun</a><br>
 </em>
 
-<H2>REFERENCE</H2>
+<h2>REFERENCE</h2>
 
 C. Sboarina, 2002: <a href="http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Sboarina_Chiara.pdf">Development of a complete climate database using a new GRASS module</a>. In B. Benciolini, M. Ciolli, and P. Zatelli, editors, Proc. of the Open Source Free Software GIS - GRASS users conference 2002, Trento, Italy, 11-13 September 2002
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Chiara Sboarina, Centro di Ecologia Alpina - Viote del Monte Bondone (TN) - Italy (2001)<br>
 based on <a href="http://www.ntsg.umt.edu/bioclimatology/mtclim/">"mtclim43"</a> by


Property changes on: grass-addons/raster/r.clump2/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.convergence/description.html
===================================================================
--- grass-addons/raster/r.convergence/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.convergence/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,16 +1,16 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-s</b></DT>
-<DD>Increase convergence if slope value is high. Slope parameter radically slow down computation time, especially if window parameter is high. If slope is used addational modifier is used according to formula: sin(current)*sin(target) + cos(current)*cos(target). if slope of current and target cells are equal. The modifier is 1. If not, the modifier is applied with formula: acos(cos(convergence) * modifier)  </DD>
-<DT><b>-c</b></DT>
-<DD>use circular window instead of suqare (default)</DD>
+<dl>
+<dt><b>-s</b></dt>
+<dd>Increase convergence if slope value is high. Slope parameter radically slow down computation time, especially if window parameter is high. If slope is used addational modifier is used according to formula: sin(current)*sin(target) + cos(current)*cos(target). if slope of current and target cells are equal. The modifier is 1. If not, the modifier is applied with formula: acos(cos(convergence) * modifier)  </dd>
+<dt><b>-c</b></dt>
+<dd>use circular window instead of suqare (default)</dd>
 <p>
-<DT><b>input</b></DT>
-<DD>Digital elevation model. Data can be of any type and any projection. To calculate relief convergnece, r.convergence uses real distance wchich is recalculated into cell distance, according formula: <br><code>distance_between_current_cell_and_traget_cell/distance_between_current_cell_and_nearest_neighbour_cell.</code> It is important if convergence is calculated for large areas in LatLong projecton.
-</DD>
+<dt><b>input</b></dt>
+<dd>Digital elevation model. Data can be of any type and any projection. To calculate relief convergnece, r.convergence uses real distance which is recalculated into cell distance, according formula: <br><code>distance_between_current_cell_and_traget_cell/distance_between_current_cell_and_nearest_neighbour_cell.</code> It is important if convergence is calculated for large areas in LatLong projecton.
+</dd>
 <p>
-<DT><b>weights</b></DT>
-<DD>Parameter describing the reduction of the impact of the cell due to its distance, where distance in cells:
+<dt><b>weights</b></dt>
+<dd>Parameter describing the reduction of the impact of the cell due to its distance, where distance in cells:
 <ul>
 <li><b>standard:</b>no decay
 <li><b>inverse:</b>distance modifier is calculated as 1/x
@@ -19,12 +19,12 @@
 <li><b>gentle:</b>distance modifier is calculated as 1/((1-x)/(1+x))
 </ul>
 <p>
-<DT><b>window</b></DT>
-<DD>window size. Must be odd. For now there is no limits in window size. r.convergence uses window size instead of classical radius for compatibility with other GRASS programs.</DD>
+<dt><b>window</b></dt>
+<dd>window size. Must be odd. For now there is no limits in window size. r.convergence uses window size instead of classical radius for compatibility with other GRASS programs.</dd>
 
 <p>
-<DT><b>output</b></DT>
-<DD>Map of convergence index. The values ranges from -100 (max divergent, real peaks and ridges) by 0 (planar areas) to 100 (max convergent, real pits and channels). Classical convergence index presented with degrees (-90 to 90)</DD>
+<dt><b>output</b></dt>
+<dd>Map of convergence index. The values ranges from -100 (max divergent, real peaks and ridges) by 0 (planar areas) to 100 (max convergent, real pits and channels). Classical convergence index presented with degrees (-90 to 90)</dd>
 
 
 <h2>DESCRIPTION</h2>
@@ -35,7 +35,7 @@
 Convergence index is a terrain parameter which show the structure od the relief as a set of convergent areas (channels) and divergent areas (ridges). It represents the agreement of aspect direction of surrounding cells with the teoretical matrix direction. Convergence index is mean (or weighted mean if weights are used) aspect difference between real aspect and teoretical maximum divergent direction matrix representing ideal peak (see figure) minus 90 degres. So if there is maximum agreement with divergent matrix the convergence index is (0 - 90) * 10/9 = -100. If there is ideal sink (maximum convergence) the convergence index is (180 -90) * 10/9 = 100.
 Slope and aspect ere calculated internaly with the same formula as in r.slope.aspect
 Convergence index is very useful for analysis of lineamets especially represented by rigdes or chanell systems as well as valley recognition tool.
-<P>
+<p>
 
 <h2>SEE ALSO</h2>
 
@@ -59,7 +59,7 @@
 Jarek  Jasiewicz
 
 <HR>
-<P><a href="index.html">Main index</a> - <a href="raster.html">raster index</a> - <a href="full_index.html">Full index</a></P>
-<P>&copy; 2003-2009 <a href="http://grass.osgeo.org">GRASS Development Team</a></p>
+<p><a href="index.html">Main index</a> - <a href="raster.html">raster index</a> - <a href="full_index.html">Full index</a></P>
+<p>&copy; 2003-2009 <a href="http://grass.OSGeo.org">GRASS Development Team</a></p>
 </body>
 </html>


Property changes on: grass-addons/raster/r.convergence/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.denoise/description.html
===================================================================
--- grass-addons/raster/r.denoise/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.denoise/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -27,19 +27,19 @@
 	<li>Stevenson JA, Sun X, Mitchell NC. (2009) Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, <i>Article in press, Accepted manuscript</i>. <a href="http://dx.doi.org/10.1016/j.geomorph.2009.07.006">doi:10.1016/j.geomorph.2009.07.006</a></li>
 </ul>
 
-<H2>SEE ALSO</H2>
-<EM>
-<A HREF="r.stats.html">r.stats</A>,
-<A HREF="r.in.xyz.html">r.in.xyz</A>,
-<A HREF="r.neighbors.html">r.neighbors</A>,
-<A HREF="r.topidx.html">r.topidx</A>,
-</EM>
+<h2>SEE ALSO</h2>
+<em>
+<a href="r.stats.html">r.stats</a>,
+<a href="r.in.xyz.html">r.in.xyz</a>,
+<a href="r.neighbors.html">r.neighbors</a>,
+<a href="r.topidx.html">r.topidx</a>,
+</em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 John A Stevenson - Manchester University<br>
 john <i>dot</i> stevenson <i>at</i> manchester <i>dot</i> ac <i>dot</i> uk<br><br>
 
-The module was written as part of a project funded by <A href="http://www.epsrc.ac.uk">EPSRC</A> Grant no. EP/C007972/1 (P.I. Paul Rosin, Cardiff University).
+The module was written as part of a project funded by <a href="http://www.epsrc.ac.uk">EPSRC</a> Grant no. EP/C007972/1 (P.I. Paul Rosin, Cardiff University).
 
 <p>
-<i>Last changed: $Date: 2009-07-03 07:58:42 +0100 (Fri, 03 Jul 2009) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/r.denoise/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.fuzzy/description.html
===================================================================
--- grass-addons/raster/r.fuzzy/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.fuzzy/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,67 +1,67 @@
 <h2>OPTIONS</h2>
 
 <p>
-<DT><b>input</b></DT>
-<DD>Name of input raster map to be fuzzified. This map may be of any type and may
+<dt><b>input</b></dt>
+<dd>Name of input raster map to be fuzzified. This map may be of any type and may
 contain null values. 
-</DD>
+</dd>
 <p>
 
-<DT><b>points</b></DT>
-<DD>A list containing 4 (A,B,C,D) or 2 A,B) points defining set boundaries.
+<dt><b>points</b></dt>
+<dd>A list containing 4 (A,B,C,D) or 2 A,B) points defining set boundaries.
 Points must not to be in map range, but it may lead to only 0 o 1 membership for
 the whole map. For "both" side parameters range between A and D defines base,
 but range between B and C core of the fuzzy set. Between A and B and C and D are
-the set's boundaries. If side is "both" it require 4 points, else 2 points.</DD>
+the set's boundaries. If side is "both" it require 4 points, else 2 points.</dd>
 <p>
 
 <h3>Fuzzy set definition:</h3>
 <img src=set.png border=1><br>
 
-<DT><b>side</b></DT>
-<DD>This option indicates if the set is fuzzified on both sides (both),
-or the left or right side. See description for details.</DD>
+<dt><b>side</b></dt>
+<dd>This option indicates if the set is fuzzified on both sides (both),
+or the left or right side. See description for details.</dd>
 <p>
 
 <h2>OUTPUTS</h2>
-<DT><b>output</b></DT>
-<DD>Map containing membership value of original map. Map is always of type
+<dt><b>output</b></dt>
+<dd>Map containing membership value of original map. Map is always of type
 FCELL and contains values from 0 (no membership) to 1 (full membership). Values
-between 0 and 1 indicate partial membership</DD>
+between 0 and 1 indicate partial membership</dd>
 <p>
 
 <h2>FUZZY SET PARAMETERS</h2>
 
-<DT><b>boundary</b></DT>
-<DD>This parameter defines the shape of the fuzzy boundary. The default and most
+<dt><b>boundary</b></dt>
+<dd>This parameter defines the shape of the fuzzy boundary. The default and most
 popular is S-shaped, linear, J-shaped and G-shaped boundaries are also
-available. The same boundaries are applied to both sides.</DD>
+available. The same boundaries are applied to both sides.</dd>
 <p>
 
 <h3>Boundary definition:</h3>
 <img src=boundary.png border=1><br>
 
-<DT><b>shape</b></DT>
-<DD>Optional shape modifier. Range from -1 to 1. The default value is 0 and
+<dt><b>shape</b></dt>
+<dd>Optional shape modifier. Range from -1 to 1. The default value is 0 and
 in most cases should not be changed. Negative values indicate a more
 dilettante set, positive values a more concentrated set. See description for
-details.</DD>
+details.</dd>
 <p>
 
 <h3>Impact of shape parameter on shape boundary:</h3>
 <img src=shape.png border=1><br>
 
-<DT><b>height</b></DT>
-<DD>Optional height modifier. Range from 0 to 1. The default value is 1 and
+<dt><b>height</b></dt>
+<dd>Optional height modifier. Range from 0 to 1. The default value is 1 and
 indicates full membership between points B and C. If height is less than one the
-maximum membership is equal to height. See image: Fuzzy set definition.</DD>
+maximum membership is equal to height. See image: Fuzzy set definition.</dd>
 <p>
 
 
 <h2>DESCRIPTION</h2>
 
-<P>
-<H4>Definition of fuzzy set</H4>
+<p>
+<h4>Definition of fuzzy set</h4>
 
 Fuzzy sets are sets whose elements have degrees of membership. Zadeh (1965)
 introduced Fuzzy sets as an extension of the classical notion of set. Classical 
@@ -76,14 +76,14 @@
 
 
 
-<h2>NOTES</H2>
+<h2>NOTES</h2>
 
-<H4>Calculation of boundary shape</H4>
+<h4>Calculation of boundary shape</h4>
 
 Depending on the boundary type, different equations are used to determine its
 shape:
-<P>
-<B>Linear:</B> the membership is calculated according to the following equation:<br>
+<p>
+<b>Linear:</b> the membership is calculated according to the following equation:<br>
 
 <pre><code>
 value  <=  A -> x = 0
@@ -94,9 +94,9 @@
 
 where x: membership
 </code></pre>
-<P>
+<p>
 
-<B>S-shaped:</B> uses the following equation:
+<b>S-shaped:</b> uses the following equation:
 
 <pre><code>
 sin(x * Pi/2)^m (for positive shape parameter)
@@ -111,9 +111,9 @@
 For the default shape parameter = 0, m is = 2 which is the most common parameter for
 that equation.
 
-<P>
+<p>
 
-<B>G-shaped and J shaped:</B> use the following equations: 
+<b>G-shaped and J shaped:</b> use the following equations: 
 
 <pre><code>
 tan(x * Pi/4)^m (for J-shaped)
@@ -137,23 +137,23 @@
 <h2>REFERENCES</h2>
 
 Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338--353.
-doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<P>
+doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<p>
 
 Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
-ISBN 0-85274-583-4.<P>
+ISBN 0-85274-583-4.<p>
 
 Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
-applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<P>
+applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<p>
 
 Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
-0133410587.<P>
+0133410587.<p>
 
 Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal of
-Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<P>
+Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<p>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 
 <h2>AUTHOR</h2>

Modified: grass-addons/raster/r.fuzzy.logic/description.html
===================================================================
--- grass-addons/raster/r.fuzzy.logic/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.fuzzy.logic/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,33 +1,33 @@
 <h2>OPTIONS</h2>
-<DT><b>xmap</b></DT>
-<DD>Name of input x membership operand. This map must be of type FCELL with
+<dt><b>xmap</b></dt>
+<dd>Name of input x membership operand. This map must be of type FCELL with
 range 0 :1 and may require null values. Otherwise program will print error
 message and stops.
-</DD>
+</dd>
 <p>
-<DT><b>xmap</b></DT>
-<DD>Name of input y membership operand. This map must be of type FCELL with
+<dt><b>xmap</b></dt>
+<dd>Name of input y membership operand. This map must be of type FCELL with
 range 0 :1 and may require null values. Otherwise program will print error
 message and stops. This map is optional bit is required for all operation except
 NOT
-</DD>
+</dd>
 <p>
-<DT><b>operator</b></DT>
-<DD>A fuzzy set operators are generalization of crisp operators. There is more
+<dt><b>operator</b></dt>
+<dd>A fuzzy set operators are generalization of crisp operators. There is more
 than one possible generalization of every opeartor. There are three operations:
 fuzzy complements, fuzzy intersections, and fuzzy unions. Addational implication
 operator is also provided.
 <ul>
-<li>fuzzy intersection (<B>AND</B>) use T-norm of given family for calculation;
-<li>fuzzy union (<B>OR</B>) use T-conorm of given family for calculation;
-<li>fuzzy complement (<B>NOT</B>) fuzzy negation ussualy 1-x;
-<li>fuzzy implication (<B>IMP</B>) use residuum of given family if available;
+<li>fuzzy intersection (<b>AND</b>) use T-norm of given family for calculation;
+<li>fuzzy union (<b>OR</b>) use T-conorm of given family for calculation;
+<li>fuzzy complement (<b>NOT</b>) fuzzy negation ussualy 1-x;
+<li>fuzzy implication (<b>IMP</b>) use residuum of given family if available;
 </ul>
-</DD>
+</dd>
 <p>
 
-<DT><b>family</b></DT>
-<DD>T-norms, T-conorms and residuals are a generalization of the two-valued
+<dt><b>family</b></dt>
+<dd>T-norms, T-conorms and residuals are a generalization of the two-valued
 logical conjunction,  disjunction and implication used by boolean logic, for
 fuzzy logics. Because there is more than one possible generalisation of logial
 operations, r.fuzzy.logic provides 6 most popular families for fuzzy operations:
@@ -44,16 +44,16 @@
 There is no residuum for drastic and Hamacher families.
 For more details see <a href="http://www.jstatsoft.org/v31/i02">Meyer D, Hornik
 K (2009)</a>; <a href="http://en.wikipedia.org/wiki/T-norm">T-norms</a>; 
-</DD>
+</dd>
 <p>
 
 
 <h2>OUTPUTS</h2>
-<DT><b>output</b></DT>
-<DD>Map containing result of two-values operations. Multivalued operations will
+<dt><b>output</b></dt>
+<dd>Map containing result of two-values operations. Multivalued operations will
 be availabel in the future. Map is always of type FCELLS and contains values
 from 0 (no membership) to 1 (full membership). Values between 0 and 1 indicate
-partial membership</DD>
+partial membership</dd>
 <p>
 
 
@@ -67,23 +67,23 @@
 <h2>REFERENCES</h2>
 
 Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
-doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<P>
+doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<p>
 
 Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
-ISBN 0-85274-583-4.<P>
+ISBN 0-85274-583-4.<p>
 
 Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
-applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<P>
+applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<p>
 
 Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
-0133410587.<P>
+0133410587.<p>
 
 Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal of
-Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<P>
+Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<p>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz

Modified: grass-addons/raster/r.fuzzy.system/description.html
===================================================================
--- grass-addons/raster/r.fuzzy.system/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.fuzzy.system/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,62 +1,62 @@
 <h2>OPTIONS</h2>
 
 <p>
-<DT><b>maps</b></DT>
-<DD>A text file containing maps name and  fuzzy sets connected with map
+<dt><b>maps</b></dt>
+<dd>A text file containing maps name and  fuzzy sets connected with map
 definition. Maps in text file must exist on a search path, except the output
 map. The name of output map name is the output name parameter. In map file
-outmput map is marked by special name <B>_OUTPUT_</B>  If maps are in different
+outmput map is marked by special name <b>_OUTPUT_</b>  If maps are in different
 mapsets the name require @. Map names in database cannot contain following
-symbols: <B> %,$ and #</B>. Every map name must start with map name
-identifier:<B> %</B>. Every set definition connected with cetrain map must
-follow the map name and must start with set identifier :<B> $</B>. The set
+symbols: <b> %,$ and #</b>. Every map name must start with map name
+identifier:<b> %</b>. Every set definition connected with cetrain map must
+follow the map name and must start with set identifier :<b> $</b>. The set
 definition must be in braces { } and requires parameters separated by semicolon.
 Any whitespaces like spaces, tabs, empty lines are allowed and may used to
 visual format of rule file.
 
-<PRE>$ set_name {side; points; boundary_shape; hedge; height }
-<UL>
-<li><B>set_name</B>: Any name of the fuzzy set. Must not contain symbols: <i>
+<pre>$ set_name {side; points; boundary_shape; hedge; height }
+<ul>
+<li><b>set_name</b>: Any name of the fuzzy set. Must not contain symbols: <i>
 %,$ and #</i>
-<li><B>side</B>: Option indicate if set is fuzzified of both sides (both), left
+<li><b>side</b>: Option indicate if set is fuzzified of both sides (both), left
 or right side. Available: <i>both, left, right</i>. 
-<li><B>points</B>: A list containing 4 (A,B,C,D) or 2 A,B) points separated by
+<li><b>points</b>: A list containing 4 (A,B,C,D) or 2 A,B) points separated by
 comma. Points definine  location of sets of boundaries. Points may not to be in
 map range, but it may lead to only 0 o 1 membership for the whole map. For
 "both" side parameters range between A and D defines base, but range between B
 and C core of the fuzzy set. Between A and B and C and D are set's boundaries.
 If side is "both" it require 4 points, else 2 points. Points values must be
 not-decreasing.
-<li><B>shape</B>: Parameter definied the shape of the fuzzy boundary. Available:
+<li><b>shape</b>: Parameter definied the shape of the fuzzy boundary. Available:
 <i>sshaped, linear, jshaped, gshaped</i>. The same boundaires are appled to 
 both sides of fuzzy set.
-<li><B>hedge</B>: Shape modifier the positive number means dilatation (power the
+<li><b>hedge</b>: Shape modifier the positive number means dilatation (power the
 fuzzy set by 2) the negative means concetration (square root of fuzzy set). The
 number means number of dilatation/concetration applied on fuzzy set.
-<li><B>height</B>: Height modifier. Range from 0 to 1. The  value 1 and indicate
+<li><b>height</b>: Height modifier. Range from 0 to 1. The  value 1 and indicate
 full membership beteen points B and C. If height is lesser than one the maximum
 memebrship is equal to height.
-</UL>
-<P>An example of fuzzy sets definiton:
-</PRE>
-<PRE>$ moderate {both; 90,100,120,130; sshaped; 0; 1}</PRE>
+</ul>
+<p>An example of fuzzy sets definiton:
+</pre>
+<pre>$ moderate {both; 90,100,120,130; sshaped; 0; 1}</pre>
 
-<B>Special notes about sets definition for output map:</B><BR>
+<b>Special notes about sets definition for output map:</b><br>
 These sets shall be created as triangular (both sides) sets with linear
 boundaries, without hedge and height modifiers:
-<PRE>$ moderate {both; 0,20,20,40; linear; 0; 1}</PRE>
-</DD>
+<pre>$ moderate {both; 0,20,20,40; linear; 0; 1}</pre>
+</dd>
 
-<DT><b>rules</b></DT>
-<DD>A text file containing rules for classification.Th typical fuzzy rule
+<dt><b>rules</b></dt>
+<dd>A text file containing rules for classification.Th typical fuzzy rule
 consists of one or more antecedents and one consequent:
 
-<PRE>IF elev IS high AND distance IS low THEN probability IS small
+<pre>IF elev IS high AND distance IS low THEN probability IS small
 
 where:
 antecetends: elev IS high; distance IS low
 consequent: probability IS small
-</PRE>
+</pre>
 
 The rule file has his own syntax. Because module creates only one result map,
 the map name is ommited. Every rule starts with $ and consist of consequent name
@@ -64,25 +64,25 @@
 included in the maps file. At the begining of the calculation program checks if
 all names and sets are included in maps file. Names of the rules must be same as
 sets names of the output map. The rules file use following symbols:
-<UL>
-<li>IS is symbolised by <B>=</B>
-<li>IS NOT is symbolised by <B>~</B>
-<li>AND is symbolised by <B>&</B>
-<li>OR is symbolised by <B>|</B>
-<li>To  specify the order of operators must use parentheses <B>()</B>.
-</UL>
-<P>
+<ul>
+<li>IS is symbolised by <b>=</b>
+<li>IS NOT is symbolised by <b>~</b>
+<li>AND is symbolised by <b>&</b>
+<li>OR is symbolised by <b>|</b>
+<li>To  specify the order of operators must use parentheses <b>()</b>.
+</ul>
+<p>
 
