<div dir="ltr"><span style="font-size:12.8px">Hi,</span><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">My name is Saad Qureshi and I am currently a 3rd Year Electrical Engineering Student at NUST, Pakistan.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">I got a chance to read through all the projects that <b style="font-size:12.8px">OSGeo </b>is working on and <span style="font-size:12.8px">I would like to recommend an innovative project that me and my friends have been working on for a few months which, if implemented completely, might prove very useful for the </span><b style="font-size:12.8px">OSGeo </b><span style="font-size:12.8px">community. The project is available on github and you can get a basic overview of the project on main README.md file:</span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><a href="https://github.com/msaadq/aero2" target="_blank">https://github.com/msaadq/aero2</a><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">The project works like this:</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Our volunteers or general athletes use our arm-band (BT enabled with MQ-5 sensor) to collect small samples (without them noticing) during their commute or walking/running sessions from different parts of a city.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">We collect that data from our database and relate it to certain properties of different nodes of a city to a specified resolution (50x50 metres in our case) and use the samples (of some nodes) and properties (of all nodes) to predict the samples for the rest of the nodes without physical sampling.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">I want to make a formal proposal for this project, but I wanted your feedback on it first.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">This Project has a hardware module, android application module and 2 backend modules.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Hardware:</div><div style="font-size:12.8px"> - Interfaces the MQ-5 sensor and Bluetooth module with the ARM Cortex M4 processor for data acquisition over Bluetooth and sending it directly to the android app (Completed)</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Android Application:</div><div style="font-size:12.8px"> - Uses Mapbox API to visualize the data as heat maps overlay over google maps for both sampled and resultant data and allows the user to enable the sensor remotely for collecting samples. (Completed)</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Backend:</div><div style="font-size:12.8px"> - A Python-based backend for collecting the properties of a city using MapsAPI and saving them in a database for later (Partially Implemented)</div><div style="font-size:12.8px"> - A Python-based machine learning implementation for using the samples (of some nodes) and properties (of all nodes) to predict the samples for the rest of the nodes. (Not Implemented)</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">This is one of those projects for which I wake up every morning and it would be really awesome if I get to work on this during GSOC. Your feedback regarding this project (and its implementation is highly appreciated).</div><div style="font-size:12.8px"><b><br></b></div><div style="font-size:12.8px"><b>Please let me know if this project resonates with the interests of </b><span style="font-size:12.8px"><b>OSGeo</b></span><b>, so that I start making a format proposal</b></div><div><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><br></div><div dir="ltr">Saad Qureshi<div><a href="http://www.linkedin.com/in/msaadq" target="_blank">www.linkedin.com/in/msaadq</a><br></div></div></div></div></div></div>
</div>