-<P>An example of fuzzy rules definiton:
-<PRE>
+<p>An example of fuzzy rules definiton:
+<pre>
 $ small {distance = high & elev = high}
-</PRE>
-</DD>
+</pre>
+</dd>
 <h2>ADVANCED OPTIONS</h2>
 In most cases default options shoud not be changed.
-<P>
-<DT><b>family</b></DT>
-<DD>AND and OR operations in fuzzy logic are made with T-norms, T-conorms.
+<p>
+<dt><b>family</b></dt>
+<dd>AND and OR operations in fuzzy logic are made with T-norms, T-conorms.
 T-norms, T-conorms are a generalization of the two-valued logical conjunction
 and  disjunction  used by boolean logic, for fuzzy logics. Because there is more
 than one possible generalisation of logial operations, r.fuzzy.system provides 6
@@ -97,7 +97,7 @@
 <li><b>Hamacher</b> (simplified) with Hamacher product as T-norm and Einstein
 sum as T-conorm;
 </ul>
-<P>
+<p>
 <TABLE cellspacing=4>
 <TR><TH>Family</TH><TH> T-NORM (AND) </TH><TH>T CONORM (OR) </TH></TR>
 <TR><TD>ZADEH</TD><TD> MIN(x,y)</TD><TD>MAX(x,y)</TD></TR>
@@ -110,71 +110,71 @@
 <TR><TD>HAMACHER</TD><TD>	IF (x==y==0) THEN 0 ELSE
 (x*y)/((x+y)-x*y)</TD><TD>	(x+y)/(1+x*y)</TD></TR>
 </TABLE>
-</DD>
-<DT><b>imp: implication </b></DT>
-<DD>Imlication determines the method of reshapening of consequents (fuzzy set)
+</dd>
+<dt><b>imp: implication </b></dt>
+<dd>Imlication determines the method of reshapening of consequents (fuzzy set)
 by antecedents (single value) : 
-<UL>
-<li><B>minimum</B> means the lowest value of the antecedtents and output set
-definition. It ussually creates trapezoidal consequent set definition.
-<li><B>product</B> means the multiplication of the antecedtents and output set
-definition. It ussually creates triangular consequent set definition.
-</UL>
-</DD>
-<DT><b>defuzz: deffuzyfication method</b></DT>
-<DD>Before deffuzification all consequents are agregated into one fuzzy set.
+<ul>
+<li><b>minimum</b> means the lowest value of the antecedtents and output set
+definition. It usually creates trapezoidal consequent set definition.
+<li><b>product</b> means the multiplication of the antecedtents and output set
+definition. It usually creates triangular consequent set definition.
+</ul>
+</dd>
+<dt><b>defuzz: deffuzyfication method</b></dt>
+<dd>Before deffuzification all consequents are agregated into one fuzzy set.
 Defuzzification is the process of conversion of aggregated fuzzy set into one
 crisp value. The r.fuzzy.system provides 5 methods of deffuzyfication:
-<UL>
-<li><B>centroid</B> center of mass of the fuzzy set (in practise weighted mean);
-<li><B>bisector</B> a value wchich divide fuzzy set on two parts of equal area;
-<li><B>min</B> min (right limit) of highest part of the set;
-<li><B>mean</B> mean (center) of highest part of the set;
-<li><B>max</B> max (left limit) of highest part of the set;
-</UL>
-</DD>
-<DT><b>res: universe resolution</b></DT>
-<DD>The universe is an interval between the lowest and highest values of
+<ul>
+<li><b>centroid</b> center of mass of the fuzzy set (in practise weighted mean);
+<li><b>bisector</b> a value which divide fuzzy set on two parts of equal area;
+<li><b>min</b> min (right limit) of highest part of the set;
+<li><b>mean</b> mean (center) of highest part of the set;
+<li><b>max</b> max (left limit) of highest part of the set;
+</ul>
+</dd>
+<dt><b>res: universe resolution</b></dt>
+<dd>The universe is an interval between the lowest and highest values of
 consequent and agregated fuzzy sets. The resolution provides number of elements
 of these fuzzy sets. The minimum and maximum for univese is taken from the
 minimal and maximal values of fuzzy set definition of output map Because it has
 strong impact on computation time and precision of deffuzification, values lower
 than 30 may impact on precision of final result, but values above 200 may slow
 down computation time.
-</DD>
+</dd>
 <h2>VISUAL OUTPUT</h2>
-<DT><b>coordinates</b></DT>
-<DD>Coordinates of points for which output: universe, all consequents sets and
+<dt><b>coordinates</b></dt>
+<dd>Coordinates of points for which output: universe, all consequents sets and
 agregate set. It is useful for visual presentation or detail analysis of fuzzy
 rules behaviour. In that cases calculations are peroforemd n=only for selected
 point.
-<DT><b>membership only flag</b></DT>
-<DD>Prints for all maps sat of values in map range (map universe) and values of
+<dt><b>membership only flag</b></dt>
+<dd>Prints for all maps sat of values in map range (map universe) and values of
 fuzzy sets (linguistic values). Number of values is taken from resolution
 (default 100). This option is useful for visual control fuzzy set definitions
 for evrey map.
 
 
 <h2>OUTPUTS</h2>
-<DT><b>output</b></DT>
-<DD>Map containing deffuzified values. Map is always of type FCELLS and contains
+<dt><b>output</b></dt>
+<dd>Map containing deffuzified values. Map is always of type FCELLS and contains
 values defined in output universe.
-</DD>
-<P>
-<DT><b>multipe output flag</b></DT>
-<DD>This flag is used to create fuzzified maps for every rule. The name of the
+</dd>
+<p>
+<dt><b>multipe output flag</b></dt>
+<dd>This flag is used to create fuzzified maps for every rule. The name of the
 map consist of otput map name, '_' and rule name (for example: output=probs and
 rule name high, the map name: probs_high). Values of maps ranges from 0  to 1.
 If map with such name exists will be overwritten without warning.
-</DD>
-<P>
-<h2>NOTES</H2>
-<H4>Calculation of boundary shape</H4>
+</dd>
+<p>
+<h2>NOTES</h2>
+<h4>Calculation of boundary shape</h4>
 Depending on type of the boundary different equation are used to determine its
 shape:
-<P>
+<p>
 
-<B>Linear:</B> the membership is calculated according following equation:<br>
+<b>Linear:</b> the membership is calculated according following equation:<br>
 
 <pre><code>
 value  <=  A -> x = 0
@@ -183,7 +183,7 @@
 C< value > D -> x = (D-value)/(D-C)
 value  >=  D -> x = 0
 </code></pre>
-<B>S-shaped, G-shaped and J shaped:</B>  use following equation to sommoth
+<b>S-shaped, G-shaped and J shaped:</b>  use following equation to sommoth
 boundary:
 <pre><code>
 sin(x * Pi/2)^2 (for S-shaped)
@@ -194,14 +194,14 @@
 x current fuzzy value
 A,B,C,D inflection point,
 </code></pre>
-<H4>Category information</H4>
+<h4>Category information</h4>
 Every cell has a category information showing the membership of result map in
 any reslut's fuzzy values: for example moderate=0.60, high=0.40 means that cell
 belongs to moderate class with 0.60 membership and high class with membership =
 0.40. The membership is calculated based on _OUTPUT_ definition.
 
-<h2>EXAMPLE</H2>
-<P>
+<h2>EXAMPLE</h2>
+<p>
 Fuzzy sets are sets whose elements have degrees of membership. Zadeh (1965)
 introduced Fuzzy sets as an extension of the classical notion of set. Classical 
 membership of elements in a set are binary terms: an element either belongs or
@@ -211,34 +211,34 @@
 sets and only take values 0 or 1. Classical sets are in fuzzy set theory usually
 called crisp sets. The fuzzy set theory can be used in a wide range of domains
 in which information is  imprecise, such as most of the GIS operations.
-<P>
+<p>
 Suppose we want to determine the flood risk on some area (Spearfish dataset)
 using two maps: distance to streams and elevation above streams. We can write
 some common sense rules:
-<PRE>
+<pre>
 IF elevation IS low AND distance IS near THEN risk IS very high
 IF elevation IS low OR distance IS near THEN risk IS probable
 IF elevation IS high AND distance IS far THEN risk IS low
-</PRE>
+</pre>
 In clasical boolean sense, we would taken some limits of ideas "near" "far" etc,
 but what about walues near the limit? The fuzzy set uses partial memberships
 which abolish these restrictions. In that sense to set "near" belongs all areas
 with distance no more than 100 m with full membership and from 100 to 200 m with
-partial membership grater than 0. Over 200 m we can assume that is not near.
+partial membership greater than 0. Over 200 m we can assume that is not near.
 This allow to formulate fuzzy rules for distance map:
-<PRE>
+<pre>
 near: BELOW 100 = 1; FROM 100 TO 200 = {1 TO 0}; ABOVE 200 = 0;
-</PRE>
+</pre>
 
 To recive final map program calculate partial fuzzy set for all rules and next
 agregate it into one fuzzy set. These fuzzy sets are created on value sequence
 called universe. Every set has the number of elements equal to universe
 resolution. Such set cannot be stored as map so finally is deffuzified with
 method choosen by user.
-<P>
+<p>
 First we need two maps created with r.stream package:
 
-<PRE>
+<pre>
 r.watershed -f elevation=elevation.10m at PERMANENT accumulation=accum
 r.mapcalc 'accum_abs=abs(accum)'
 r.stream.extract elevation="elevation.10m at PERMANENT" threshold=1000
@@ -247,14 +247,14 @@
 r.mapcalc horton3=if(horton>2,1,0)
 r.stream.distance stream=horton3 dir=dirs dem=elevation.10m at PERMANENT 
 distance=distance elevation=elevation
-</PRE>
+</pre>
 
 Next, to perform analysis we need two files: one with definition of map used in
 analysis and definition of fuzzy sets for every map, and second with fuzzy
 rules. For this example:
 
-<P>MAPS
-<PRE>
+<p>MAPS
+<pre>
 #flood.map
 
 	%elevation
@@ -281,9 +281,9 @@
 $ high {both; 60,80,80,100; linear; 0;1}
 $ veryhigh {both; 80,100,100,120; linear; 0;1}
 
-</PRE>
-<P>RULES:
-<PRE>
+</pre>
+<p>RULES:
+<pre>
 #flood.rul
 $ none {distance = veryfar | elevation = high}
 $ low {distance ~ near & accum_abs = high}
@@ -292,17 +292,17 @@
 $ high {(distance = medium & elevation = low)|(distance = near & elevation =
 moderate)}
 $ veryhigh {distance = near & elevation = low}
-</PRE>
+</pre>
 
 finally we need run r.fuzzy.system:
-<PRE>
+<pre>
 A) r.fuzzy.system maps=~/flood.map rules=~/flood.rul family=Zadeh defuz=centroid
 imp=minimum res=100 output=flood_z_cent
 B) r.fuzzy.system maps=~/flood.map rules=~/flood.rul family=drastic
 defuz=max_of_highest imp=minimum res=100 output=flood_d_max
 C) r.fuzzy.system maps=~/flood.map rules=~/flood.rul family=Hamacher
 defuz=mean_of_highest imp=minimum res=100 output=flood_h_mean
-</PRE>
+</pre>
 
 Resulting map should look like this below.
 <CENTER><img src=f_result.png border=1></CENTER><br>
@@ -320,23 +320,23 @@
 <h2>REFERENCES</h2>
 
 Zadeh, L.A. (1965). "Fuzzy sets". Information and Control 8 (3): 338–353.
-doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<P>
+doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.<p>
 
 Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger.
-ISBN 0-85274-583-4.<P>
+ISBN 0-85274-583-4.<p>
 
 Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and
-applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<P>
+applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.<p>
 
 Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory:
 foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN
-0133410587.<P>
+0133410587.<p>
 
 Meyer D, Hornik K (2009a). \Generalized and Customizable Sets in R." Journal of
-Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<P>
+Statistical Software, 31(2), 1{27. URL http://www.jstatsoft.org/v31/i02/.<p>
 
 Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets.
-R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<P>
+R~package version~1.0, URL http://CRAN.R-project.org/package=sets.<p>
 
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz


Property changes on: grass-addons/raster/r.hazard.flood/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.in.swisstopo/description.html
===================================================================
--- grass-addons/raster/r.in.swisstopo/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.in.swisstopo/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -20,48 +20,48 @@
 <b>r.in.swisstopo</b> <b>input</b>=<em>input</em> <b>output</b>=<em>raster</em>  [<b>method</b>=<em>string</em>]   [<b>type</b>=<em>string</em>]   [<b>zrange</b>=<em>min,max</em>]   [<b>percent</b>=<em>integer</em>]   [<b>method_resamp</b>=<em>string</em>]   [--<b>overwrite</b>]  [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>--overwrite</b></DT>
-<DD>Force overwrite of output files</DD>
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dl>
+<dt><b>--overwrite</b></dt>
+<dd>Force overwrite of output files</dd>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>input</b>=<em>input</em></DT>
-<DD>Swisstopo file containing DEM data (*.mlt, *.mbl or *.xyz)</DD>
+<dl>
+<dt><b>input</b>=<em>input</em></dt>
+<dd>Swisstopo file containing DEM data (*.mlt, *.mbl or *.xyz)</dd>
 
-<DT><b>output</b>=<em>raster</em></DT>
-<DD>Name of the raster layer, that will be created out of the imported data</DD>
+<dt><b>output</b>=<em>raster</em></dt>
+<dd>Name of the raster layer, that will be created out of the imported data</dd>
 
-<DT><b>method</b>=<em>string</em></DT>
-<DD>Statistic to use for raster values</DD>
-<DD>Options: <em>n,min,max,range,sum,mean,stddev,variance,coeff_var</em></DD>
-<DD>Default: <em>mean</em></DD>
+<dt><b>method</b>=<em>string</em></dt>
+<dd>Statistic to use for raster values</dd>
+<dd>Options: <em>n,min,max,range,sum,mean,stddev,variance,coeff_var</em></dd>
+<dd>Default: <em>mean</em></dd>
 
-<DT><b>type</b>=<em>string</em></DT>
-<DD>Storage type for resultant raster map</DD>
-<DD>Options: <em>CELL,FCELL,DCELL</em></DD>
-<DD>Default: <em>FCELL</em></DD>
+<dt><b>type</b>=<em>string</em></dt>
+<dd>Storage type for resultant raster map</dd>
+<dd>Options: <em>CELL,FCELL,DCELL</em></dd>
+<dd>Default: <em>FCELL</em></dd>
 
-<DT><b>zrange</b>=<em>min,max</em></DT>
-<DD>Filter range for z data (min,max)</DD>
+<dt><b>zrange</b>=<em>min,max</em></dt>
+<dd>Filter range for z data (min,max)</dd>
 
-<DT><b>percent</b>=<em>integer</em></DT>
-<DD>Percentage of map to keep in memory</DD>
-<DD>Options: <em>1-100</em></DD>
-<DD>Default: <em>100</em></DD>
+<dt><b>percent</b>=<em>integer</em></dt>
+<dd>Percentage of map to keep in memory</dd>
+<dd>Options: <em>1-100</em></dd>
+<dd>Default: <em>100</em></dd>
 
-<DT><b>method_resamp</b>=<em>string</em></DT>
-<DD>Interpolation method for interpolation of input data to current region's resolution (using r.resamp.interp)</DD>
-<DD>Options: <em>nearest,bilinear,bicubic</em></DD>
-<DD>Default: <em>bilinear</em></DD>
+<dt><b>method_resamp</b>=<em>string</em></dt>
+<dd>Interpolation method for interpolation of input data to current region's resolution (using r.resamp.interp)</dd>
+<dd>Options: <em>nearest,bilinear,bicubic</em></dd>
+<dd>Default: <em>bilinear</em></dd>
 
 <h2>Manual download and installation of the module (without svn)</h2>
-<p>You can find the current version of r.in.swisstopo <a href="http://trac.osgeo.org/grass/browser/grass-addons/raster/r.in.swisstopo/">here</a><br>
+<p>You can find the current version of r.in.swisstopo <a href="http://trac.OSGeo.org/grass/browser/grass-addons/raster/r.in.swisstopo/">here</a><br>
 <br>
 Installation:<br>
 You might need to have root privileges for the following. If you do not have these, please ask your system administrator
@@ -99,8 +99,8 @@
 Swiss Federal Institute of Technology (ETH)<br>
 Zurich<br>
 </i></p>
-<p><i>Last changed: $Date: 09/06/2010 $</i> </p> 
+<p><i>Last changed: $Date$</i> </p> 
 
-</DL>
+</dl>
 </body>
 </html>


Property changes on: grass-addons/raster/r.in.swisstopo/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.inund.fluv/r.inund.fluv.html
===================================================================
--- grass-addons/raster/r.inund.fluv/r.inund.fluv.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.inund.fluv/r.inund.fluv.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -19,59 +19,59 @@
 <b>r.inund.fluv</b> <b>DTM</b>=<em>string</em> <b>W_S_PROFILE</b>=<em>string</em> <b>RIVER</b>=<em>string</em> <b>FLOODING_MAP</b>=<em>string</em>  [<b>DOUBT_MAP</b>=<em>string</em>]   [<b>PROFILE_T100</b>=<em>string</em>]   [<b>(null)</b>=<em>float</em>]   [<b>delta_x</b>=<em>float</em>]   [<b>river_boundary</b>=<em>string</em>]   [<b>boundary_type</b>=<em>string</em>]   [<b>res_B</b>=<em>integer</em>]   [<b>res_C</b>=<em>integer</em>]   [<b>MAP_W_S_PROFILE</b>=<em>string</em>]   [--<b>overwrite</b>]  [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>--overwrite</b></DT>
-<DD>Allow output files to overwrite existing files</DD>
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dl>
+<dt><b>--overwrite</b></dt>
+<dd>Allow output files to overwrite existing files</dd>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>DTM</b>=<em>string</em></DT>
-<DD>Input DTM raster map</DD>
+<dl>
+<dt><b>DTM</b>=<em>string</em></dt>
+<dd>Input DTM raster map</dd>
 
-<DT><b>W_S_PROFILE</b>=<em>string</em></DT>
-<DD>Input ASCII file of the water surface profile</DD>
+<dt><b>W_S_PROFILE</b>=<em>string</em></dt>
+<dd>Input ASCII file of the water surface profile</dd>
 
-<DT><b>RIVER</b>=<em>string</em></DT>
-<DD>Input vector line map of river-axis</DD>
+<dt><b>RIVER</b>=<em>string</em></dt>
+<dd>Input vector line map of river-axis</dd>
 
-<DT><b>FLOODING_MAP</b>=<em>string</em></DT>
-<DD>Output: name of flooding map</DD>
+<dt><b>FLOODING_MAP</b>=<em>string</em></dt>
+<dd>Output: name of flooding map</dd>
 
-<DT><b>DOUBT_MAP</b>=<em>string</em></DT>
-<DD>Output: name of doubful surface areas</DD>
+<dt><b>DOUBT_MAP</b>=<em>string</em></dt>
+<dd>Output: name of doubful surface areas</dd>
 
-<DT><b>PROFILE_BOUNDARY</b>=<em>string</em></DT>
-<DD>Input ASCII file with water-depht for return period T &gt; 100 years</DD>
+<dt><b>PROFILE_BOUNDARY</b>=<em>string</em></dt>
+<dd>Input ASCII file with water-depht for return period T &gt; 100 years</dd>
 
-<DT><b>delta_z</b>=<em>float</em></DT>
-<DD>Input delta_z to find the boundaries of the main channel [default value 0.5 m]</DD>
+<dt><b>delta_z</b>=<em>float</em></dt>
+<dd>Input delta_z to find the boundaries of the main channel [default value 0.5 m]</dd>
 
-<DT><b>delta_x</b>=<em>float</em></DT>
-<DD>Input delta_x to find the boundaries of the main channel [default value 3.5 m]</DD>
+<dt><b>delta_x</b>=<em>float</em></dt>
+<dd>Input delta_x to find the boundaries of the main channel [default value 3.5 m]</dd>
 
-<DT><b>river_boundary</b>=<em>string</em></DT>
-<DD>Output vector boundaries of the main channel</DD>
+<dt><b>river_boundary</b>=<em>string</em></dt>
+<dd>Output vector boundaries of the main channel</dd>
 
-<DT><b>boundary_type</b>=<em>string</em></DT>
-<DD>Format of vector boundaries of the main channel</DD>
-<DD>Options: <em>line,points</em></DD>
-<DD>Default: <em>points</em></DD>
+<dt><b>boundary_type</b>=<em>string</em></dt>
+<dd>Format of vector boundaries of the main channel</dd>
+<dd>Options: <em>line,points</em></dd>
+<dd>Default: <em>points</em></dd>
 
-<DT><b>res_B</b>=<em>integer</em></DT>
-<DD>Input value: resolution B [default value 10 m]</DD>
+<dt><b>res_B</b>=<em>integer</em></dt>
+<dd>Input value: resolution B [default value 10 m]</dd>
 
-<DT><b>res_C</b>=<em>integer</em></DT>
-<DD>Input value: resolution C [default value 20 m]</DD>
+<dt><b>res_C</b>=<em>integer</em></dt>
+<dd>Input value: resolution C [default value 20 m]</dd>
 
-<DT><b>MAP_W_S_PROFILE</b>=<em>string</em></DT>
-<DD>Output vector point map of the water surface profile</DD>
+<dt><b>MAP_W_S_PROFILE</b>=<em>string</em></dt>
+<dd>Output vector point map of the water surface profile</dd>
 
-</DL>
+</dl>
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
@@ -86,8 +86,8 @@
 
 The single phases in  which the procedure is divided, are here summarized, even if the whole procedure is excecuted automatically. <br>
 
-- In the first phase, the value of water level in the nearest point of fluvial axis is assigned to each pixel of terrain, through the creation of Thiessen polygons (<EM><A HREF="r.surf.idw.html">r.surf.idw</A></EM> setting <em>npoints</em>=1) (at the resolution <em>res_B</em>). Then the procedure makes a comparison between elevation of each pixel and water level, and defines pixels characterized by elevation lower than water level, at hazard. <br>
-- In the second phase, the procedure removes all the areas previously defined at hazard but not connected with the river axis, i.e. surrounded by terrain not at hazard, neglecting infiltration or underground rivers (<EM><A HREF="v.select.html">v.select</A></EM>). <br>
+- In the first phase, the value of water level in the nearest point of fluvial axis is assigned to each pixel of terrain, through the creation of Thiessen polygons (<em><a href="r.surf.idw.html">r.surf.idw</a></em> setting <em>npoints</em>=1) (at the resolution <em>res_B</em>). Then the procedure makes a comparison between elevation of each pixel and water level, and defines pixels characterized by elevation lower than water level, at hazard. <br>
+- In the second phase, the procedure removes all the areas previously defined at hazard but not connected with the river axis, i.e. surrounded by terrain not at hazard, neglecting infiltration or underground rivers (<em><a href="v.select.html">v.select</a></em>). <br>
 - In the third phase, the hypotesis is that water diffuses from river to the surrounding areas only in direction perpendicular to the river axis. Through an implemented fortran code (<em>clean_inundation.f90</em>), the procedure individuates the pixels, considered at hazard at the end of phase 2, inundated for sure by water; hence it dries the ones, considered at hazard at the end of phase 2, not reached by water because protected by levees or small hills posed along the perpedicular path between the pixel and the river axis (at the resolution <em>res_C</em>). <br>            
 - In the fourth phase, the hypothesis is that water, outside the main channel, moves along the maximum terrain slope direction. First, through an implemented fortran code (<em>find_main_channel.f90</em>), the procedure individuates the "boundaries" of the main channel. Then, through an implemented fortran code (<em>2d_path.f90</em>), the procedure individuates the water path outside the main channel along the maximum terrain slope direction (at the resolution <em>res_C</em>). Finally, through an implemented fortran code (<em>correction_from_path.f90</em>), the procedure individuates the pixels, dried at the end of phase 3, connected to a water path, and defines them at hazard (at the resolution <em>res_B</em>). <br>
 - In the fifth and last phase, the final potentially inundated map is defined as sum of areas at hazard in the third and fourth phases.
@@ -101,14 +101,14 @@
 
 1 - a Digital Terrain Model (DTM, DEM or DSM) of the area surrounding the river; an high-resolution DTM (e.g. 5 x 5 m or higher) is required to describe levees and other human infrastructures on the floodplain. <br>
 2 - an ASCII file describing the water surface profile along the channel axis, in this format (e.g.):
-<div class="code"><PRE>
+<div class="code"><pre>
 
 411815.62874469644   4944870.642304279   197.  104                 
 411848.8162966241   4944958.868788462   196.96  103.933*            
 411882.0010118869   4945047.096337882   196.89  103.866*            
 411915.188102181   4945135.322989558   196.82  103.8* 
      ...
-</PRE></div>  
+</pre></div>  
 where the first column is East-coordinate, the second is North-coordinate, the third is the water level in each cross-section, and the last one is the name of the cross-section. The distance between two cross-sections is suggested to be less than 100 meters. <br> 
 3 - a vector line describing the river axis from upstream to dowstream. <br>
 <br>


Property changes on: grass-addons/raster/r.ipso/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.maxent.lambdas/r.maxent.lambdas.html
===================================================================
--- grass-addons/raster/r.maxent.lambdas/r.maxent.lambdas.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.maxent.lambdas/r.maxent.lambdas.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -19,39 +19,39 @@
 <b>r.maxent.lambdas</b> [-<b>rl</b>] <b>lambdas_file</b>=<em>string</em> <b>output_prefix</b>=<em>string</em>  [<b>alias_file</b>=<em>string</em>]   [<b>integer_output</b>=<em>integer</em>]   [<b>output_mapcalc</b>=<em>string</em>]   [--<b>overwrite</b>]  [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>-r</b></DT>
-<DD>Produce only raw output (both are computed by default).</DD>
+<dl>
+<dt><b>-r</b></dt>
+<dd>Produce only raw output (both are computed by default).</dd>
 
-<DT><b>-l</b></DT>
-<DD>Produce only logistic output (both are computed by default).</DD>
+<dt><b>-l</b></dt>
+<dd>Produce only logistic output (both are computed by default).</dd>
 
-<DT><b>--overwrite</b></DT>
-<DD>Allow output files to overwrite existing files</DD>
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dt><b>--overwrite</b></dt>
+<dd>Allow output files to overwrite existing files</dd>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>lambdas_file</b>=<em>string</em></DT>
-<DD>MaxEnt lambdas-file to compute distribution-model from</DD>
+<dl>
+<dt><b>lambdas_file</b>=<em>string</em></dt>
+<dd>MaxEnt lambdas-file to compute distribution-model from</dd>
 
-<DT><b>output_prefix</b>=<em>string</em></DT>
-<DD>Prefix for output raster maps</DD>
+<dt><b>output_prefix</b>=<em>string</em></dt>
+<dd>Prefix for output raster maps</dd>
 
-<DT><b>alias_file</b>=<em>string</em></DT>
-<DD>CSV-file to replace alias names from MaxEnt by GRASS map names</DD>
+<dt><b>alias_file</b>=<em>string</em></dt>
+<dd>CSV-file to replace alias names from MaxEnt by GRASS map names</dd>
 
-<DT><b>integer_output</b>=<em>integer</em></DT>
-<DD>Produce logistic integer output with this number of digits preserved</DD>
-<DD>Default: <em>0</em></DD>
+<dt><b>integer_output</b>=<em>integer</em></dt>
+<dd>Produce logistic integer output with this number of digits preserved</dd>
+<dd>Default: <em>0</em></dd>
 
-<DT><b>output_mapcalc</b>=<em>string</em></DT>
-<DD>Save r.mapcalc expression to file</DD>
-</DL>
+<dt><b>output_mapcalc</b>=<em>string</em></dt>
+<dd>Save r.mapcalc expression to file</dd>
+</dl>
 <h2>DESCRIPTION</h2>
 The script is intended to compute raw and/or logistic prediction maps from a lambdas file produced with MaxEnt 3.3.3e.<br>
 It will parse the specified lambdas-file from MaxEnt 3.3.3e and translate it into an r.mapcalc-expression 


Property changes on: grass-addons/raster/r.maxent.lambdas/r.maxent.lambdas.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.out.gmap/description.html
===================================================================
--- grass-addons/raster/r.out.gmap/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.out.gmap/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,10 +1,10 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 
-<EM>r.out.gmap</EM> outputs GRASS raster map into set of image tiles 
+<em>r.out.gmap</em> outputs GRASS raster map into set of image tiles 
 following the tiling scheme of Google Maps and Microsoft Virtual Earth.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 The r.out.gmap must be run from location with correct mercator projection
 used by Google Maps and Microsoft Virtual Earth. Projection can be defined using g.proj and setting the EPSG code to <em>esri.extra/900913</em> or by setting the proj4 parameters to <div class="code">
  +proj=merc +lat_ts=0.0000000000 +lon_0=0.0000000000 +k_0=1.00000 00000 +x_0=0 +y_0=0 +no_defs +a=6378137 +b=6378137 </div> for <em>PROJ4</em> library version 4.6.0 and later. For <em>PROJ4</em> library version 4.5.0, the following definition should be used instead:
@@ -15,7 +15,7 @@
 Be careful when using n,s,e,w parameters, these should be set in the geographical coordinates (lat/lon).
 <p>
 
-<H2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 
 Export of the map <em>elevation.dem</em> from current mapset at the zoom level <em>10</em>. The output is written to the  default <em>googlemap</em> directory:
 
@@ -31,19 +31,19 @@
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
  
 <a href="http://www.remotesensing.org/proj/">PROJ4 library</a>
 <p>
 <a href="http://code.google.com/apis/maps/documentation/">Google Map API</a>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="g.proj.html">g.proj</A></EM>
+<em><a href="g.proj.html">g.proj</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Tomas Cebecauer <br>
-Read more in the OSGeo Journal <a href="http://www.osgeo.org/journal"> Volume 5 (2008) </a>
+Read more in the OSGeo Journal <a href="http://www.OSGeo.org/journal"> Volume 5 (2008) </a>
 
 <p><i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/r.out.gmap/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.out.kml/description.html
===================================================================
--- grass-addons/raster/r.out.kml/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.out.kml/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,10 +1,10 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.out.kml</em> creates KML and image files suitable for Google Earth
 from a GRASS raster map. Alternatively the user may create a compressed
 KMZ file by using the <b>-z</b> flag.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 KML expects data to be in Latitude-Longitude using the WGS84 datum and
 EGM96 vertical datum. This script will work for non-geographic map
@@ -14,29 +14,29 @@
 reproject maps if needed.
 At this time vertical datum is not checked by this module as support for
 it is relatively new in <em>r.support</em> and <em>r.info</em>.
-<P>
+<p>
 KMZ output requires the "zip" program to be installed.
-<P>
+<p>
 Transparency for NULL cells in PNG images is automatically enabled if the
 version of GRASS used supports it. <!-- currently >= 6.5svn
 but may backport for 6.4.1 -->
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<a HREF="d.out.file.html">d.out.file</a><BR>
-<a HREF="g.region.html">g.region</a><BR>
-<a HREF="r.out.gdal.html">r.out.gdal</a><BR>
-<a HREF="r.out.png.html">r.out.png</a><BR>
-<a HREF="r.out.ppm.html">r.out.ppm</a><BR>
-<a HREF="r.proj.html">r.proj</a>
+<a href="d.out.file.html">d.out.file</a><br>
+<a href="g.region.html">g.region</a><br>
+<a href="r.out.gdal.html">r.out.gdal</a><br>
+<a href="r.out.png.html">r.out.png</a><br>
+<a href="r.out.ppm.html">r.out.ppm</a><br>
+<a href="r.proj.html">r.proj</a>
 </em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dunedin, New Zealand</i>
 <p>
 <i>With thanks to Roger André and Peter Loewe for ideas and testing.</i>

Modified: grass-addons/raster/r.out.maxent_swd/r.out.maxent_swd.html
===================================================================
--- grass-addons/raster/r.out.maxent_swd/r.out.maxent_swd.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.out.maxent_swd/r.out.maxent_swd.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -19,25 +19,25 @@
 <b>r.out.maxent_swd</b> [-<b>bz</b>]  [<b>alias_input</b>=<em>string</em>]   [<b>evp_maps</b>=<em>string</em>[,<i>string</i>,...]]   [<b>alias_names</b>=<em>string</em>]   [<b>alias_output</b>=<em>string</em>]   [<b>bgr_output</b>=<em>string</em>]   [<b>bgr_mask</b>=<em>string</em>]   [<b>specie_mask</b>=<em>string</em>[,<i>string</i>,...]]   [<b>specie_output</b>=<em>string</em>]   [<b>specie_name</b>=<em>string</em>]   [<b>nv</b>=<em>integer</em>]   [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>-b</b></DT>
-<DD>Produce only background output</DD>
+<dl>
+<dt><b>-b</b></dt>
+<dd>Produce only background output</dd>
 
-<DT><b>-z</b></DT>
-<DD>Zoom computational region to species data</DD>
+<dt><b>-z</b></dt>
+<dd>Zoom computational region to species data</dd>
 <br>Setting this flag may speed up processing for very large regions and locally distributed
 species. But it may decrease processing time in other cases. Use with care.
 
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>alias_input</b>=<em>string</em></DT>
-<DD>File containg map and alias name(s) for environmental parameter(s)</DD>
+<dl>
+<dt><b>alias_input</b>=<em>string</em></dt>
+<dd>File containg map and alias name(s) for environmental parameter(s)</dd>
 <br>This file should contain alias names in the first column and map names in the second column, separated by comma, 
 without header. It should look e.g. like this:<br>
 <em>
@@ -46,39 +46,39 @@
 ...,...<br>
 </em>
 
-<DT><b>evp_maps</b>=<em>string[,<i>string</i>,...]</em></DT>
-<DD>Environmental parameter map(s)</DD>
+<dt><b>evp_maps</b>=<em>string[,<i>string</i>,...]</em></dt>
+<dd>Environmental parameter map(s)</dd>
 <br>Multiple maps containing the environmental parameter(s) to be used in MaxEnt.
 
-<DT><b>alias_names</b>=<em>string</em></DT>
-<DD>Alias names for environmental parameter</DD>
+<dt><b>alias_names</b>=<em>string</em></dt>
+<dd>Alias names for environmental parameter</dd>
 <br>A list of names to be used as alias names for the environmental parameter map names.
 
-<DT><b>alias_output</b>=<em>string</em></DT>
-<DD>Save alias names for the environmental parameters to file</DD>
+<dt><b>alias_output</b>=<em>string</em></dt>
+<dd>Save alias names for the environmental parameters to file</dd>
 <br>When using alias names for the environmental parameter map names, it is advantageous to save the alias names to file. 
 In this case the alias file can be used to re-translate the alias names back to map names when using the script r.maxent.lambdas.
 
-<DT><b>bgr_output</b>=<em>string</em></DT>
-<DD>Output SWD file for the environmental data of the background landscape</DD>
+<dt><b>bgr_output</b>=<em>string</em></dt>
+<dd>Output SWD file for the environmental data of the background landscape</dd>
 
-<DT><b>bgr_mask</b>=<em>string</em></DT>
-<DD>Map to be used as mask for the background landscape</DD>
+<dt><b>bgr_mask</b>=<em>string</em></dt>
+<dd>Map to be used as mask for the background landscape</dd>
 
-<DT><b>specie_mask</b>=<em>string[,<i>string</i>,...]</em></DT>
-<DD>Raster map(s) of specie occurence</DD>
+<dt><b>specie_mask</b>=<em>string[,<i>string</i>,...]</em></dt>
+<dd>Raster map(s) of specie occurence</dd>
 
-<DT><b>specie_output</b>=<em>string</em></DT>
-<DD>Output SWD file for the specie(s) related environmental data</DD>
+<dt><b>specie_output</b>=<em>string</em></dt>
+<dd>Output SWD file for the specie(s) related environmental data</dd>
 
-<DT><b>specie_name</b>=<em>string</em></DT>
-<DD>Alias-name(s) for species to be used in MaxEnt SWD file instead of map names, separated by comma (default: map names).</DD>
+<dt><b>specie_name</b>=<em>string</em></dt>
+<dd>Alias-name(s) for species to be used in MaxEnt SWD file instead of map names, separated by comma (default: map names).</dd>
 
-<DT><b>nv</b>=<em>integer</em></DT>
-<DD>Integer representing NO DATA cell value</DD>
-<DD>Default: <em>-9999</em></DD>
+<dt><b>nv</b>=<em>integer</em></dt>
+<dd>Integer representing NO DATA cell value</dd>
+<dd>Default: <em>-9999</em></dd>
 
-</DL>
+</dl>
 <h2>DESCRIPTION</h2>
 The script is intended to produce a set of SWD files as input to MaxEnt 3.3.3e using r.stats.<br>
 <br>


Property changes on: grass-addons/raster/r.out.maxent_swd/r.out.maxent_swd.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.out.netcdf/description.html
===================================================================
--- grass-addons/raster/r.out.netcdf/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.out.netcdf/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,19 +1,19 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 The <em>r.out.netcdf</em> module exports a GRASS raster map to a netcdf file. 
 Dimensions, Attributes and variables of netcdf file follow the scheme used 
 in Generic Mapping Tools (GMT) grid (.grd) files (-g flag) or are suitable 
 to be imported into IBM Data Explorer (-d flag).
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Alessandro Frigeri &lt;<A HREF="mailto:afrigeri unipg it">afrigeri unipg it</A>&gt;
+Alessandro Frigeri &lt;<a href="mailto:afrigeri unipg it">afrigeri unipg it</a>&gt;
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="r.out.arc.html">r.out.arc</A></EM>,
-<EM><A HREF="r.out.ascii.html">r.out.ascii</A></EM>,
-<EM><A HREF="r.out.bin.html">r.out.bin</A></EM>,
-<EM><A HREF="r.out.tiff.html">r.out.tiff</A></EM>
+<em><a href="r.out.arc.html">r.out.arc</a></em>,
+<em><a href="r.out.ascii.html">r.out.ascii</a></em>,
+<em><a href="r.out.bin.html">r.out.bin</a></em>,
+<em><a href="r.out.tiff.html">r.out.tiff</a></em>
 
-<p><i>Last changed: $Date: 2004/11/17 17:49:04 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/raster/r.out.netcdf/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.pi/description.html
===================================================================
--- grass-addons/raster/r.pi/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.pi/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,7 +9,7 @@
 A list with a short description of the <em>r.pi</em> modules can be found
 below. More in depth description of a certain module (commands, flags, 
 options) can be found in the  respective folder (like 
-<em><A HREF="r.pi.graph.html">r.pi.graph</A></em>). The functions/algorithms
+<em><a href="r.pi.graph.html">r.pi.graph</a></em>). The functions/algorithms
 of the modules are not yet very extensive but will be expanded in the
 future. Please submit any bug/feature you might encounter to improve the
 functionality.

Modified: grass-addons/raster/r.pi/r.pi.corearea/description_TO_BE_integrated.html
===================================================================
--- grass-addons/raster/r.pi/r.pi.corearea/description_TO_BE_integrated.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.pi/r.pi.corearea/description_TO_BE_integrated.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -4,7 +4,7 @@
 <img src="grass_logo.png" alt="GRASS logo"><hr align=center size=6 noshade>
 
 <h2>NAME</h2>
-<em><b>r.pi.index</b></em>  - is part of a patch based fragmentation analysis package (<EM>r.pi</EM>) providing basic patch based indices, like area, SHAPE or Nearest Neighbour distance.
+<em><b>r.pi.index</b></em>  - is part of a patch based fragmentation analysis package (<em>r.pi</em>) providing basic patch based indices, like area, SHAPE or Nearest Neighbour distance.
 <h2>KEYWORDS</h2>
 raster, patch index, landscape ecology
 <h2>SYNOPSIS</h2>
@@ -14,47 +14,47 @@
 <b>keyval</b>=<em>val</em>   <b>method</b>=<em>name</em> [<b>title</b>=<em>name</em>]   [--<b>overwrite</b>]  [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>-a</b></DT>
-<DD>use 8-neighbour rules (Queen-Typ) instead of 4-neighbour rule (Rook-Typ)</DD>
+<dl>
+<dt><b>-a</b></dt>
+<dd>use 8-neighbour rules (Queen-Typ) instead of 4-neighbour rule (Rook-Typ)</dd>
 
-<DT><b>--overwrite</b></DT>
-<DD>Allow output files to overwrite existing files</DD>
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dt><b>--overwrite</b></dt>
+<dd>Allow output files to overwrite existing files</dd>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>input</b>=<em>name</em></DT>
-<DD>Name of existing raster map containing categories</DD>
+<dl>
+<dt><b>input</b>=<em>name</em></dt>
+<dd>Name of existing raster map containing categories</dd>
 
-<DT><b>output</b>=<em>name</em></DT>
-<DD>Output patch-based result raster map</DD>
+<dt><b>output</b>=<em>name</em></dt>
+<dd>Output patch-based result raster map</dd>
 
-<DT><b>keyval</b>=<em>val</em></DT>
-<DD>The value of the class to analyse</DD>
+<dt><b>keyval</b>=<em>val</em></dt>
+<dd>The value of the class to analyse</dd>
 
-<DT><b>method</b>=<em>name</em></DT>
-<DD>The index to compute. Options: area, perimeter (perim), SHAPE, Border-Index (bor), Compactness (comp), Asymmetry (asym), area-perimeter ratio (apr), fractal dimension (fract), distance to euclidean nearest neighbour (ENN)</DD>
+<dt><b>method</b>=<em>name</em></dt>
+<dd>The index to compute. Options: area, perimeter (perim), SHAPE, Border-Index (bor), Compactness (comp), Asymmetry (asym), area-perimeter ratio (apr), fractal dimension (fract), distance to euclidean nearest neighbour (ENN)</dd>
 
-<DT><b>title</b>=<em>name</em></DT>
-<DD>Optional title of output map</DD>
+<dt><b>title</b>=<em>name</em></dt>
+<dd>Optional title of output map</dd>
 
-</DL>
+</dl>
 
 
 
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<P>
+<p>
 
 The program will be run non-interactively if the user specifies program arguments (see OPTIONS) on the command
-line.  Alternately, the user can simply type <B>r.pi.index</B> on the command line, without program
+line.  Alternately, the user can simply type <b>r.pi.index</b> on the command line, without program
 arguments.  In this case, the user will be prompted for flag settings and parameter values.
 
 > Was die propmap angeht:
@@ -102,51 +102,51 @@
 
 dist_weight = 1: Keine Distanzbewertung, d.h. so wie vorher
 
-<DT><B>Area</B> 
+<dt><b>Area</b> 
 
-<DD>The <EM>Area</EM> (area) computes the area of each patch.
+<dd>The <em>Area</em> (area) computes the area of each patch.
 
 
-<DT><B>Perimeter</B> 
+<dt><b>Perimeter</b> 
 
-<DD>The <EM>Perimeter (perim)</EM> computes the perimeter of each patch.
+<dd>The <em>Perimeter (perim)</em> computes the perimeter of each patch.
 
 
-<DT><B>Area-Perimeter ratio </B> 
+<dt><b>Area-Perimeter ratio </b> 
 
-<DD>The <EM>Area-Perimeter ratio</EM> (apr) divides the patch perimeter by the area.
+<dd>The <em>Area-Perimeter ratio</em> (apr) divides the patch perimeter by the area.
 
 
-<DT><B>SHAPE Index </B> 
+<dt><b>SHAPE Index </b> 
 
-<DD>The <EM>SHAPE Index</EM> (shape) divides the patch perimete by the minimum perimeter 
+<dd>The <em>SHAPE Index</em> (shape) divides the patch perimete by the minimum perimeter 
 possible for a maximally compact patch of the corresponding patch area.
 
 
 
-<DT><B>Border Index </B> 
+<dt><b>Border Index </b> 
 
-<DD>The <EM>Border Index</EM> (bor)....
+<dd>The <em>Border Index</em> (bor)....
 
 
-<DT><B>Compactness Index </B> 
+<dt><b>Compactness Index </b> 
 
-<DD>The <EM>Compactness Index</EM> (comp)....
+<dd>The <em>Compactness Index</em> (comp)....
 
 
-<DT><B>Asymmetry Index </B> 
+<dt><b>Asymmetry Index </b> 
 
-<DD>The <EM>Border Index</EM> (asym)....
+<dd>The <em>Border Index</em> (asym)....
 
 
-<DT><B>Fractal Dimension Index </B> 
+<dt><b>Fractal Dimension Index </b> 
 
-<DD>The <EM>Fractal Dimension Index</EM> (fract)....
+<dd>The <em>Fractal Dimension Index</em> (fract)....
 
 
-<DT><B>Nearest Neighbour Index </B> 
+<dt><b>Nearest Neighbour Index </b> 
 
-<DD>The <EM>Nearest Neighbour Index</EM> (ENN) ....
+<dd>The <em>Nearest Neighbour Index</em> (ENN) ....
 
 
 <!-- Bsp um Pseudo code or Bsp einzufügen -->
@@ -171,26 +171,26 @@
 
 
 
-</DL>
-<H2>NOTES</H2>
+</dl>
+<h2>NOTES</h2>
 
 
 
 
-<P>
+<p>
 
-<H2>BUGS</H2>
+<h2>BUGS</h2>
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="r.pi.ENN.html">r.pi.ENN</A></EM><br>
-<EM><A HREF="r.pi.FNN.html">r.pi.FNN</A></EM><br>
-<EM><A HREF="r.pi.dist.html">r.pi.dist</A></EM><br>
-<EM><A HREF="r.li.setup.html">r.li.setup</A></EM><br>
+<em><a href="r.pi.ENN.html">r.pi.ENN</a></em><br>
+<em><a href="r.pi.FNN.html">r.pi.FNN</a></em><br>
+<em><a href="r.pi.dist.html">r.pi.dist</a></em><br>
+<em><a href="r.li.setup.html">r.li.setup</a></em><br>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Programming: Elshad Shirinov<br>
 Scientific concept: Martin Wegmann <br>

Modified: grass-addons/raster/r.pi/r.pi.rectangle/description.html
===================================================================
--- grass-addons/raster/r.pi/r.pi.rectangle/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.pi/r.pi.rectangle/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -4,7 +4,7 @@
 of the corner of a sampling site into an area by generating a defined rectangle.
 
 Generates a rectangle based on a corner coordinate. 
-<P>
+<p>
 This modules aims at generating sampling areas which are only known by the
 coordinate of one corner. The input are single points, while the output are
 areas representing the corresponding area for each of the single

Modified: grass-addons/raster/r.roughness/r.roughness.window.vector.html
===================================================================
--- grass-addons/raster/r.roughness/r.roughness.window.vector.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.roughness/r.roughness.window.vector.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -47,4 +47,4 @@
 </p><hr><p><a href="index.html">Main
 index</a> - <a href="raster.html">raster index</a>
 - <a href="full_index.html">Full index</a></p>
-</body></html>
\ No newline at end of file
+</body></html>

Modified: grass-addons/raster/r.seg/description.html
===================================================================
--- grass-addons/raster/r.seg/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.seg/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -18,7 +18,7 @@
 
 Some examples of use of the module can be found <a
 href="http://www.ing.unitn.it/~vittia/sw/sw_index.html">here</a> and in <a
-href="http://download.osgeo.org/osgeo/foss4g/2009/SPREP/2Thu/Parkside%20GO4/1500/Thu
+href="http://download.OSGeo.org/OSGeo/foss4g/2009/SPREP/2Thu/Parkside%20GO4/1500/Thu
 G04 1545 Zatelli.pdf">this presentation [FOSS4G 2009 - pdf]</a>. <br>
 For details on the numerical implementation see [3].
 
@@ -88,7 +88,7 @@
 <h2>EXAMPLE</h2>
 
 This example is based the <a
-href="http://grass.osgeo.org/download/data.php">North Carolina GRASS sample
+href="http://grass.OSGeo.org/download/data.php">North Carolina GRASS sample
 data set</a>, [complete GRASS location].
 
 

Modified: grass-addons/raster/r.soils.texture/description.html
===================================================================
--- grass-addons/raster/r.soils.texture/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.soils.texture/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.soils.texture</em> define soils texture from sand and clay
 distribution grid and a texture scheme definition.
@@ -19,9 +19,9 @@
 Gianluca Massei (g_massa at libero.it) 
 
 <br>
-<BR>
+<br>
 
-<H2>REFERENCE</H2>
+<h2>REFERENCE</h2>
 <p>Bourke P., 1987 Determining if a point lies on the interior of a polygon. Downloaded printed</p>
 <p>Cavallini P, Neteler M., 2005 I GIS Open Source: una alternativa possible? MondoGIS n° 47</p>
 <p>Cavallini P, Neteler M., 2006 L'analisi geografica Open Source: GRASS GIS parte 2  raster MondoGIS n° 52</p>


Property changes on: grass-addons/raster/r.soils.texture/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.stack/description.html
===================================================================
--- grass-addons/raster/r.stack/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stack/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,7 +9,7 @@
 
 You will need to change the region to match the extent of the new stack after
 this module is run.
-<P>
+<p>
 The stack respects and is built downwards (southwards) from the current 2D
 region, so an error will occur in a lat/lon location if the lowest member
 of the stack exceeds 90S.

Modified: grass-addons/raster/r.stream.angle/description.html
===================================================================
--- grass-addons/raster/r.stream.angle/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.angle/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,43 +1,43 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-r</b></DT>
-<DD>Outputs in radians (Default is degrees). Input is always in degrees</DD>
+<dl>
+<dt><b>-r</b></dt>
+<dd>Outputs in radians (Default is degrees). Input is always in degrees</dd>
 <p>
-<DT><b>-e</b></DT>
-<DD>Extended mode. For now supports only direction of streams of higher order and elevation difference between starting and finishig point of the segment.
-</DD>
+<dt><b>-e</b></dt>
+<dd>Extended mode. For now supports only direction of streams of higher order and elevation difference between starting and finishig point of the segment.
+</dd>
 <p>
-</DD>
+</dd>
 <p>
 
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which segmentation will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which segmentation will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
-Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</DD>
-<P>
-<DT><b>elev</b></DT>
-<DD>Elevation map. Must be the same as used to calculate streams and dirs. Map can by of any type, but for calculation speed FCELL is the best choice.</DD>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
+Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</dd>
+<p>
+<dt><b>elev</b></dt>
+<dd>Elevation map. Must be the same as used to calculate streams and dirs. Map can by of any type, but for calculation speed FCELL is the best choice.</dd>
 
-<P>
-<DT><b>order</b></DT>
-<DD>Ordering method. If different than none ordering is choosen, the segmentation proccess ignores junctions and create segments along streams belonging to the same order.</DD>
+<p>
+<dt><b>order</b></dt>
+<dd>Ordering method. If different than none ordering is choosen, the segmentation proccess ignores junctions and create segments along streams belonging to the same order.</dd>
 
-<P>
-<DT><b>length</b></DT>
-<DD>Integer values indicating the search length (in cells) to determine stright line. The longest length parameter the more tolerant the module treats local stream undulation and inequalities. Default value of 15 is suitable for  30 meters DEMS. More details DEMS may requre longer length.</DD>
+<p>
+<dt><b>length</b></dt>
+<dd>Integer values indicating the search length (in cells) to determine stright line. The longest length parameter the more tolerant the module treats local stream undulation and inequalities. Default value of 15 is suitable for  30 meters DEMS. More details DEMS may requre longer length.</dd>
 
-<DT><b>skip</b></DT>
-<DD>Integer values indicating the length (in cells) to skip local short segment and join them with the longer neigbor. The shortest length parameter the more short segments will be produced by the module due to undulation and inequalities. Default value of 15 is suitable for  30 meters DEMS. More details DEMS may requre longer length.</DD>
+<dt><b>skip</b></dt>
+<dd>Integer values indicating the length (in cells) to skip local short segment and join them with the longer neigbor. The shortest length parameter the more short segments will be produced by the module due to undulation and inequalities. Default value of 15 is suitable for  30 meters DEMS. More details DEMS may requre longer length.</dd>
 
-<DT><b>treshold</b></DT>
-<DD>real value indicates the internal angle between upstream and downsteam direction to treat actual cell as lying on the stright line. Grater value (up to 180 degrees) produces more segments. Lesser values produced less segments. Values below 90 in most cases will not produce any addational segments to that resulting from ordering</DD>
+<dt><b>treshold</b></dt>
+<dd>real value indicates the internal angle between upstream and downsteam direction to treat actual cell as lying on the stright line. greater value (up to 180 degrees) produces more segments. Lesser values produced less segments. Values below 90 in most cases will not produce any addational segments to that resulting from ordering</dd>
 
 
 <h2>OUTPUTS</h2>
-<P>The module produces one vector map divided into segments resulting form segmentation proccess. Every segmement has ascribed following parameters:</p>
+<p>The module produces one vector map divided into segments resulting form segmentation proccess. Every segmement has ascribed following parameters:</p>
 <ul>
 <li>c_stream: current stream identifier;
 <li>c_order: current stream order according ordering system, 0 if no ordering have been chooded;
@@ -48,20 +48,20 @@
 <li>n_stream: identifier of the next (topological) stream (not segment)
 <li>n_tangent: direction of tangent line in the point where stream (not segment) reaches its higer order strem. If ordering is NONE it is direction of the upstream part of next toplogical stream in the network.
 </ul>
-</DL>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 The main idea comes from works of Horton (1932) and Howard (1971, 1990). The module is designed to calculate angle relations between tributaries and its major streams. The main problem in calculating directional parameters is that streams usually are not straight lines. Therefore as the first step of the procedure, partitioning of streams into near-straight-line segments is required.
-<P>
+<p>
 The segmentation process uses a method similar to the one used by Van & Ventura (1997) to detect corners and partition curves into straight lines and gentle arcs. Because it is almost impossible to determine exactly straight sections without creating numerous very short segments, the division process requires some approximation. The approximation is made based on three parameters: (1) the downstream/upstream search length, (2) the short segment skipping threshold, and (3) the maximum angle between downstream/upstream segments to be considered as a straight line. In order to designate straight sections of the streams, the algorithm is searching for those points where curves significantly change their direction.
 The definition of stream segments depends on the ordering method selected by the user,  Strahler's, Horton's or Hack's main stream, or the network may remain unordered. All junctions of streams to streams of higher order are always split points, but for ordered networks, streams of higher order may be divided into sections which ignore junctions with streams of lower order. In unordered networks all junctions are always split points.
 In extended mode the module also calculates the direction of a stream to its higher order stream If the higher order stream begins at the junction with the current stream (Strahler's ordering only) or if the network is unordered, the direction is calculated as the direction of the line between junction point and downstream point (Howard 1971) within the user-defined global search distance. If a higher order stream continues at the junction, its direction is calculated as the direction of the tangent line to the stream of higher order at the junction point. To avoid local fluctuation, the tangent line is approximated as a secant line joining downstream/upstream points at a distance globally defined by the search length parameter (1). Such a definition of the angle between streams is not fully compatible with Horton's original criterion.
 
 <h2>NOTES</h2>
-<P>
+<p>
 Module can work only if direction map, stream map and region map has same settings. It is also required that stream map and direction map come from the same source. For lots of reason this limitation probably cannot be omitted.   this means if stream map comes from r.stream.extract also direction map from r.stream.extract must be used. If stream network was generated with MFD method also MFD direction map must be used.
-<P>
+<p>
 Module is still in experimental phase. It means that something may change in the future in the module core.
 
 

Modified: grass-addons/raster/r.stream.basins/description.html
===================================================================
--- grass-addons/raster/r.stream.basins/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.basins/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,93 +1,90 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-z</b></DT>
-<DD>Creates zero-value background instead of NULL. For some reason (like map algebra calculation) zero-valued background may be required. This flag produces zero-filled background instead of null (default).</DD>
+<dl>
+<dt><b>-z</b></dt>
+<dd>Creates zero-value background instead of NULL. For some reason (like map algebra calculation) zero-valued background may be required. This flag produces zero-filled background instead of null (default).</dd>
 <p>
-<DT><b>-c</b></DT>
-<DD>By default r.stream.basins uses streams category as basin category. In some cases - for example if
+<dt><b>-c</b></dt>
+<dd>By default r.stream.basins uses streams category as basin category. In some cases - for example if
 stream map is product of map algebra and separete streams may not have unique values this option will create
 new category sequence for each basin (do not work in vector point mode)
-</DD>
+</dd>
 <p>
-<DT><b>-l</b></DT>
-<DD>By default r.stream.basins create basins for all unique streams. This option delinate basins only for last streams ignoring upstreams (do not work in vector point mode).
-</DD>
+<dt><b>-l</b></dt>
+<dd>By default r.stream.basins create basins for all unique streams. This option delinate basins only for last streams ignoring upstreams (do not work in vector point mode).
+</dd>
 <p>
 
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
+</dd>
 <p>
 
-<DT><b>cats</b></DT>
-<DD>Stream categories to delineate basins for: All categories which are not in stream map are ignored. It can be used with stream network created by r.watershed, r.stream.extract or r.stream.order. For r.stream.order use category of order for which basins must be created. For example to delineate only basins for order two use cats=2. If you need unique category for every basin use -c flag.
-</DD>
+<dt><b>cats</b></dt>
+<dd>Stream categories to delineate basins for: All categories which are not in stream map are ignored. It can be used with stream network created by r.watershed, r.stream.extract or r.stream.order. For r.stream.order use category of order for which basins must be created. For example to delineate only basins for order two use cats=2. If you need unique category for every basin use -c flag.
+</dd>
 <p>
 
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
-Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</DD>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
+Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</dd>
 <p>
 
-<DT><b>coors</b></DT>
-<DD>East and north coordinates for basin outlet. It can delinate only one basin using that option. This option simply copies funcionality of <a href="r.water.outlet.html">r.water.outlet</a>.
-</DD>
+<dt><b>coors</b></dt>
+<dd>East and north coordinates for basin outlet. It can delinate only one basin using that option. This option simply copies funcionality of <a href="r.water.outlet.html">r.water.outlet</a>.
+</dd>
 <p>
 
-<DT><b>points</b></DT>
-<DD>Vector file containing basins outlet as vector points. Only point's categories are used to prepare basins. Table attached to it is ignored. Every point shall heve his own unique category. In that mode flags -l and -c are ignored
-</DD>
+<dt><b>points</b></dt>
+<dd>Vector file containing basins outlet as vector points. Only point's categories are used to prepare basins. Table attached to it is ignored. Every point shall have his own unique category. In that mode flags -l and -c are ignored
+</dd>
 <p>
 
 
 <h2>OUTPUTS</h2>
-<P>The module produces one raster map with basins acording user's rules</p>
-</DL>
+<p>The module produces one raster map with basins acording user's rules</p>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.basins is prepared to delineate basins and subasins according user rules. Module is prepared to delineate unrestricted number of basins in one step. It can delineate basins with three methods:
-<UL>
-<LI>Using coordinates: his option simply copies funcionality of <a href="r.water.outlet.html">r.water.outlet</a>.
-<LI>Using vector points: it allow to mannually point outlets with any method
-<LI>Using streams (most advanced) it allow on lots of modifications. See examples for more details.
-</UL>
+<ul>
+<li>Using coordinates: his option simply copies funcionality of <a href="r.water.outlet.html">r.water.outlet</a>.
+<li>Using vector points: it allow to mannually point outlets with any method
+<li>Using streams (most advanced) it allow on lots of modifications. See examples for more details.
+</ul>
 Only one methdo can be used at once. Methods cannot be mixed.
-<P>
+<p>
 The most recommended method require two maps: direction and streams. In spite of in stream map we can store information required to proper delineation, we can also enumarate stream categories for which basins are to be created (cats option). Module is prepared to work with output data of <em>r.watershed, r.stream.extract, r.stream.order</em> also with modification done by <em>r.recalss</em> and <em>r.mapcalc</em>. r.stream.basin can delineate basins according outlets marked by raster streams, and polygons, vector points and numerical coordinates. If outlets are marked by points or coordinates it delineate basins which cells contribute to that points, if outlets are marked by streams it delineate cells which contribute to the last (downstream) cell of the every stream. If outlets are marked by polygon it delineate cells contributing to most downstream cell of the polygon. If polygon covers more outlets than of one basins it will create collective basin for all outlets  with c
 ommon category.
 
 
 <h2>NOTES</h2>
-<P>
-To receive good results outlets markers created by user shall overlapping with streams. On the other way basins could results with very small area. Input maps must be in CELL format (default output of r.watershed, r.stream.order  and r.stream.extract)<P>
+<p>
+To receive good results outlets markers created by user shall overlapping with streams. On the other way basins could results with very small area. Input maps must be in CELL format (default output of r.watershed, r.stream.order  and r.stream.extract)<p>
 Module can work only if direction map, stream map and region map has same settings. It is also required that stream map and direction map come from the same source. For lots of reason this limitation probably cannot be omitted.   this means if stream map comes from r.stream.extract also direction map from r.stream.extract must be used. If stream network was generated with MFD method also MFD direction map must be used. Nowadays f direction map comes from r.stream.extract  must be patched by direction map from r.watershed. (with r.patch). 
 
 <h2>EXAMPLES</h2>
-<P>
+<p>
 To delineate all basins with categories of streams:
-<P>
-<CODE>r.stream.basins dir=dirs stream=streams basins=bas_basins_elem</CODE>
-<P>
+<p>
+<code>r.stream.basins dir=dirs stream=streams basins=bas_basins_elem</code>
+<p>
 To determine major and minor basins in area, definied by outlets, ignoring subbasins use  - l flag. That flag ignores all nodes and uses only real outlets (in most cases that on map border):
-<P>
-<CODE>r.stream.basins -l dir=dirs stream=streams basins=bas_basins_last</CODE>
+<p>
+<code>r.stream.basins -l dir=dirs stream=streams basins=bas_basins_last</code>
 
-<P>
-<CODE>r.stream.basins dir=dirs coors=639936.623832,216939.836449</CODE>
+<p>
+<code>r.stream.basins dir=dirs coors=639936.623832,216939.836449</code>
 
-<P>
+<p>
 To delinaeate one or more particular basins defined by given streams, stream map must be re-classed first, to leave only desired streams:
 
-<CODE>
-<PRE>
+<div class="code"><pre>
 r.reclass input=streams cats=42 output=sel_streams_1 
 r.reclass input=streams cats=42,252,188 output=sel_streams_1 
-</PRE>
-</CODE>
-<P>
+</pre></div>
+<p>
 Or alternatevely:
-<CODE>
-<PRE>
+<div class="code"><pre>
 echo '42=42
 * = NULL' > tmp #for one output
 
@@ -97,53 +94,46 @@
 * = NULL' >tmp #for multiple outputs
 
 r.reclass input=streams output=sel_streams_1 <tmp
-</PRE>
-</CODE>
-<P>
+</pre></div>
+<p>
 Do delineate basins of particular order we must use the following procedure: 
-<PRE>
-<CODE>
+<div class="code"><pre>
 r.stream.basins -lc dir=dirs stream=strahler cats=2 basins=bas_basin_strahler_2
-</CODE>
-</CODE>
-<P>
+</pre></div>
+</code>
+<p>
 Or alternatevely:
-<PRE>
-<CODE>
+<div class="code"><pre>
 echo '2 = 2
 * = NULL' > tmp
 r.reclass input=ord_strahler output=sel_strahler_2 < tmp
 r.stream.basins -c dir=dirs 
 stream=sel_strahler_2 basins=bas_basin_strahler_2
-</CODE>
-</CODE>
+</pre></div>
+</code>
 
 
 
-<P>
+<p>
 The usage of polygons as outlets markers is very useful when exact stream course cannot be cleary determined before running analysis, but the area of its occurrence can be determined (mostly in iterative simulations) Example uses r.circle but can be substituted by any polygon created for example  with v.digit:
-<CODE>
-<PRE>
+<div class="code"><pre>
 r.circle -b output=circle coordinate=639936.623832,216939.836449 max=200
 r.stream.basins -c dir=dirs stream=circle basins=bas_simul
-</PRE>
-</CODE>
-<P>
+</pre></div>
+<p>
 To determine areas of contribution to streams of particular order  use as streams the result of ordering:
-<P>
-<CODE>r.stream.basins dir=dirs stream=ord_strahler basins=bas_basin_strahler</CODE>
-<P>
+<p>
+<code>r.stream.basins dir=dirs stream=ord_strahler basins=bas_basin_strahler</code>
+<p>
 Determination of areas of potential source of pollution. The example will be done for lake marked with FULL_HYDR 8056 in North Carolina sample dataset. The lake shall be extracted and converted to binary raster map.
 
-<CODE>
-<PRE>
+<div class="code"><pre>
 v.extract -d input=lakes at PERMANENT output=lake8056 type=area layer=1 'where=FULL_HYDRO = 8056' new=-1 
 v.to.rast input=lake8056 output=lake8056 use=val type=area layer=1 value=1
 r.stream.basins dir=dirs stream=lake8056 basins=bas_basin_lake
-</PRE>
-</CODE>
-<P>
-See aslo tutorial: <a href="http://grass.osgeo.org/wiki/R.stream.*">http://grass.osgeo.org/wiki/R.stream.*</a>
+</pre></div>
+<p>
+See also tutorial: <a href="http://grass.OSGeo.org/wiki/R.stream.*">http://grass.OSGeo.org/wiki/R.stream.*</a>
 
 <h2>SEE ALSO</h2>
 

Modified: grass-addons/raster/r.stream.del/description.html
===================================================================
--- grass-addons/raster/r.stream.del/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.del/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,23 +1,23 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-z</b></DT>
-<DD>Creates zero-value background instead of NULL. For some reason (like map algebra calculation) zero-valued background may be required. This flag produces zero-filled background instead of null (default).</DD>
+<dl>
+<dt><b>-z</b></dt>
+<dd>Creates zero-value background instead of NULL. For some reason (like map algebra calculation) zero-valued background may be required. This flag produces zero-filled background instead of null (default).</dd>
 <p>
 
 
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which reduction will be performed produced by <a href="r.watershed.html">r.watershed</a>. <a href="r.stream.extract.html">r.stream.extract</a> has deleting short stream procedure build-in. Because streams network produced by r.watershed with SFD and MFD may differ  it is required to use both stream and direction map produced by the same operation. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which reduction will be performed produced by <a href="r.watershed.html">r.watershed</a>. <a href="r.stream.extract.html">r.stream.extract</a> has deleting short stream procedure build-in. Because streams network produced by r.watershed with SFD and MFD may differ  it is required to use both stream and direction map produced by the same operation. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershedRegion resolution and map resoultion must be the same. 
-Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</DD>
-<DT><b>threshold</b></DT>
-<DD>Integer vaule indicating the minimum number of cell in first-order streams (sensu Strhahler) to leeve it in the network.</DD>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershedRegion resolution and map resoultion must be the same. 
+Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</dd>
+<dt><b>threshold</b></dt>
+<dd>Integer vaule indicating the minimum number of cell in first-order streams (sensu Strhahler) to leeve it in the network.</dd>
 <h2>OUTPUTS</h2>
-<P>The module produces new stream map where streams shortrer than threshold are deleted. To keep file consistent, when short stream is deleted the next stream segment is joined with previous one by asigning its category.
+<p>The module produces new stream map where streams shortrer than threshold are deleted. To keep file consistent, when short stream is deleted the next stream segment is joined with previous one by asigning its category.
 
-<PRE>
+<pre>
 BEFORE:
 
       |2
@@ -27,38 +27,34 @@
       
 ___1______1____
 
-</PRE>
+</pre>
 </P>
-</DL>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
-Module r.stream.del is prepared to removing short streams from stream network. The short streams are undesired outcome of networks delineated from DEMS in stream ordering and basin delinating. In stream ordering very short stream may increase network order, when two short stream of first order will increase order of next streams. The second situation is connected with network delineated with more complex criteria than only accumulation threeshold like Montgomery's method or weighted method (<a href="r.stream.extract.html">r.stream.extract</a>)  It may  produce a scope of very short streams on vallyes slopes. Such streams may lead to wrong results in stream ordering and basin delination so removing short streams to simplify  the network. It also may heve great impact on Horton's statistics: <a href="r.stream.stats.html">r.stream.stats</a>.
+<p>
+Module r.stream.del is prepared to removing short streams from stream network. The short streams are undesired outcome of networks delineated from DEMS in stream ordering and basin delinating. In stream ordering very short stream may increase network order, when two short stream of first order will increase order of next streams. The second situation is connected with network delineated with more complex criteria than only accumulation threeshold like Montgomery's method or weighted method (<a href="r.stream.extract.html">r.stream.extract</a>)  It may  produce a scope of very short streams on vallyes slopes. Such streams may lead to wrong results in stream ordering and basin delination so removing short streams to simplify  the network. It also may have great impact on Horton's statistics: <a href="r.stream.stats.html">r.stream.stats</a>.
 
 
 <h2>NOTES</h2>
-<P>
+<p>
 <a href="r.stream.extract.html">r.stream.extract</a> has option to delete shot stream, so r.stream.del is preperad only for use with r.watershed output network. So this module will be probably depreciated in the nearest future.
 Module can work only if direction map, stream map and region map has same settings. It is also required that stream map and direction map come from the same source. For lots of reason this limitation probably cannot be omitted.   this means if stream map comes from r.stream.extract also direction map from r.stream.extract must be used. If stream network was generated with MFD method also MFD direction map must be used.
 
 <h2>EXAMPLES</h2>
 
-<P>
+<p>
 Strahler stream ordering before and after removing short streams
-<CODE>
-<PRE>
+<div class="code"><pre>
 r.watershed elevation=elev_ned_30m at PERMANENT threshold=100 d8cut=infinity mexp=2 stream_rast=stream_mont direction=stream_dir
 r.stream.order stream=stream_mont dir=stream_dir strahler=streahler_before 
 
 r.stream.del stream=stream_mont dir=stream_dir threshold=10 reduced=stream_out
 r.stream.order stream=stream_out dir=stream_dir strahler=streahler_after
+</pre></div>
+<p>
 
 
-</PRE>
-</CODE>
-<P>
-
-
 <h2>SEE ALSO</h2>
 
 <em>
@@ -72,5 +68,5 @@
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz
 
-<p><i>Last changed: $Date: 2010-11-13 13:02:26 +0100 (Sat, 13 Nov 2010) $</i>
+<p><i>Last changed: $Date$</i>
 


Property changes on: grass-addons/raster/r.stream.del/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.stream.distance/description.html
===================================================================
--- grass-addons/raster/r.stream.distance/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.distance/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,54 +1,54 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-o</b></DT>
-<DD>Downstream method only. Calculate distance and elevation against basin outlets instead of streams. It choose only last outlets in 
-the network ignoring nodes.</DD>
+<dl>
+<dt><b>-o</b></dt>
+<dd>Downstream method only. Calculate distance and elevation against basin outlets instead of streams. It choose only last outlets in 
+the network ignoring nodes.</dd>
 <p>
-<DT><b>-s</b></DT>
-<DD>Downstream method only. Calculate distance and elevation against stream nodes instead of streams. It create distance and elevation parameters not for whole basins but for subbasins
-<DT><b>-n</b></DT>
-<DD>For upstram method only. Calculate distance and elevation to the nearest local maximum/divide. With the default option distance/elevation is calculated to the farthest possible maximum/divide
-</DD>
+<dt><b>-s</b></dt>
+<dd>Downstream method only. Calculate distance and elevation against stream nodes instead of streams. It create distance and elevation parameters not for whole basins but for subbasins
+<dt><b>-n</b></dt>
+<dd>For upstream method only. Calculate distance and elevation to the nearest local maximum/divide. With the default option distance/elevation is calculated to the farthest possible maximum/divide
+</dd>
 <p>
 
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed produced by r.watershed or r.stream.extract. Because streams network produced by r.watershed and r.stream.extract may slighty differ in detail it is required to use both stream and direction map produced by the same module. Stream background shall have NULL value or zero value. Background values of NULL are by default produced by r.watershed and r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
-Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</DD>
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or r.stream.extract. If r.stream.extract output map is used, it only has non-NULL values in places where streams occur. NULL (nodata) cells are ignored, zero and negative values are valid direction data if they vary from -8 to 8 (CCW from East in steps of 45 degrees). Direction map shall be of type CELL values. Region resolution and map resoultion must be the same. 
+Also <em>stream</em> network map must have the same resolution. It is checked by default. If resolutions differ the module informs about it and stops. Region boundary and maps boundary may be differ but it may lead to unexpected results.</dd>
 <p>
-<DT><b>elev</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or DCELL. It is not restricted to resolution of region settings as stream and dir.</DD>
-<DT><b>method</b></DT>
-<DD>It is possible to calculate distance with two method: <b>downstream</b> from any raster cell to the nearest stream cell/ junction cell or outlet or <b>upstream</b> from any cell upstream to the local maximum</DD>
+<dt><b>elev</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or DCELL. It is not restricted to resolution of region settings as stream and dir.</dd>
+<dt><b>method</b></dt>
+<dd>It is possible to calculate distance with two method: <b>downstream</b> from any raster cell to the nearest stream cell/ junction cell or outlet or <b>upstream</b> from any cell upstream to the local maximum</dd>
 
 
 <h2>OUTPUTS</h2>
-<DT><b>elevation</b></DT>
-<DD>Returns elevation above the targer (outlet, node stream) along watercoures. The map is of FCELL type</DD>
-<DT><b>distance</b></DT>
-<DD>Returns distance to the targer (outlet, node stream) along watercoures. The map is of FCELL type</DD>
-</DL>
+<dt><b>elevation</b></dt>
+<dd>Returns elevation above the targer (outlet, node stream) along watercoures. The map is of FCELL type</dd>
+<dt><b>distance</b></dt>
+<dd>Returns distance to the targer (outlet, node stream) along watercoures. The map is of FCELL type</dd>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.distance may calculate distance using two methods: downstream and upstream.
-<P>
+<p>
 The default is downstream method when it  calculate distance to streams and outlets and elevation above streams and outlets. The distance and elevation is calculated along watercourses. In outlets mode it can also calculate parameters for subbasins.
-<P>
+<p>
 In streams mode (default) it calculates that parameters downstream to streams which are added as stream mask. In outlets mode there are some additional possibilities. If subbasin is off it calculate parameters only for last point of last (downstream) CELL. In subbasin mode it calculates parameters for every subbasin separately. Subbasin mode acts similar to subbasin mask. Streams file prepared to create basins and subbasins with r.stream.basins can use to to calculate distance and elevation parameters.
-<P>
-With upstream method it calculate distance to the local maximum or divide. Opposite to downstream method, where every cell has one and only one downstream cell in upstream method every cell has usssualy more than one upstream cell. So it is impossible to determine nterchangeable path from any cell. The upstream method offers two alternative modes switched with -n flag: nearest local maximum/divide:  means the shortest path to local maximum and default option farthest maximum/divide means the longest path. In hydrological sense nearest mode means the shortest path which particle of water must run from divide to reach particular cell, while farthest mode means the possible longest path.
+<p>
+With upstream method it calculate distance to the local maximum or divide. Opposite to downstream method, where every cell has one and only one downstream cell in upstream method every cell has usually more than one upstream cell. So it is impossible to determine nterchangeable path from any cell. The upstream method offers two alternative modes switched with -n flag: nearest local maximum/divide:  means the shortest path to local maximum and default option farthest maximum/divide means the longest path. In hydrological sense nearest mode means the shortest path which particle of water must run from divide to reach particular cell, while farthest mode means the possible longest path.
 
 <h2>NOTES</h2>
-<P>
+<p>
 If there are more than one point or one stream networks and some separate points or separate streams networks are in catchment area defined by others it will results as in subbasin mode.  In stream mode subbasin options is ommited. Input maps must be in CELL format (default output of r.watershed, r.stream.order  and r.stream.extract)
 The distance are calculated in meters both for planimeters and Latitude-Longitude projections. The distance is calculated for flat areas not corrected by topography. Distance correction by topography may be done with following mapcalc formula:
-<P>
-<CODE>echo 'dist_corrected = sqrt(distance^2 + elevation ^2)'|r.mapcalc<CODE>
-<P>
+<p>
+<code>echo 'dist_corrected = sqrt(distance^2 + elevation ^2)'|r.mapcalc<code>
+<p>
 Module can work only if direction map, stream map and region map has same settings. It is also required that stream map and direction map come from the same source. For lots of reason this limitation probably cannot be omitted.   this means if stream map comes from r.stream.extract also direction map from r.stream.extract must be used. If stream network was generated with MFD method also MFD direction map must be used.
 
 <h2>SEE ALSO</h2>


Property changes on: grass-addons/raster/r.stream.extract/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.stream.order/description.html
===================================================================
--- grass-addons/raster/r.stream.order/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.order/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
 <h2>DESCRIPTION</h2>
 
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-z</b></DT>
-<DD>Creates zero-value background instead of NULL. For some reason (like map
+<dl>
+<dt><b>-z</b></dt>
+<dd>Creates zero-value background instead of NULL. For some reason (like map
 algebra calculation) zero-valued background may be required. This flag produces
-zero-filled background instead of null (default).</DD>
+zero-filled background instead of null (default).</dd>
 <p>
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed
 produced by r.watershed or r.stream.extract. Because streams network produced by
 r.watershed and r.stream.extract may slighty differ in detail it is required to 
 use both stream and direction map produced by the same module. Stream background
@@ -16,10 +16,10 @@
 Background values of NULL are by default produced by r.watershed and
 r.stream.extract. If not 0 or NULL use <a href="r.mapcalc.html">r.mapcalc</a> to
 set background values to null.  
-</DD>
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -28,71 +28,71 @@
 Also <em>stream</em> network and <em>accumulation</em> maps must have the same
 resolution. It is checked by default. If resolutions differ the module informs
 about it and stops. Region boundary
-and maps boundary may be differ but it may lead to unexpected results.</DD>
+and maps boundary may be differ but it may lead to unexpected results.</dd>
 <p>
-<DT><b>table</b></DT>
-<DD>Table where stream network topology can be stored. Because r.stream.order is
+<dt><b>table</b></dt>
+<dd>Table where stream network topology can be stored. Because r.stream.order is
 prepared to work both with r.watershed and r.stream.extract, table by default is
 not attached to vector, but if stream network is produced by r.stream.extract it
 can be simply added to file using <a href="v.db.coonect.html">v.db.connect</a>.
-See DESCRIPTION for details</DD>
+See DESCRIPTION for details</dd>
 
 <p>
-<DT><b>accum</b></DT>
-<DD>Flow accumulation (optional, not recommended): name of flow accumulation
+<dt><b>accum</b></dt>
+<dd>Flow accumulation (optional, not recommended): name of flow accumulation
 file produced by r.watershed or used in r.stream.extract. This map is an option
 only if Horton's or Hack's ordering is performed. Normally both Horton and Hack
-ordering is calculated on cumulative stream lrngth wchich is calculated
+ordering is calculated on cumulative stream lrngth which is calculated
 internaly. Flow accumulation can be used if user want to calculate main stream
 as most accumulated stream. Flow accumulation map shall be of DCELL type, as is
-by default produced by r.watershed or converted do DCELL with r.mapcalc.</DD>
+by default produced by r.watershed or converted do DCELL with r.mapcalc.</dd>
 
 <h2>OUTPUTS</h2>
 
-<P>At least one output map is required: </p>
-<DT><b>strahler</b></DT>
-<DD>Name of Strahler's stream order output map: see notes for detail. </DD>
+<p>At least one output map is required: </p>
+<dt><b>strahler</b></dt>
+<dd>Name of Strahler's stream order output map: see notes for detail. </dd>
 
-<DT><b>shreve</b></DT>
-<DD>Name of Shreve's stream magnitude output map: see notes for detail.</DD>
+<dt><b>shreve</b></dt>
+<dd>Name of Shreve's stream magnitude output map: see notes for detail.</dd>
 
-<DT><b>horton</b></DT>
-<DD>Name of Horton's stream order output map (require accum file): see notes for
-detail.</DD>
+<dt><b>horton</b></dt>
+<dd>Name of Horton's stream order output map (require accum file): see notes for
+detail.</dd>
 
-<DT><b>hack</b></DT>
-<DD>Name of Hack's main streams output map : see notes for detail.</DD>
+<dt><b>hack</b></dt>
+<dd>Name of Hack's main streams output map : see notes for detail.</dd>
 
-<DT><b>top</b></DT>
-<DD>Name of topological dimensions streams output map: see notes for
-detail.</DD>
+<dt><b>top</b></dt>
+<dd>Name of topological dimensions streams output map: see notes for
+detail.</dd>
 
-</DL>
+</dl>
 
 <h3>Stream ordering example:</h3>
 <center>
 <img src=orders.png border=1><br>
 </center>
 
-<P>
-<H4>Strahler's stream order</H4>
+<p>
+<h4>Strahler's stream order</h4>
 Strahler's stream order is a modification of Horton's streams order which fixes
 the ambiguity of Horton's ordering. 
 In Strahler's ordering the main channel is not determined; instead the ordering
 is based on the hierarchy of tributaries. The ordering follows these rules:
-<OL>
+<ol>
 <li>if the node has no children, its Strahler order is 1.
 <li>if the node has one and only one tributuary with Strahler greatest order i,
-and all other tributuaries have order less than i, then the order remains i.
-<li>if the node has two or more tributuaries with greatest order i, then the
+and all other tributaries have order less than i, then the order remains i.
+<li>if the node has two or more tributaries with greatest order i, then the
 Strahler order of the node is i + 1.
-</OL>
+</ol>
 Strahler's stream ordering starts in initial links which assigns order one. It
 proceeds downstream. At every node it verifies that there are at least 2 equal
 tributaries with maximum order. If not it continues with highest order, if yes
 it increases the node's order by 1 and continues downstream with new order. 
-<BR>
-<B>Advantages and disadvantages of Strahler's ordering: </B>
+<br>
+<b>Advantages and disadvantages of Strahler's ordering: </b>
  Strahler's stream order has a good mathematical background. All catchments with
 streams in this context are directed graphs, oriented from the root towards the
 leaves. Equivalent definition of the Strahler number of a tree is that it is the
@@ -103,7 +103,7 @@
 channel which may interfere with the analytical process in highly elongated
 catchments
 
-<H4>Horton's stream order</H4>
+<h4>Horton's stream order</h4>
 Horton's stream order applies to the stream as a whole but not to segments or
 links since the order on any channel remains unchanged from source till it
 "dies" in the higher order stream or in the outlet of the catchment. The main
@@ -128,28 +128,28 @@
 upstream to the next initial links. In that way stream orders remain unchanged
 from the point where Horton's order have been determined to the source. 
  
-<BR>
-<B>Advantages and disadvantages of Horton's ordering:</B> 
+<br>
+<b>Advantages and disadvantages of Horton's ordering:</b> 
 The main advantages of Horton's ordering is that it produces natural stream
 ordering with main streams and its tributaries. The main disadvantage is that it
 requires prior Strahler's ordering. In some cases this may result in unnatural
 ordering, where the highest order will be ascribed not to the channel with
 higher accumulation but to the channel which leads to the most branched parts of
 the the catchment. 
-<P>
-<H4>Shreve's stream magnitude</H4>
+<p>
+<h4>Shreve's stream magnitude</h4>
 That ordering method is similar to Consisted Associated Integers proposed by
 Scheidegger. It assigns magnitude of 1 for every initial channel. The magnitude
 of the following channel is the sum of magnitudes of its tributaries. The number
 of a particular link is the number of initials which contribute to it. To achive
 Consisted Associated Integers the result of Shreve's magnitude is to be
 multiplied by 2: 
-<P>
+<p>
 <code>r.mapcalc scheidegger=shreve*2</code>
 The algorithm is very similar to Strahler's algorithm, it proceeds downstream,
 and at every node the stream magnitude is the sum of its tributaries.
-<P>
-<H4>Hack's main streams order</H4>
+<p>
+<h4>Hack's main streams order</h4>
 This method of ordering calculates main streams of main catchment and every
 subcatchments. Main stream of every catchment is set to 1, and consequently all
 its tributaries receive order 2. Their tributaries receive order 3 etc. The
@@ -165,8 +165,8 @@
 unassigned confluence. It assigns order 2 to unordered tributaries and again
 goes upstream to the next initial stream. The process runs until all branches of
 all outlets are ordered. 
-<BR>
-<B>Advantages and disadvantages of main stream ordering:</B>
+<br>
+<b>Advantages and disadvantages of main stream ordering:</b>
 The biggest advantage of that method is the possibility to compare and analyze
 topology upstream, according to main streams. Because all tributaries of main
 channel have order of 2, streams can be quickly and easily filtered and its
@@ -174,14 +174,14 @@
 that method is the problem with the comparison of subcatchment topology of the
 same order. Subcatchments of the same order may be both highly branched and
 widespread in the catchment area and a small subcatchment with only one stream. 
-<H4>Topological dimension streams order</H4>
+<h4>Topological dimension streams order</h4>
 This method of ordering calculates topological distance of every stream from
 catchment outlet. The topopological distance is defined as the number of
 segments which separates the current segment from the outlet basin 
-<BR>
+<br>
 
 
-<H4>Stream network topology table description</H4>
+<h4>Stream network topology table description</h4>
 	<li><b>cat</b> integer: category;
 	<li><b>stream</b>integer: stream number, usually equal to cat;
 	<li><b>next_stream</b> integer: stream to which contribute current
@@ -200,8 +200,8 @@
 	<li><b>fractal</b> double precision: fractal dimention: stream
 length/stright stream length
 
-<h2>NOTES</H2>
-<P>
+<h2>NOTES</h2>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted. This


Property changes on: grass-addons/raster/r.stream.order/description.html
___________________________________________________________________
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.stream.pos/description.html
===================================================================
--- grass-addons/raster/r.stream.pos/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.pos/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,12 +1,12 @@
 <h2>OPTIONS</h2>
-<DL>
-<DT><b>-s</b></DT>
-<DD>Creates new category sequence for stream network instead of original. It may
+<dl>
+<dt><b>-s</b></dt>
+<dd>Creates new category sequence for stream network instead of original. It may
 be usefull for calculating pixel position in ordered network (i.e Strahler or
-Horton). By defualt it use original category of streams</DD>
+Horton). By defualt it use original category of streams</dd>
 <p>
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which calculation are be
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which calculation are be
 performed produced by r.watershed, r.stream.extract or r.stream.order. Because
 streams network produced by r.watershed and r.stream.extract may slighty differ
 in detail it is required to use both stream and direction map produced by the
@@ -14,10 +14,10 @@
 Background values of NULL are by default produced by r.watershed,
 r.stream.extract and r.stream.order. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -26,11 +26,11 @@
 Also <em>stream</em> network map must have the same resolution. It is checked by
 default. If resolutions differ the module informs about it and stops. Region
 boundary
-and maps boundary may be differ but it may lead to unexpected results.</DD>
+and maps boundary may be differ but it may lead to unexpected results.</dd>
 
 <p>
-<DT><b>multipier</b></DT>
-<DD>Integer used to multiply stream category for cells output map. Default is
+<dt><b>multipier</b></dt>
+<dd>Integer used to multiply stream category for cells output map. Default is
 1000. To store in one file both origial stream category and current pixel
 position the stream category is multipied by multipier and next current cell
 position is added.
@@ -38,38 +38,38 @@
 seems to be enough. For bigger networks or ordered networks may be to small in
 that multiper shall be increased to larger number: 10000 or 100000. Wrong
 multipier (ie not power of 10) do not stop calculation but may lead to wrong
-results.</DD>
+results.</dd>
 
 <h2>OUTPUTS</h2>
 
-<P>At least one output map is required: </p>
-<DT><b>cells</b></DT>
-<DD>Name of integer map storing both original (or new) stream category and
-current pixel downstream position  according formula <CODE>category * multipier
-+ cur_pix_pos</CODE>.</DD>
+<p>At least one output map is required: </p>
+<dt><b>cells</b></dt>
+<dd>Name of integer map storing both original (or new) stream category and
+current pixel downstream position  according formula <code>category * multipier
++ cur_pix_pos</code>.</dd>
 
-<DT><b>lengths</b></DT>
-<DD>Name of floation point map storing current pixel upstream distance (in map
-units) to the begining of the stream. Categoy is not stored.</DD>
+<dt><b>lengths</b></dt>
+<dd>Name of floation point map storing current pixel upstream distance (in map
+units) to the begining of the stream. Categoy is not stored.</dd>
 
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.pos is typical helper module which can be used to fine-tune
 investigation on stream network at pixel scale and linear geostatistics. Module
 can be used together with other GRASS modules and R-CRAN to investigate local
 geomorphometric properties at any stream position.
 
 For limiting oputput size, cells stores two informations in one file. To recive
-current pixel stream category use (in R-CRAN) function <CODE>floor(cells,
-multipier)</CODE>, where multipier is the multipier value used in r.stream.pos
+current pixel stream category use (in R-CRAN) function <code>floor(cells,
+multipier)</code>, where multipier is the multipier value used in r.stream.pos
 calculation. To recive current pixel position in segment use modulo operator:
-<CODE>cell %% multipier</CODE>. The lengths map store only upstream distance in
+<code>cell %% multipier</code>. The lengths map store only upstream distance in
 map units from current pixel to the stream begining.
 
 
-<h2>NOTES</H2>
-<P>
+<h2>NOTES</h2>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted. This
@@ -89,5 +89,5 @@
 <h2>AUTHOR</h2>
 Jarek  Jasiewicz
 
-<p><i>Last changed: $Date: 2010-11-13 13:02:26 +0100 (Sat, 13 Nov 2010) $</i>
+<p><i>Last changed: $Date$</i>
 


Property changes on: grass-addons/raster/r.stream.pos/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.stream.stats/description.html
===================================================================
--- grass-addons/raster/r.stream.stats/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.stream.stats/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,18 +1,18 @@
 <h2>OPTIONS</h2>
-<DL>
+<dl>
 
-<DT><b>stream</b></DT>
-<DD>Stream network: name of input stream map on which ordering will be performed
+<dt><b>stream</b></dt>
+<dd>Stream network: name of input stream map on which ordering will be performed
 produced by r.watershed or r.stream.extract. Because streams network produced by
 r.watershed and r.stream.extract may slighty differ in detail it is required to
 use both stream and direction map produced by the same module. Stream background
 shall have NULL value or zero value. Background values of NULL are by default
 produced by r.watershed and r.stream.extract. If not 0 or NULL use <a
 href="r.mapcalc.html">r.mapcalc</a> to set background values to null.  
-</DD>
+</dd>
 <p>
-<DT><b>dir</b></DT>
-<DD>Flow direction: name of input direction map produced by r.watershed or
+<dt><b>dir</b></dt>
+<dd>Flow direction: name of input direction map produced by r.watershed or
 r.stream.extract. If r.stream.extract output map is used, it only has non-NULL
 values in places where streams occur. NULL (nodata) cells are ignored, zero and
 negative values are valid direction data if they vary from -8 to 8 (CCW from
@@ -21,12 +21,12 @@
 Also <em>stream</em> network map must have the same resolution. It is checked by
 default. If resolutions differ the module informs about it and stops. Region
 boundary and maps boundary may be differ but it may lead to unexpected
-results.</DD>
+results.</dd>
 <p>
-<DT><b>elev</b></DT>
-<DD>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
+<dt><b>elev</b></dt>
+<dd>Elevation: name of input elevation map. Map can be of type CELL, FCELL or
 DCELL. It is not restricted to resolution of region settings as stream and
-dir.</DD>
+dir.</dd>
 
 
 
@@ -34,22 +34,22 @@
 Output statistics are send to standard output. If there are no errors no
 addational messages are send to standard output. To redirect output to file use
 redarection operators: > or >>.
-</DL>
+</dl>
 
 <h2>DESCRIPTION</h2>
-<P>
+<p>
 Module r.stream.stats is prepared to calculate Hotron's statistics of drainage
 network.
-<P>
+<p>
 These statistics are calculated according formulas given by R.Horton (1945).
 Because Horton do not defined precisely what is stream slope, I proposed 2
 different approaches: first (slope) use cell-by-cell slope calculation, second
 (gradient) use difference between elevation of outlet and source of every
 channel to its length to calculate formula. Bifurcation ratio for every order is
 calculated acording formula: 
-<P>
-<CODE>n_streams[1]/n_stream[i+1]</CODE>
-<P> 
+<p>
+<code>n_streams[1]/n_stream[i+1]</code>
+<p> 
 where i the current order and i+1 next higher order. For max order of the map
 number of streams is zero. Rest of the ratios are calculated in similar mode.
 The bifurcation and other ratios for the whole catchment (map) is calculated as
@@ -60,7 +60,7 @@
 performed but results may not have hydrological sense.
 
 For every order (std) means that statstic is calculated with standard deviation:
-<UL>
+<ul>
 <li>number of streams
 <li>total length of streams of  given order
 <li>total area of basins of given order 
@@ -73,20 +73,20 @@
 (std)
 <li>average area of basins of given order (std)
 <li>avarage elevation difference of given order (std)
-<P>ratios:
+<p>ratios:
 <li>bifuracation ratio
 <li>length ratio
 <li>sloope and gradient ratios
 <li>area ratio
-</UL>
+</ul>
 for the whole basin:
-<UL>
+<ul>
 <li>total number of streams
 <li>total length of streams 
 <li>total basin area
 <li>drainage density
 <li>stream density
-<P>ratios:
+<p>ratios:
 <li>bifurcation ratio (std)
 <li>length ratio (std)
 <li>slope and gradient ratios (std)
@@ -95,21 +95,21 @@
 
 
 <h2>NOTES</h2>
-<P>
+<p>
 Module calculates statistics for all streams in input stream map.It is strongly
-recomended to extract only network of one basin, but it is not necessary for
+recommended to extract only network of one basin, but it is not necessary for
 computation.  Streams for desired basin first can be extracted  with following
 mapcalc formula:
 
-<P>
-<CODE>echo 'sel_streams=if(basin==xxx,streams,null())'|r.mapcalc #xxx category
-of desired basin<CODE>
-<P>
+<p>
+<code>echo 'sel_streams=if(basin==xxx,streams,null())'|r.mapcalc #xxx category
+of desired basin<code>
+<p>
 
 It is also possible to calculate Horton's statistics for Shreve ordering but it
 has limited hydrological sense. Hack main stream is not the same what so called
 Horton's reverse ordering.
-<P>
+<p>
 Module can work only if direction map, stream map and region map has same
 settings. It is also required that stream map and direction map come from the
 same source. For lots of reason this limitation probably cannot be omitted.  

Modified: grass-addons/raster/r.surf.volcano/description.html
===================================================================
--- grass-addons/raster/r.surf.volcano/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.surf.volcano/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,33 +1,33 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 
-<EM>r.surf.volcano</EM> creates an artificial surface resembling a seamount
+<em>r.surf.volcano</em> creates an artificial surface resembling a seamount
 or cone volcano. The user can alter the size and shape of the mountain and
 optionally roughen its surface.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The friction of distance controls the shape of the mountain when using
 the default polynomial method. Higher values generate steeper slopes.
-<P>
+<p>
 The <i>pseudo</i>-<b>kurtosis</b> factor is used with all other methods
 to control the slope steepness. For the Gaussian method setting the value
 nearer to zero creates a flatter surface, while higher values generate
 steeper slopes. For Lorentzian, logarithmic, and exponential methods the
 opposite is true.
-<P>
+<p>
 The surface roughness factor controls the fixed standard deviation
 distance (<b>sigma</b>) used in the Gaussian random number generator.
-It is only used when the <B>-r</B> roughen surface flag is turned on.
+It is only used when the <b>-r</b> roughen surface flag is turned on.
 A value closer to zero makes a smoother surface, a higher value makes
 a rougher surface.
-<P>
-It is possible to set a negative value for the <B>peak</B> in order
+<p>
+It is possible to set a negative value for the <b>peak</b> in order
 to create a pit.
 
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 <div class="code"><pre>
 r.surf.volcano -r output=seamount
@@ -66,18 +66,18 @@
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="r.surf.fractal.html">r.surf.fractal</A><BR>
-<A HREF="r.surf.gauss.html">r.surf.gauss</A><BR>
-<A HREF="r.surf.random.html">r.surf.random</A>
-</EM>
+<em>
+<a href="r.surf.fractal.html">r.surf.fractal</a><br>
+<a href="r.surf.gauss.html">r.surf.gauss</a><br>
+<a href="r.surf.random.html">r.surf.random</a>
+</em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
-<i>Dept. Marine Science<BR>
+Hamish Bowman<br>
+<i>Dept. Marine Science<br>
 University of Otago<BT>
 Dunedin, New Zealand</i>
 


Property changes on: grass-addons/raster/r.threshold/r.threshold.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.viewshed/r.viewshed.html
===================================================================
--- grass-addons/raster/r.viewshed/r.viewshed.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.viewshed/r.viewshed.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <p><em>r.viewshed</em> is a module that computes the viewshed of a
 point on a raster terrain. That is, given an elevation raster, and the


Property changes on: grass-addons/raster/r.wf/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/raster/r.xtent/description.html
===================================================================
--- grass-addons/raster/r.xtent/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/raster/r.xtent/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,10 +1,10 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>r.xtent</em> computes a raster map layer representing the Voronoi diagram,
 weighted Voronoi diagram or a more complex territorial partitioning of space around points (centers) 
 in a vector input map (option <em>centers=</em>), based on the XTENT formula.
 
-<H2>BACKGROUND</H2>
+<h2>BACKGROUND</h2>
 <p>
 The algorithm is based on the simple XTENT formula, first published by Renfrew and Level in 1979:
 <p>
@@ -172,7 +172,7 @@
 The memory footprint of <em>r.xtent</em> is very low and CPU time will grow linearly with the number of centers.
 If "ruler" constraints are given, however, processing time will increase exponentially.
 
-<H2>EXAMPLES</h2>
+<h2>EXAMPLES</h2>
 
 The following are examples of territorial models with increasing complexity.
 
@@ -231,21 +231,21 @@
 The program may create temporary maps in the current mapset. If it crashes unexpectedly, it might leave 
 those (prefixed with "XTENT") in the user's mapset. Use <em>g.mremove</em> to delete them.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <p>
-<EM><A HREF="v.voronoi">v.voronoi</A></EM>,
-<EM><A HREF="d.vect.html">d.vect</A></EM>,
-<EM><A HREF="r.cost.html">r.walk</A></EM>,
-<EM><A HREF="r.walk.html">r.walk</A></EM>,
-<EM><A HREF="r.burn.frict.html">r.burn.frict</A></EM>
-<EM><A HREF="g.mremove.html">g.mremove</A></EM>
+<em><a href="v.voronoi">v.voronoi</a></em>,
+<em><a href="d.vect.html">d.vect</a></em>,
+<em><a href="r.cost.html">r.walk</a></em>,
+<em><a href="r.walk.html">r.walk</a></em>,
+<em><a href="r.burn.frict.html">r.burn.frict</a></em>
+<em><a href="g.mremove.html">g.mremove</a></em>
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Renfrew, C. and Level, E. V. 1979: Exploring Dominance: Predicting Polities from Centers. In Transformations:
 Mathematical Approaches to Culture Change, edited by C. Renfrew and K. L. Cooke (Academic Press, New York), pp. 145-166.
 
-<H2>AUTHORS</h2>
+<h2>AUTHORS</h2>
 
 Benjamin Ducke (benjamin.ducke AT oadigital.net)
 


Property changes on: grass-addons/raster/r.xtent/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native


Property changes on: grass-addons/roadmap/homepage/index.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/adehabitat/v.adehabitat.clusthr/description.html
===================================================================
--- grass-addons/vector/adehabitat/v.adehabitat.clusthr/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/adehabitat/v.adehabitat.clusthr/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -45,15 +45,15 @@
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-<p><EM>Kenward R.E., Clarke R.T., Hodder K.H. and Walls S.S. (2001)
+<p><em>Kenward R.E., Clarke R.T., Hodder K.H. and Walls S.S. (2001)
 Density and linkage estimators of homre range: nearest neighbor
-clustering defines multinuclear cores. Ecology, 82, 1905-1920.</EM></p>
+clustering defines multinuclear cores. Ecology, 82, 1905-1920.</em></p>
 
-<p><EM>Calenge, C. (2006) The package adehabitat for the R software: a tool
+<p><em>Calenge, C. (2006) The package adehabitat for the R software: a tool
 for the analysis of space and habitat use by animals. Ecological
-Modelling, 197, 516-519.</EM></p>
+Modelling, 197, 516-519.</em></p>
 
 
 <h2>EXAMPLE</h2>
@@ -80,13 +80,13 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="v.hull.html">v.hull</a></em>, 
-<em><a HREF="v.adehabitat.mcp.html">v.adehabitat.mcp</a></em>, 
-<em><a HREF="v.adehabitat.kernelUD.html">v.adehabitat.kernelUD</a></em>
+<em><a href="v.hull.html">v.hull</a></em>, 
+<em><a href="v.adehabitat.mcp.html">v.adehabitat.mcp</a></em>, 
+<em><a href="v.adehabitat.kernelUD.html">v.adehabitat.kernelUD</a></em>
 
 
 <h2>AUTHOR</h2>
 
 Clement Calenge
 
-<p><i>Last changed: $Date: 2007/08/23 17:12:30 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/adehabitat/v.adehabitat.clusthr/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/adehabitat/v.adehabitat.kernelUD/description.html
===================================================================
--- grass-addons/vector/adehabitat/v.adehabitat.kernelUD/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/adehabitat/v.adehabitat.kernelUD/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <p><em>v.adehabitat.kernelUD</em> is used to estimate the utilization distribution (UD)
 of animals monitored by radio-tracking, with the classical kernel
@@ -76,25 +76,25 @@
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-<p><EM>Worton, B.J. (1995) Using Monte Carlo simulation to evaluate
+<p><em>Worton, B.J. (1995) Using Monte Carlo simulation to evaluate
 kernel-based home range estimators. Journal of Wildlife Management,
-59, 794-800.</EM></p>
+59, 794-800.</em></p>
 
-<p><EM>Calenge, C. (2006) The package adehabitat for the R software: a tool
+<p><em>Calenge, C. (2006) The package adehabitat for the R software: a tool
 for the analysis of space and habitat use by animals. Ecological
-Modelling, 197, 516-519.</EM></p>
+Modelling, 197, 516-519.</em></p>
 
 
-<H2>SEE ALSO</H2>
-<EM>
-<A HREF="v.kernel.html">v.kernel</A></EM>, <A HREF="v.adehabitat.clusthr.html">v.adehabitat.clusthr</A></EM>, <A HREF="v.adehabitat.mcp.html">v.adehabitat.mcp</A></EM>.
+<h2>SEE ALSO</h2>
+<em>
+<a href="v.kernel.html">v.kernel</a></em>, <a href="v.adehabitat.clusthr.html">v.adehabitat.clusthr</a></em>, <a href="v.adehabitat.mcp.html">v.adehabitat.mcp</a></em>.
 
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 Clement Calenge, Universite Lyon 1, France<br>
 Original code by Stefano Menegon, ITC-irst, Trento, Italy.
 
-<p><i>Last changed: $Date: 2007/08/23 17:13:12 $</i></p>
+<p><i>Last changed: $Date$</i></p>


Property changes on: grass-addons/vector/adehabitat/v.adehabitat.kernelUD/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/adehabitat/v.adehabitat.mcp/description.html
===================================================================
--- grass-addons/vector/adehabitat/v.adehabitat.mcp/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/adehabitat/v.adehabitat.mcp/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -9,11 +9,11 @@
 modification of the module v.hull of Andrea Aime (aaime at libero.it).</p>
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-<p><EM> Mohr, C.O. (1947) Table of equivalent populations of north 
+<p><em> Mohr, C.O. (1947) Table of equivalent populations of north 
 american small mammals. The American Midland Naturalist, 37,
-223-249.</EM></p>
+223-249.</em></p>
 
 
 
@@ -28,13 +28,13 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="v.hull.html">v.hull</a></em>, 
-<em><a HREF="v.adehabitat.clusthr.html">v.adehabitat.clusthr</a></em>,
-<em><a HREF="v.adehabitat.kernelUD.html">v.adehabitat.kernelUD</a></em>
+<em><a href="v.hull.html">v.hull</a></em>, 
+<em><a href="v.adehabitat.clusthr.html">v.adehabitat.clusthr</a></em>,
+<em><a href="v.adehabitat.kernelUD.html">v.adehabitat.kernelUD</a></em>
 
 
 <h2>AUTHOR</h2>
 
 Clement Calenge
 
-<p><i>Last changed: $Date: 2007/08/23 17:12:30 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/adehabitat/v.adehabitat.mcp/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.autokrige/description.html
===================================================================
--- grass-addons/vector/v.autokrige/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.autokrige/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -7,4 +7,4 @@
 Mathieu Grelier (greliermathieu at gmail.com)
 
 <p>
-<i>Last changed: $Date: 2009-07-14 07:52:42 +0200 (Tue, 14 Jul 2009) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.autokrige/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.curvature/description.html
===================================================================
--- grass-addons/vector/v.curvature/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.curvature/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -3,25 +3,25 @@
 <em>v.curvature</em> calculates average curvature along a segment
 given by from/to distance measured along the line specified by
 category.
-<P>
+<p>
 For individual straight parts of the line, the average curvature as
 calculated from directions of adjacent parts. An average of specified
 segment is then calculated as average from curvatures of line parts
 (lengths of line parts overlapped by specified segment are taken into
 acount).
-<P>
+<p>
 This method may be used only if line data digitized with appropriate
 accuracy, where 'appropriate' depend on an application we want to use
 it for and on the length of the segment we want to calculate the
 curvature for.
-<P>
+<p>
 If user needs curvature for too small segments compared to the density
 of vertices on lines, the lines should be smoothed beforehand with
 some other module (this approach is preferred to internal smoothing
 (interpolating) within v.curvature, because automatic smoothing may
 often result in unexpected, unwanted shapes, and user should see which
 data are really processed).
-<P>
+<p>
 With the 'segment' option, the module reads from 'stdin':
 <ul>
 <li> segment_id line_category from to
@@ -46,4 +46,4 @@
 
 Radim Blazek, ITC-Irst, Trento, Italy
 
-<p><i>Last changed: $Date: 2006/01/02 14:44:51 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.curvature/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.db.calc/description.html
===================================================================
--- grass-addons/vector/v.db.calc/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.db.calc/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,15 +1,15 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 
-<EM>v.db.calc</EM> executes a python expression using column values and 
+<em>v.db.calc</em> executes a python expression using column values and 
 update the target column values: it allows complex calculation also with DBF attribute table.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 The v.db.calc must be run with a valid <a href="http://www.python.org/">Python</a> installed.<br>
 The columns within expression should be referred between square brackets <em> [ ] </em>.<br>
 Python functions should be referred with their full name.
 
-<H2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 Add a new column named EXP and populate it with the values of column "VAL" elevated at 0.25:
 <div class="code"><pre>
 v.db.addcol map=build columns="EXP double"
@@ -33,17 +33,17 @@
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 <a href="http://docs.python.org">Python</a>
 <p> 
 <a href="http://docs.python.org/library/cmath.html">Python math library</a>
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM><A HREF="v.db.update.html">v.db.update</A></EM>
+<em><a href="v.db.update.html">v.db.update</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Massimiliano Cannata <br>
 
-<p><i>Last changed: $Date: 2009-01-07 17:45:44 +0100 (Wed, 07 Jan 2009) $</i>
\ No newline at end of file
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.db.calc/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.eqsm/description.html
===================================================================
--- grass-addons/vector/v.eqsm/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.eqsm/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -8,4 +8,4 @@
 <br />
 
 <p>
-<i>Last changed: $Date: 2009-07-14 07:52:42 +0200 (mar, 14 lug 2009) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.eqsm/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.in.geodesic/description.html
===================================================================
--- grass-addons/vector/v.in.geodesic/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.geodesic/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -3,23 +3,23 @@
 <em>v.in.geodesic</em> creates a new vector map containing a great circle
 line. The user can select to use either a starting and ending point,
 or a starting point with initial azimuth and line length.
-<P>
+<p>
 The initial azimuth is measured in degrees clockwise from north.
 Line length and segment distance are both measured in meters.
 <!-- or ellipsoid units if that's not in meters (???) -->
-<P>
+<p>
 If the <b>distance</b> parameter is given, polyline segments will be broken
 at that distance interval. Otherwise the line will be broken into
 <b>nsteps</b> equally spaced segments.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Currently this module only works from a Lat/Long location.
 Use <em>v.proj</em> to reproject the results if needed.
-<P>
+<p>
 This module requires the <tt>geod</tt> program from
- <a href="http://proj.osgeo.org">PROJ.4</a> to be installed.
+ <a href="http://proj.OSGeo.org">PROJ.4</a> to be installed.
  (often this is already installed with the GRASS package)
 
 
@@ -48,22 +48,22 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <em>
-<A HREF="d.geodesic.html">d.geodesic</A><br>
-<A HREF="d.rhumbline.html">d.rhumbline</A><br>
-<A HREF="m.cogo.html">m.cogo</A><br>
-<A HREF="r.profile.html">r.profile</A><br>
-<A HREF="r.transect.html">r.transect</A>
+<a href="d.geodesic.html">d.geodesic</a><br>
+<a href="d.rhumbline.html">d.rhumbline</a><br>
+<a href="m.cogo.html">m.cogo</a><br>
+<a href="r.profile.html">r.profile</a><br>
+<a href="r.transect.html">r.transect</a>
 </em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dept. Marine Science<br>
 University of Otago<br>
 Dunedin, New Zealand</i>
-<BR>
+<br>
 
 <p>
 <i>Last changed: $Date$</i>

Modified: grass-addons/vector/v.in.geoplot/description.html
===================================================================
--- grass-addons/vector/v.in.geoplot/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.geoplot/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -3,10 +3,10 @@
 <em>v.in.geoplot</em>
 <p>
 A module for easy import of Geoplot 3.0 ASCII data. Note that Geoplot data is in a local, non-geodetic reference system. 
-Another tool such as <EM><A HREF="v.transform.html">v.transform</A></EM> will commonly be necessary to georeference and integrate it with existing data.
+Another tool such as <em><a href="v.transform.html">v.transform</a></em> will commonly be necessary to georeference and integrate it with existing data.
 <p>
 Geoplot is produced by and copyright of <a href="http://www.geoscan-research.co.uk">Geoscan Research</a>.
-<P>
+<p>
 
 <h2>BACKGROUND</h2>
 


Property changes on: grass-addons/vector/v.in.geoplot/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.in.gshhs/description.html
===================================================================
--- grass-addons/vector/v.in.gshhs/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.gshhs/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -63,9 +63,9 @@
 <h2>SEE ALSO</h2>
 
 <em>
-<a HREF="v.db.addtable.html">v.db.addtable</a>,
-<a HREF="v.to.db.html">v.to.db</a>,
-<a HREF="v.type.html">v.type</a>,
+<a href="v.db.addtable.html">v.db.addtable</a>,
+<a href="v.to.db.html">v.to.db</a>,
+<a href="v.type.html">v.type</a>,
 </em>
 
 <h2>REFERENCES</h2>


Property changes on: grass-addons/vector/v.in.gshhs/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.in.marxan/description.html
===================================================================
--- grass-addons/vector/v.in.marxan/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.marxan/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,9 +1,9 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.in.marxan</EM> is a python script reads output from marxan and updates the planning grid vector file 
-prepared using <EM>v.out.marxan</EM>. 
+<em>v.in.marxan</em> is a python script reads output from marxan and updates the planning grid vector file 
+prepared using <em>v.out.marxan</em>. 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Use of the DOS output format will create a second file with '.dos' appended to the output file name.  
 Consistent specification of the Planning Unit Key field is necessary in all Marxan scripts to ensure a working set of ouptut files. 
@@ -11,15 +11,15 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="v.out.marxan.html">v.out.marxan</a>,
-<a HREF="v.mkhexgrid">v.mkhexgrid</a>,
+<em><a href="v.out.marxan.html">v.out.marxan</a>,
+<a href="v.mkhexgrid">v.mkhexgrid</a>,
 </em>
-<p><a HREF="http://www.uq.edu.au/marxan/">Marxan Home Page</a></p>
+<p><a href="http://www.uq.edu.au/marxan/">Marxan Home Page</a></p>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 Trevor Wiens
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 <p><a href="http://www.uq.edu.au/marxan/docs/marxan_manual_1_8_2.pdf" target="_blank">Ball, I.R., and H.P. Possingham, 2000. MARXAN (V1.8.2): Marine Reserve Design Using Spatially Explicit Annealing, a Manual.</a></p>
 
@@ -29,4 +29,4 @@
 
 <p><a href="http://www.uq.edu.au/marxan/docs/Marxan%20Good%20Practices%20Handbook%20v2%202010.pdf" target="_blank">Ardron, J. H.P. Possingham and C.J. Klein (Eds.),Version 2, 2010. Marxan good practices handbook. University of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association, Vancouver, British Columbia, Canada.</a> </p>
 
-<p><i>Last changed: $Date: 2010-11-24 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.in.marxan/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.in.mbsys_fnv/description.html
===================================================================
--- grass-addons/vector/v.in.mbsys_fnv/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.mbsys_fnv/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,4 +1,4 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 This module will import <tt>.fnv</tt> format navigation files generated
 by <a href="http://www.ldeo.columbia.edu/res/pi/MB-System/">MB-System</a>.
@@ -6,38 +6,38 @@
 of different ways.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Geodesic line length/swath width (in meters) is provided for the <i>track</i>
 line and <i>scanline</i> types, and geodesic area (in square meters) is given
 for the swath coverage type.
 
-<P>
+<p>
 The databases for <i>port_trk</i> and <i>stbd_trk</i> line maps contain
 the ship's <i>center track line</i> lat/lon starting and ending position,
 not the starting and ending position of the outward beams. Positions
 for the start and end points of the outward beams are encoded in the
 map data and may be extracted with e.g. the <em>v.to.db</em> module.
 
-<P>
+<p>
 The <em>v.patch</em> module can be used to group many scan lines together
 into the same map. See the GRASS
- <a href="http://grass.osgeo.org/wiki/MB-System">MB-System wiki page</a>
+ <a href="http://grass.OSGeo.org/wiki/MB-System">MB-System wiki page</a>
 for details and many examples.
-<BR>
+<br>
 If you want to patch the tracks together later it is suggested to extract
 some sort of integer from the input filename to set as the category
 number. GRASS vector maps must have SQL compliant names, i.e. they
 may not start with a number or contain characters such as "." or "-".
 
-<P>
+<p>
 If attributes for all maps are stored in a central database, for example
 <a href="grass-sqlite.html">SQLite</a> or <a href="grass-pg.html">Postgres</a>,
 an assortment of SQL database queries can be made.
 
 
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 Here is a loop to read in all the maps listed in the
 <tt>datalist-1</tt> file and import tracks and swath coverages for them.
@@ -72,7 +72,7 @@
 <h4>SQL queries</h4>
 After maps are imported SQL queries may be performed on a unified
 database (for example SQLite or Postgres).
-<P>
+<p>
 Find all track files within a given bounding box on julain day 261
 with a track length shorter than 500 meters:
 
@@ -97,32 +97,28 @@
   FROM datalist_tracks WHERE length_m < 500"
 </pre></div>
 
-
-
-
-
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <em>
-<A HREF="v.in.ascii.html">v.in.ascii</A><br>
-<A HREF="v.in.mapgen.html">v.in.mapgen</A><br>
-<A HREF="r.in.xyz.html">r.in.xyz</A><br>
-<A HREF="v.patch.html">v.patch</A><br>
-<A HREF="v.to.db.html">v.to.db</A>
+<a href="v.in.ascii.html">v.in.ascii</a><br>
+<a href="v.in.mapgen.html">v.in.mapgen</a><br>
+<a href="r.in.xyz.html">r.in.xyz</a><br>
+<a href="v.patch.html">v.patch</a><br>
+<a href="v.to.db.html">v.to.db</a>
 </em>
-<BR><BR>
-The <a href="http://grass.osgeo.org/wiki/MB-System">MB-System page</a>
- on the GRASS wiki site<BR>
+<br><br>
+The <a href="http://grass.OSGeo.org/wiki/MB-System">MB-System page</a>
+ on the GRASS wiki site<br>
 <a href="http://www.ldeo.columbia.edu/res/pi/MB-System/">MB-System</a>
  software for multibeam and sidescan sonar processing
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dept. Marine Science<br>
 University of Otago<br>
 Dunedin, New Zealand</i>
-<BR>
+<br>
 
 <p>
 <i>Last changed: $Date$</i>

Modified: grass-addons/vector/v.in.osm2/description.html
===================================================================
--- grass-addons/vector/v.in.osm2/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.osm2/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -4,12 +4,12 @@
 <a href="http://www.osm.org">OpenStreetMap</a>'s database
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The Xapi servers are often overloaded. Check with the
 <a href="http://wiki.openstreetmap.org/wiki/Xapi">OSM wiki</a>
 for current status.
-<P>
+<p>
 See the same OSM Wiki for details on setting the query string.
 
 
@@ -24,19 +24,19 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="v.in.ogr.html">v.in.ogr</A><br>
+<a href="v.in.ogr.html">v.in.ogr</a><br>
 </em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dept. Marine Science<br>
 University of Otago<br>
 Dunedin, New Zealand</i>
-<BR>
+<br>
 
 <p>
 <i>Last changed: $Date$</i>

Modified: grass-addons/vector/v.in.postgis/v.in.postgis.html
===================================================================
--- grass-addons/vector/v.in.postgis/v.in.postgis.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.postgis/v.in.postgis.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -19,35 +19,35 @@
 <b>v.in.postgis</b> [-<b>dzrg</b>] <b>sqlquery</b>=<em>string</em> <b>geometryfield</b>=<em>string</em>   [<b>output</b>=<em>string</em>]
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>-d</b></DT>
-<DD>import result in grass dbf format (no new table in postgis). If not set, the grass layer will be directly connected to the postgis new table</DD>
+<dl>
+<dt><b>-d</b></dt>
+<dd>import result in grass dbf format (no new table in postgis). If not set, the grass layer will be directly connected to the postgis new table</dd>
 
-<DT><b>-z</b></DT>
-<DD>use -z for v.in.ogr (create 3D output)</DD>
+<dt><b>-z</b></dt>
+<dd>use -z for v.in.ogr (create 3D output)</dd>
 
-<DT><b>-r</b></DT>
-<DD>use -o for v.in.ogr (override dataset projection)</DD>
+<dt><b>-r</b></dt>
+<dd>use -o for v.in.ogr (override dataset projection)</dd>
 
-<DT><b>-g</b></DT>
-<DD>add a gist index to the imported table in postgis (useless with the d flag)</DD>
+<dt><b>-g</b></dt>
+<dd>add a gist index to the imported table in postgis (useless with the d flag)</dd>
 
 
 
 <h3>Parameters:</h3>
-<DL>
+<dl>
 
-<DT><b>query</b>=<em>name</em></DT>
-<DD>Any sql query returning a recordset with geometry for each row </DD>
+<dt><b>query</b>=<em>name</em></dt>
+<dd>Any sql query returning a recordset with geometry for each row </dd>
 
-<DT><b>geometryfield</b>=<em>name</em></DT>
-<DD>Name of the source geometry field. Usually defaults to the_geom but needed if a geometry function was used (for example, centroid), or if the table has many geometry columns</DD>
+<dt><b>geometryfield</b>=<em>name</em></dt>
+<dd>Name of the source geometry field. Usually defaults to the_geom but needed if a geometry function was used (for example, centroid), or if the table has many geometry columns</dd>
 
-<DT><b>output</b>=<em>name</em></DT>
-<DD>Name of the geographic postgis table where to place the query results. Will be the name of the imported grass layer. If -d flag is set, this table is deleted and replaced by a dbf attribute table. Use a different name than the original. Do not use capital letters </DD>
+<dt><b>output</b>=<em>name</em></dt>
+<dd>Name of the geographic postgis table where to place the query results. Will be the name of the imported grass layer. If -d flag is set, this table is deleted and replaced by a dbf attribute table. Use a different name than the original. Do not use capital letters </dd>
 
 
-</DL>
+</dl>
 <h2>DESCRIPTION</h2>
 
 <em>v.in.postgis</em> is a shell script to import as a grass layer the result of any sql query returning geometry. There are two main modes : i)grass native format import with attributes in a dbf file. No tables are added in PostGIS ; ii)Grass layer import with attributes directly connected to a temporary table in PostGIS containing the query results.
@@ -58,24 +58,24 @@
 
 <h2>EXAMPLES</h2>
 
-<li><B>PostGIS sql query to grass map </B>(dbf attributes table, no new table in postgis)<BR>
+<li><b>PostGIS sql query to grass map </b>(dbf attributes table, no new table in postgis)<br>
 <div class="code"><pre>
 v.in.postgis -d query="SELECT * FROM zones, data WHERE zones.zone_id=data.zone_id AND value > 100" output=zones
 </pre></div>
 
-<li><B>work in Grass directly on a PostGIS table</B> (a new table is added in postgis, create a gist index)<BR>
+<li><b>work in Grass directly on a PostGIS table</b> (a new table is added in postgis, create a gist index)<br>
 <div class="code"><pre>
 v.in.postgis -r -g query="SELECT value, centroid(geocolumn) AS locations FROM zones, data WHERE zones.zone_id=data.zone_id 
 GROUP BY name" geometryfield=locations output=locations
 </pre></div>
 
-<BR>
+<br>
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="db.connect.html">db.connect</a></em>,
-<em><a HREF="db.login.html">db.login</a></em>,
-<em><a HREF="v.in.ogr">v.in.ogr</a></em>,
+<em><a href="db.connect.html">db.connect</a></em>,
+<em><a href="db.login.html">db.login</a></em>,
+<em><a href="v.in.ogr">v.in.ogr</a></em>,
 
 
 <h2>AUTHOR</h2>
@@ -86,6 +86,6 @@
 <p>
 <i>Last changed : 2009/07/02</i>
 <HR>
-<P><a href="index.html">Main index</a> - <a href="vector.html">vector index</a> - <a href="full_index.html">Full index</a></P>
+<p><a href="index.html">Main index</a> - <a href="vector.html">vector index</a> - <a href="full_index.html">Full index</a></P>
 </body>
 </html>


Property changes on: grass-addons/vector/v.in.postgis/v.in.postgis.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.in.redwg/v.in.redwg.html
===================================================================
--- grass-addons/vector/v.in.redwg/v.in.redwg.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.in.redwg/v.in.redwg.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -12,7 +12,7 @@
 v.in.redwg <strong>does not require OpenDWG or any proprietary software<strong>.
 It requires <a href="http://www.gnu.org/s/libredwg">LibreDWG</a>, which
 is released under the GNU GPLv3.
-<P>
+<p>
 You need to download, compile and install (check website) LibreDWG and use the 
 related <tt>configure</tt> options to tell GRASS about it (warning: configure
 options not implemented yet)
@@ -25,7 +25,7 @@
 </pre></div>
 
 Then run <i>make</i> to compile this module.
-<P>
+<p>
 Not all entity types are supported (warning printed).
 
 

Modified: grass-addons/vector/v.krige/description.html
===================================================================
--- grass-addons/vector/v.krige/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.krige/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -66,7 +66,7 @@
 <h4>Notes for Windows</h4>
 
 Compile GRASS following this
-<a href="http://trac.osgeo.org/grass/wiki/CompileOnWindows">guide</a>.
+<a href="http://trac.OSGeo.org/grass/wiki/CompileOnWindows">guide</a>.
 You could also use Linux in a virtual machine. Or install Linux in a
 separate partition of the HD. This is not as painful as it appears,
 there are lots of guides over the Internet to help you.
@@ -168,14 +168,14 @@
 mantained by Roger Bivand
 <br>
 
-The <a href="http://grass.osgeo.org/statsgrass/grass6_r_install.html">Short
+The <a href="http://grass.OSGeo.org/statsgrass/grass6_r_install.html">Short
 Introduction to Geostatistical and Spatial Data Analysis with GRASS 6
 and R statistical data language</a> at the GRASS website. (includes
 installation tips)
 
 <br><br>
 
-v.krige's <a href="http://grass.osgeo.org/wiki/V.krige_GSoC_2009">wiki page</a>
+v.krige's <a href="http://grass.OSGeo.org/wiki/V.krige_GSoC_2009">wiki page</a>
 
 <h2>REFERENCES</h2>
 
@@ -188,4 +188,4 @@
 Anne Ghisla, Google Summer of Code 2009
 
 <p>
-<i>Last changed: $Date: 2010-02-21 05:37:13 +0100 (Sun, 21 Feb 2010) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.krige/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.mkhexgrid/description.html
===================================================================
--- grass-addons/vector/v.mkhexgrid/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.mkhexgrid/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,19 +1,19 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.mkhexgrid</EM> is a python script that creates a hexagonal grid for the selected region. 
+<em>v.mkhexgrid</em> is a python script that creates a hexagonal grid for the selected region. 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 This script functions by creating a number of GRASS ASCII files and them importing and cleaning them. 
 <h2>SEE ALSO</h2>
 
 <em>
-    <a HREF="v.mkgrid.html">v.mkgrid</a>
+    <a href="v.mkgrid.html">v.mkgrid</a>
 </em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 Trevor Wiens
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
-<p><i>Last changed: $Date: 2010-11-24 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.mkhexgrid/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.out.marxan/description.html
===================================================================
--- grass-addons/vector/v.out.marxan/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.out.marxan/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,9 +1,9 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.out.marxan</EM> is a python script prepare a vecotr planning grid file and create marxan input files. 
-Marxan output can be read back into GRASS for display with <EM>v.in.marxan</EM>. 
+<em>v.out.marxan</em> is a python script prepare a vecotr planning grid file and create marxan input files. 
+Marxan output can be read back into GRASS for display with <em>v.in.marxan</em>. 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Use of the DOS output format will create a second file with '.dos' appended to the output file name.  
 Consistent specification of the Planning Unit Key field is necessary in all Marxan scripts to ensure a working set of ouptut files. 
@@ -26,15 +26,15 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a HREF="v.out.marxan.html">v.out.marxan</a>,
-<a HREF="v.mkhexgrid">v.mkhexgrid</a>,
+<em><a href="v.out.marxan.html">v.out.marxan</a>,
+<a href="v.mkhexgrid">v.mkhexgrid</a>,
 </em>
-<p><a HREF="http://www.uq.edu.au/marxan/">Marxan Home Page</a></p>
+<p><a href="http://www.uq.edu.au/marxan/">Marxan Home Page</a></p>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 Trevor Wiens
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 <p><a href="http://www.uq.edu.au/marxan/docs/marxan_manual_1_8_2.pdf" target="_blank">Ball, I.R., and H.P. Possingham, 2000. MARXAN (V1.8.2): Marine Reserve Design Using Spatially Explicit Annealing, a Manual.</a></p>
 
@@ -44,4 +44,4 @@
 
 <p><a href="http://www.uq.edu.au/marxan/docs/Marxan%20Good%20Practices%20Handbook%20v2%202010.pdf" target="_blank">Ardron, J. H.P. Possingham and C.J. Klein (Eds.),Version 2, 2010. Marxan good practices handbook. University of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association, Vancouver, British Columbia, Canada.</a> </p>
 
-<p><i>Last changed: $Date: 2010-11-24 $</i>
+<p><i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.out.marxan/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.out.postgis/v.out.postgis.html
===================================================================
--- grass-addons/vector/v.out.postgis/v.out.postgis.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.out.postgis/v.out.postgis.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,8 +1,8 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.out.postgis</EM> exports GRASS vector map to PostGIS database.
+<em>v.out.postgis</em> exports GRASS vector map to PostGIS database.
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Martin Landa, CTU in Prague, Czech Republic
 


Property changes on: grass-addons/vector/v.out.postgis/v.out.postgis.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.points.cog/description.html
===================================================================
--- grass-addons/vector/v.points.cog/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.points.cog/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -33,21 +33,21 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 <em>
-<A HREF="v.label.sa.html">v.label.sa</A><br>
-<A HREF="v.label.html">v.label</A><br>
-<A HREF="v.digit.html">v.digit</A>
+<a href="v.label.sa.html">v.label.sa</a><br>
+<a href="v.label.html">v.label</a><br>
+<a href="v.digit.html">v.digit</a>
 </em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dept. Marine Science<br>
 University of Otago<br>
 Dunedin, New Zealand</i>
-<BR>
+<br>
 
 <p>
 <i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.profile/v.profile.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.random.cover/description.html
===================================================================
--- grass-addons/vector/v.random.cover/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.random.cover/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,14 +1,14 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 <em>v.random.cover</em> is a shell script for creating random points
 constrained within an irregularly shaped vector area. (<em>v.random</em>
 places points only in the current region rectangle)
-<P>
+<p>
 Optionally the values of a raster map at the new sites can be uploaded.
 
-<H2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 
-(Spearfish dataset)<BR>
+(Spearfish dataset)<br>
 Query vegitation cover at 500 random points in the Black Hills Natl. Forest.
 
 <div class="code"><pre>
@@ -32,19 +32,19 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<a HREF="r.random.html">r.random</a> </em>(<tt>cover= vector_output=</tt>)<BR>
+<a href="r.random.html">r.random</a> </em>(<tt>cover= vector_output=</tt>)<br>
 <em>
-<a HREF="v.db.addtable.html">v.db.addtable</a><BR>
-<a HREF="v.db.select.html">v.db.select</a><BR>
-<a HREF="v.random.html">v.random</a><BR>
-<a HREF="v.rast.stats.html">v.rast.stats</a><BR>
-<a HREF="v.what.rast.html">v.what.rast</a>
+<a href="v.db.addtable.html">v.db.addtable</a><br>
+<a href="v.db.select.html">v.db.select</a><br>
+<a href="v.random.html">v.random</a><br>
+<a href="v.rast.stats.html">v.rast.stats</a><br>
+<a href="v.what.rast.html">v.what.rast</a>
 </em>
 
 
-<H2>AUTHOR</H2>
-Hamish Bowman<BR>
+<h2>AUTHOR</h2>
+Hamish Bowman<br>
 <i>Dunedin, New Zealand</i>


Property changes on: grass-addons/vector/v.random.cover/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.rast.stats2/description.html
===================================================================
--- grass-addons/vector/v.rast.stats2/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.rast.stats2/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM><b>v.rast.stats2</b></EM> - Calculates basic univariate statistics from
+<em><b>v.rast.stats2</b></em> - Calculates basic univariate statistics from
 a raster map only for the parts covered by the specified vector map.
 The vector map will be rasterized according to the raster map resolution.
 Then univariate statistics are calculated per vector category (cat) from
@@ -10,22 +10,22 @@
 Nine columns are generated (n, min, max, range, mean, stddev, variance, 
 coeff_var, sum) according to the output of <em>r.univar.zonal</em>. Column n 
 complies column <em>non_null_cells</em> from <em>r.univar.zonal</em> and all 
-univariate statistics are based on <em>non_null_cells</em>. If the <B>-e</B> 
+univariate statistics are based on <em>non_null_cells</em>. If the <b>-e</b> 
 extended statistics flag is given the 1st quartile, median, 3rd quartile, 
 and given percentile are also calculated.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 The module may take a long time to run if the raster region contains a large
-number of cells. In this case the <B>--verbose</B> flag may be used to track
+number of cells. In this case the <b>--verbose</b> flag may be used to track
 progress.
 <p>
 The script stops if a (prefixed) upload column is already present in the
-vector map attribute table, unless otherwise instructed with the <B>-c</B>
+vector map attribute table, unless otherwise instructed with the <b>-c</b>
 continue flag. The column prefix will be separated from the statistic name
 with an underscore. For example with a prefix of "<tt>elev</tt>" the sum
 column will be named <tt>elev_sum</tt>.
-<P>
+<p>
 If a DBF database is being used, note that column names are restricted by the
 DBF specification to 10 characters. Therefore it is advised to be economical
 in the use of the column prefix when using DBF as any additional characters
@@ -40,13 +40,13 @@
 <em>v.rast.stats</em>.
 <p>
 <!-- r.univar limitation
-Large amounts of system memory can be used when the <B>-e</B> extended
+Large amounts of system memory can be used when the <b>-e</b> extended
 statistics flag is used with a very large region setting. If the region
 is too large the module should display memory allocation errors.
 Basic statistics can be calculated using any size input region.
 -->
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 
 Example to upload DEM statistics to vector field patches:
 
@@ -64,21 +64,21 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="r.univar.html">r.univar</A>,
-<A HREF="r.univar2.zonal.html">r.univar.zonal</A>, 
-<A HREF="v.univar.html">v.univar</A>,
-<A HREF="v.rast.stats.html">v.rast.stats</A>,
-<a HREF="v.what.rast.html">v.what.rast</a>,
+<em>
+<a href="r.univar.html">r.univar</a>,
+<a href="r.univar2.zonal.html">r.univar.zonal</a>, 
+<a href="v.univar.html">v.univar</a>,
+<a href="v.rast.stats.html">v.rast.stats</a>,
+<a href="v.what.rast.html">v.what.rast</a>,
 <a href="v.what.vect.html">v.what.vect</a>
-</EM>
+</em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Markus Neteler, CEA (<a href="http://www.eden-fp6project.net/">EDEN Project</a>)
 <br>Otto Dassau
 
 <p>
-<i>Last changed: $Date: 2007-10-10 08:11:21 +0200 (Mi, 10. Okt 2007) $</i>
+<i>Last changed: $Date$</i>


Property changes on: grass-addons/vector/v.rast.stats2/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.strahler/description.html
===================================================================
--- grass-addons/vector/v.strahler/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.strahler/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -3,7 +3,7 @@
 <em>v.strahler</em> calculates the Strahler Order for all lines of a given
 dendritic network. The input vector map must be free of cycles. For the
 elaboration a new imported network or a network extracted from DEM by
-using <em><a HREF="r.watershed.html">r.watershed</a></em> can be used
+using <em><a href="r.watershed.html">r.watershed</a></em> can be used
 (in this case the topology has to be cleaned manually). More than one
 tree in the input data is allowed. No given flow direction is needed.
 To find the outlet of each tree, a DEM must be given.
@@ -106,7 +106,7 @@
 
 <h2>SEE ALSO</h2>
 
-<em><a href="r.watershed.html">r.watershed</a></em><BR>
+<em><a href="r.watershed.html">r.watershed</a></em><br>
 
 
 <h2>AUTHOR</h2>

Modified: grass-addons/vector/v.strahler/r.broscoe.sh.html
===================================================================
--- grass-addons/vector/v.strahler/r.broscoe.sh.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.strahler/r.broscoe.sh.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -13,7 +13,7 @@
 <h2>DESCRIPTION</h2>
 
 <em>r.broscoe.sh</em> Calculates waerden test and t test statistics for some values of threshold area on a single basin, according to A.J.Broscoe theory (1959).<br />
-The program uses some <em><a HREF="http://www.r-project.org/">R</a></em> commands for statistical analisys and graphic rapresentation. In particoular the R package <em>"agricolae"</em> is required.<br />
+The program uses some <em><a href="http://www.r-project.org/">R</a></em> commands for statistical analisys and graphic rapresentation. In particoular the R package <em>"agricolae"</em> is required.<br />
 The A.J.Broscoe theory is well known as the theory of the "Mean Stream Drop" and it says that, for the extraction by DEM of a stream network, exists a threshold value wich makes <em>drop</em> constant, and this is the <em>right</em> one extraction threshold. <br />
 By definig the <em>drop</em> (H) as:<br />
 <br />
@@ -72,29 +72,29 @@
 <h2>NOTES</h2>
 The <em>lt</em> value requested in input is a parameter that prevents eventual errors in the DEM; it considers the presence of pits and represents the height difference <em>lesserthan</em> a drop is not considered as a drop but as a pit, and extracted from <em>Mean Stream Drop</em> analysis.<br />
 <br />
-The program uses the module <em><a HREF="r.strahler.html">r.strahler</a></em>, so it presents the same conditions about the selection of a threshold value range.<br /> 
+The program uses the module <em><a href="r.strahler.html">r.strahler</a></em>, so it presents the same conditions about the selection of a threshold value range.<br /> 
 
 <h2>SEE ALSO</h2>
-<em><a HREF="v.strahler.html">v.strahler</a></em><br>
-<em><a HREF="r.strahler.sh.html">r.strahler.sh</a></em><br>
+<em><a href="v.strahler.html">v.strahler</a></em><br>
+<em><a href="r.strahler.sh.html">r.strahler.sh</a></em><br>
 
 <h2>REFERENCES</h2>
 NIST, (2006). <i>Van Der Waerden.</i><br />
-URL:  <em><a HREF="http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm">http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm</a></em><br />
+URL:  <em><a href="http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm">http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm</a></em><br />
 <p>
 D. G. Tarboton and D. P. Ames, (2001). <i>Advances in the mapping of flow networks from digital elevation data.</i><b> World Water and Environment Resources Congress</b>, presentation (2001).<br />
 <p>
 J. J. Flint, (1974). <i>Stream gradient as a function of order, magnitude, and discharge.</i><b> Water Resources Research</b>, vol.10, n.5, p.969-973. <br />
 <p>
 NIST, (2006). <i>Engineering statistical handbook: confidence limits for the mean.</i><br />
-URL:  <em><a HREF="http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm">http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm</a></em><br />
+URL:  <em><a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm">http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm</a></em><br />
 <p>
 J. C. Davis, (1990). <i>Statistics and Data Analysis in Geology</i>. John Wiley \& Sons editors (New York, NY, USA).<br />
 <p>
 A. J. Broscoe, (1959). <i>Quantitative analysis of longitudinal stream profiles of small watersheds</i>. Department of Geology, Columbia University, NY.<br />
 <p>
 F. De Mendiburu, (2006). <i>Statistical Procedures for Agricultural Research.</i><br />
-URL:  <em><a HREF="http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html">http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html</a></em><br />
+URL:  <em><a href="http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html">http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html</a></em><br />
 
 <h2>AUTHORS</h2>
 
@@ -103,6 +103,6 @@
 <p>
 <i>Last changed: $Date$</i>
 <HR>
-<P><a href="index.html">Main index</a> - <a href="raster.html">raster index</a> - <a href="full_index.html">Full index</a></P>
+<p><a href="index.html">Main index</a> - <a href="raster.html">raster index</a> - <a href="full_index.html">Full index</a></P>
 </body>
 </html>

Modified: grass-addons/vector/v.strahler/r.strahler.sh.html
===================================================================
--- grass-addons/vector/v.strahler/r.strahler.sh.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.strahler/r.strahler.sh.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,8 +1,8 @@
 <h2>DESCRIPTION</h2>
 
 <em>r.strahler.sh</em> Creates a vector map of Strahler ordered streams of a single basin starting from a DEM.
-Once selected the area where you want to work by visualizing it in the GRASS monitor, the programs extracts lines form the DEM by using <em><a HREF="r.watershed.html">r.watershed</a></em> , makes you able to select an outlet for the basin (or takes the outlet coords manually inserted at the beginning), individuates the basin by using <em><a HREF="r.water.outlet.html">r.water.outlet</a></em> , cleans the topology, executes <em><a HREF="v.strahler.html">v.strahler</a></em> for the extracted network. <br />
-The program returns an ouput text file (see  <em><a HREF="v.strahler.html">v.strahler</a></em> ) and the basin network ordered by Horton-Strahler.
+Once selected the area where you want to work by visualizing it in the GRASS monitor, the programs extracts lines form the DEM by using <em><a href="r.watershed.html">r.watershed</a></em> , makes you able to select an outlet for the basin (or takes the outlet coords manually inserted at the beginning), individuates the basin by using <em><a href="r.water.outlet.html">r.water.outlet</a></em> , cleans the topology, executes <em><a href="v.strahler.html">v.strahler</a></em> for the extracted network. <br />
+The program returns an ouput text file (see  <em><a href="v.strahler.html">v.strahler</a></em> ) and the basin network ordered by Horton-Strahler.
 The program is also able to plot a background map during the elaboration, so, if you have some aerial photos or the same DEM, it's easier to select the right outlet cross-section in the map.<br />
 If the <b>-i</b> interactive flag is given then you are working in interactive mode and the program makes you able to choose the outlet cross section directly from the monitor, instead the program works in un-interactive mode but it needs the outlet coords manually inserted.
 
@@ -27,8 +27,8 @@
 <img src="images/thrVScell.jpg"> <br />
 
 <h2>SEE ALSO</h2>
-<em><a HREF="v.strahler.html">v.strahler</a></em><br>
-<em><a HREF="r.broscoe.sh.html">r.broscoe.sh</a></em><br>
+<em><a href="v.strahler.html">v.strahler</a></em><br>
+<em><a href="r.broscoe.sh.html">r.broscoe.sh</a></em><br>
 
 <h2>AUTHORS</h2>
 

Modified: grass-addons/vector/v.strahler/v.mainchannel.html
===================================================================
--- grass-addons/vector/v.strahler/v.mainchannel.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.strahler/v.mainchannel.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -5,7 +5,7 @@
 The program returns the main channel considering two factors:<br />
 <em>distance</em>: often the main channel is the longest track in the network<br />
 <em>height</em>: the source of the main channel is conventionally taken as the higest<br />
-This module can be used for any ordinary vector stream network, but the analisys becomes particoulary interesting if you have a vector stream network ordered by Horton-Strahler (e.g. derived from <em><a HREF="v.strahler.html">v.strahler</a></em> or <em><a HREF="r.strahler.sh.html">r.strahler.sh</a></em>) because you can see if the main channel includes the max_ordered stream, and, if not, you can consequently modify the "cost" values assigned. <br />
+This module can be used for any ordinary vector stream network, but the analisys becomes particoulary interesting if you have a vector stream network ordered by Horton-Strahler (e.g. derived from <em><a href="v.strahler.html">v.strahler</a></em> or <em><a href="r.strahler.sh.html">r.strahler.sh</a></em>) because you can see if the main channel includes the max_ordered stream, and, if not, you can consequently modify the "cost" values assigned. <br />
 
 <h2>EXAMPLE</h2>
 
@@ -16,9 +16,9 @@
 </pre></div>
 
 <h2>SEE ALSO</h2>
-<em><a HREF="v.strahler.html">v.strahler</a></em><br>
-<em><a HREF="r.strahler.sh.html">r.strahler.sh</a></em><br>
-<em><a HREF="v.net.iso.html">v.net.iso</a></em><br>
+<em><a href="v.strahler.html">v.strahler</a></em><br>
+<em><a href="r.strahler.sh.html">r.strahler.sh</a></em><br>
+<em><a href="v.net.iso.html">v.net.iso</a></em><br>
 
 <h2>AUTHORS</h2>
 

Modified: grass-addons/vector/v.surf.icw/description.html
===================================================================
--- grass-addons/vector/v.surf.icw/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.surf.icw/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,46 +1,46 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 Inverse cost weighting is like inverse distance weighted (IDW) interpolation,
 but uses <i>cost</i> instead of shortest Euclidean distance. In this way
 solid barriers and molasses zones may be correctly taken into account.
-<P>
+<p>
 Input data points do not need to have direct line of sight to each other.
 This is interpolation "as the fish swims", not "as the crow flies", and can
 see around headlands or across land-bridges without polluting over barriers
 which the natural value (or flightless bird) can not cross.
-<P>
+<p>
 It was initially written to interpolate water chemistry in two parallel
 arms of a fjord, but may just as well be used for population abundance
 constrained by topography, or in studies of archeologic technology transfer.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 In the simplest case, the cost map will just be a mask raster with values
 of 1 in areas to interpolate, and NULL in impenetrable areas.
 Fancier cost maps can be used, for example, to make it more expensive for
 a measured pollutant to diffuse upstream in an estuary, or to make it more
 expensive for a stone tool technology to cross waterways.
-<P>
+<p>
 Since generating cost maps can take a long time, it is recommended to keep
 the raster region relatively small and limit the number of starting points
 to less than 100.
-<P>
+<p>
 Higher values of <b>friction</b> will help limit unconstrained boundary
 effects at the edges of your coverage, but will incur more of a stepped
 transition between sites.
-<P>
+<p>
 The <b>post_mask</b>, if given, is applied after the interpolation is
 complete. A common use for that might be to only present data within
 a certain distance (thus confidence) of an actual sampling station.
 In that case the <em>r.cost</em> module can be used to create the mask.
-<P>
+<p>
 This module writes lots of temporary files and so can be rather disk I/O
 intensive. If you are running it many times in a big loop you may want to
 set up a RAM-disk to put the mapset in (on UNIX symlinking back into the
 location is ok), or adjust the disk-cache flushing timer to be slightly
 longer than one iteration of the script.
-<BR>To do this on Linux you can tune the
+<br>To do this on Linux you can tune the
  <tt>/proc/sys/vm/dirty_expire_centisecs</tt> kernel control. The default
 is to keep files in memory a maximum of 30 seconds before writing them to
 disk, although if you are short on free RAM the kernel may write to disk
@@ -51,7 +51,7 @@
  -->
 
 
-<H2>EXAMPLE</H2>
+<h2>EXAMPLE</h2>
 
 In this example we'll generate some fake island barriers from the
 standard North Carolina GRASS dataset, then interpolate a continuous
@@ -86,29 +86,29 @@
 
 
 <!-- todo
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
  * Hamish's MfE reports / published confernce proceedings?
  * Ben D's journal article (Deutsch)
 -->
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="v.surf.idw.html">v.surf.idw</A><BR>
-<A HREF="v.surf.rst.html">v.surf.rst</A><BR>
-<A HREF="v.surf.bspline.html">v.surf.bspline</A><BR>
-<A HREF="r.cost.html">r.cost</A><BR>
-<A HREF="r.surf.idw.html">r.surf.idw</A><BR>
-<A HREF="r.surf.idw2.html">r.surf.idw2</A><BR>
-</EM>
+<em>
+<a href="v.surf.idw.html">v.surf.idw</a><br>
+<a href="v.surf.rst.html">v.surf.rst</a><br>
+<a href="v.surf.bspline.html">v.surf.bspline</a><br>
+<a href="r.cost.html">r.cost</a><br>
+<a href="r.surf.idw.html">r.surf.idw</a><br>
+<a href="r.surf.idw2.html">r.surf.idw2</a><br>
+</em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
-<i>Department of Marine Science,<BR>
+Hamish Bowman<br>
+<i>Department of Marine Science,<br>
 Dunedin, New Zealand</i>
 
 <p>

Modified: grass-addons/vector/v.transect.kia/v.transect.kia.html
===================================================================
--- grass-addons/vector/v.transect.kia/v.transect.kia.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.transect.kia/v.transect.kia.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -10,7 +10,7 @@
 <img src="grass_logo.png" alt="GRASS logo"><hr align=center size=6 noshade>
 
 <h2>NAME</h2>
-<em><b>v.transect.kia</b></em>  - v.transect.kia<BR>
+<em><b>v.transect.kia</b></em>  - v.transect.kia<br>
 Calculate Kilometric Abundance Indexes on line transect surveys of presence signs.
 <h2>KEYWORDS</h2>
 vector, elevation, geometry, line transect, abundance index, KIA
@@ -20,56 +20,56 @@
 <b>v.transect.kia</b> [-<b>so</b>] <b>paths</b>=<em><paths map></em> <b>waypoints</b>=<em><waypoints map></em>  [<b>idfield</b>=<em><transect ID field></em>]   [<b>typefield</b>=<em><waypoint type field></em>]   [<b>nfield</b>=<em><waypoint cluster size field></em>]  <b>output</b>=<em><output map></em>  [<b>elev</b>=<em><digital elevation model></em>]   [<b>weights</b>=<em><waypoint weight file></em>]   [<b>groups</b>=<em><paths segmentation map></em>]   [<b>class</b>=<em><class values field></em>]   [--<b>verbose</b>]  [--<b>quiet</b>] 
 
 <h3>Flags:</h3>
-<DL>
-<DT><b>-s</b></DT>
-<DD>assumes both paths and waypoints are in ESRI Shapefile format, does implicit conversion (using v.in.ogr -oe)</DD>
+<dl>
+<dt><b>-s</b></dt>
+<dd>assumes both paths and waypoints are in ESRI Shapefile format, does implicit conversion (using v.in.ogr -oe)</dd>
 
-<DT><b>-o</b></DT>
-<DD>overwrite output</DD>
+<dt><b>-o</b></dt>
+<dd>overwrite output</dd>
 
-<DT><b>--verbose</b></DT>
-<DD>Verbose module output</DD>
-<DT><b>--quiet</b></DT>
-<DD>Quiet module output</DD>
-</DL>
+<dt><b>--verbose</b></dt>
+<dd>Verbose module output</dd>
+<dt><b>--quiet</b></dt>
+<dd>Quiet module output</dd>
+</dl>
 
 <h3>Parameters:</h3>
-<DL>
-<DT><b>paths</b>=<em><paths map></em></DT>
-<DD>a line vector map containing line transect paths</DD>
+<dl>
+<dt><b>paths</b>=<em><paths map></em></dt>
+<dd>a line vector map containing line transect paths</dd>
 
-<DT><b>waypoints</b>=<em><waypoints map></em></DT>
-<DD>a point vector containing objects recorded along transects</DD>
+<dt><b>waypoints</b>=<em><waypoints map></em></dt>
+<dd>a point vector containing objects recorded along transects</dd>
 
-<DT><b>idfield</b>=<em><transect ID field></em></DT>
-<DD>field (present both in paths and waypoints) with transect IDs</DD>
-<DD>Default: <em>trans_id</em></DD>
+<dt><b>idfield</b>=<em><transect ID field></em></dt>
+<dd>field (present both in paths and waypoints) with transect IDs</dd>
+<dd>Default: <em>trans_id</em></dd>
 
-<DT><b>typefield</b>=<em><waypoint type field></em></DT>
-<DD>field in waypoints map with point type information</DD>
-<DD>Default: <em>type</em></DD>
+<dt><b>typefield</b>=<em><waypoint type field></em></dt>
+<dd>field in waypoints map with point type information</dd>
+<dd>Default: <em>type</em></dd>
 
-<DT><b>nfield</b>=<em><waypoint cluster size field></em></DT>
-<DD>field in waypoints map containing number of items (for clustered waypoints)</DD>
-<DD>Default: <em>n</em></DD>
+<dt><b>nfield</b>=<em><waypoint cluster size field></em></dt>
+<dd>field in waypoints map containing number of items (for clustered waypoints)</dd>
+<dd>Default: <em>n</em></dd>
 
-<DT><b>output</b>=<em><output map></em></DT>
-<DD>output line vector map</DD>
+<dt><b>output</b>=<em><output map></em></dt>
+<dd>output line vector map</dd>
 
-<DT><b>elev</b>=<em><digital elevation model></em></DT>
-<DD>digital elevation model to correct path lengths for elevation by draping</DD>
+<dt><b>elev</b>=<em><digital elevation model></em></dt>
+<dd>digital elevation model to correct path lengths for elevation by draping</dd>
 
-<DT><b>weights</b>=<em><waypoint weight file></em></DT>
-<DD>text file with waypoint weights by type</DD>
+<dt><b>weights</b>=<em><waypoint weight file></em></dt>
+<dd>text file with waypoint weights by type</dd>
 
-<DT><b>groups</b>=<em><paths segmentation map></em></DT>
-<DD>a vector (polygon) map to segment transect paths with and calculate partial KIA</DD>
+<dt><b>groups</b>=<em><paths segmentation map></em></dt>
+<dd>a vector (polygon) map to segment transect paths with and calculate partial KIA</dd>
 
-<DT><b>class</b>=<em><class values field></em></DT>
-<DD>field in groups map containing class values</DD>
-<DD>Default: <em>class</em></DD>
+<dt><b>class</b>=<em><class values field></em></dt>
+<dd>field in groups map containing class values</dd>
+<dd>Default: <em>class</em></dd>
 
-</DL>
+</dl>
 
 
 <h2>DESCRIPTION</h2>


Property changes on: grass-addons/vector/v.transect.kia/v.transect.kia.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:keywords
   + Author Date Id
Added: svn:eol-style
   + native

Modified: grass-addons/vector/v.vect.stats/description.html
===================================================================
--- grass-addons/vector/v.vect.stats/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.vect.stats/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>v.vect.stats</EM> counts the number of points in vector map
+<em>v.vect.stats</em> counts the number of points in vector map
 <em>points</em> falling into each area in vector map <em>areas</em>.
 Optionally statistics on point attributes in <em>points</em> are
 calculated for each area. The results are either uploaded to the
@@ -68,7 +68,7 @@
 </dl>
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Points not falling into any area are ignored. Areas without category
 (no centroid attached or centroid without category) are ignored. 
@@ -79,16 +79,16 @@
 existing. If they do already exist, the <em>count_column</em> must be of
 type integer and the <em>stats_column</em> of type double.
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
+<em>
 <a href="v.distance.html">v.distance</a>,
 <a href="r.distance.html">r.distance</a>,
 <a href="v.what.vect.html">v.what.vect</a>
-</EM>
+</em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Markus Metz
 

Modified: grass-addons/vector/v.what.rast.buffer/description.html
===================================================================
--- grass-addons/vector/v.what.rast.buffer/description.html	2011-11-08 21:24:20 UTC (rev 49148)
+++ grass-addons/vector/v.what.rast.buffer/description.html	2011-11-08 21:56:45 UTC (rev 49149)
@@ -1,8 +1,8 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
 This purpose of this module is to provide local environmental context to a
 series of vector points.
-<P>
+<p>
 v.what.rast or r.what + coordinate alone may return a spike in the raster data
 without you knowing. What this script does is create a buffer around each
 vector point and gather some stats about the raster cells nearby and
@@ -10,9 +10,9 @@
 It assumes the location is not lat/lon, and (in column names) that units
 will be meters. (r.buffer would be lat/lon safe; but I used r.circle
 because it allows starting from an exact coord not from the nearest cell)
-<P>
+<p>
 v.rast.stats + v.buffer is problematic when input points' buffers overlap.
-<P>
+<p>
 To speed up processing the working region is temporarily zoomed to a small
 area around each point. This will align the temporary region to the raster
 map's resolution and thus assumes that the raster map's region and resolution
@@ -27,23 +27,23 @@
 </pre></div>
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<A HREF="r.what.html">r.what</A><BR>
-<A HREF="v.what.rast.html">v.what.rast</A><BR>
-<A HREF="v.rast.stats.html">v.rast.stats</A><BR>
-<A HREF="r.univar.html">r.univar</A><BR>
-<A HREF="v.univar.html">v.univar</A><BR>
-<A HREF="r.buffer.html">r.buffer</A><BR>
-<A HREF="r.circle.html">r.circle</A><BR>
-<A HREF="g.region.html">g.region</A>
-</EM>
+<em>
+<a href="r.what.html">r.what</a><br>
+<a href="v.what.rast.html">v.what.rast</a><br>
+<a href="v.rast.stats.html">v.rast.stats</a><br>
+<a href="r.univar.html">r.univar</a><br>
+<a href="v.univar.html">v.univar</a><br>
+<a href="r.buffer.html">r.buffer</a><br>
+<a href="r.circle.html">r.circle</a><br>
+<a href="g.region.html">g.region</a>
+</em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
-Hamish Bowman<BR>
+Hamish Bowman<br>
 <i>Dunedin, New Zealand</i>
 
 <p>


Property changes on: grass-addons/vector/v.what.rast.buffer/description.html
___________________________________________________________________
Added: svn:mime-type
   + text/html
Added: svn:eol-style
   + native



More information about the grass-commit mailing list