
GRASS GSoC2016 Proposal
-Additional segmentation algorithms for i.segment

1. Contact details

 Name and surname: Bo Yang

 Country: United States

 Email: yangb2@mail.uc.edu

 Phone: +1 513-828-4757

 Address: 477 Riddle Rd Apt 3, Cincinnati, OH 45220

 Organization: OSGeo – Open Source Geospatial Foundation

 Mentor Name: Markus Metz and Moritz Lennert

 Title: Additional segmentation algorithms for i.segment

2. Studies

 What is your School and degree?

Ph. D. student, Geography – University of Cincinnati, USA

 Would your application contribute to your ongoing studies/degree? If so, how?

Yes, Adding segmentation algorithms for i.segment would greatly contribute to my ongoing

studies since I've been processing different types of remote sensing data during my

research project. For years I have worked with raster processing algorithms and

computation efficiency, for example, coding to process large volume of remote sensing

data. Systematically learning and coding the satellite image processing algorithm through

the GSoC2016 would be helpful for pursuing my ongoing degree as well as contribute to

my dissertation work.

3. Programming and GIS

 Computing experience: operating systems you use on a daily basis, known programming

languages, hardware, ecc.

I am proficient in Python, C/C++ and R and have utilized QGIS, GRASS a lot in my study

and research project. I use windows OS as my daily basis and am proficiency in software

packages such as GRASS, ArcGIS, ENVI, Visual Studio, Microsoft Office, Eclipse, SPSS,

mailto:yangb2@mail.uc.edu

R Studio and Photoshop. Currently I am engaging studies of processing big volume

remote sensing data, for example, a single full scene of Landsat 7 could as large as 5000

by 5000 pixels, if include temporal dimension it would be much larger. My previous work

include the spatio-temporal cokriging fusion algorithm did a lot of optimizations for

processing time-series data, the optimizations including:

Moving window algorithm to process the large satellite image.

Using auto-delete elements method to reconstruct the covariance matrix to adapt matrix

to the extendable moving window.

Incorporate CUDA module to implement the parallel computing.

Using the sparse matrix, tapering matrix to speed up solving the covariance matrix.

Pre-mark the full scene of image to speed up the missing data filling process.

4. GSoC participation

 Have you participated to GSoC before?

No

 Have you submitted/will you submit another proposal for GSoC 2016 to a different org?

No

Abstract
GRASS GIS has the i.segment which provides the possibility to segment an image into objects.

This is a basic step in object-based image analysis (OBIA). Currently, the module only provides

one segmentation algorithm: region-growing. The code of i.segment was structured in a way that

allows addition of other algorithms. The core of proposed GSoC project would thus be to add a

series of these algorithms. It would be more useful and comprehensive to add at least one or two

top-down methods to the i.segment module because the current region growing approach only

allows bottom-up hierarchical segmentation. New segment methods, such as mean-shift and

watershed, would allow top-down hierarchical segmentation, which could be used in more types

of satellite image processing. Special care should be taken for the whole project to code as

efficiently as possible, i.e. to make the code run in reasonable time, even for very large images.

Background

Image segmentation or object recognition is the process of grouping similar pixels into unique

objects. Segmentation of remote sensing images is a challenging task. A myriad of different

methods have been proposed and implemented in recent years. In spite of the huge effort

invested in this problem, there is no single approach that can generally solve the problem of

segmentation for the large variety of image modalities existing today. The most effective

segmentation algorithms are obtained by carefully customizing combinations of components. The

parameters of these components are tuned for the characteristics of the image modality used as

input and the features of the objects to be segmented [1].

In the GRASS i.segment module currently only region growing and merging algorithm is

implemented. Each object found during the segmentation process is given a unique ID and is a

collection of contiguous pixels meeting some criteria. Note the contrast with image classification

where all pixels similar to each other are assigned to the same class and do not need to be

contiguous. The image segmentation results can be useful on their own, or used as a

preprocessing step for image classification. The segmentation preprocessing step can reduce

noise and speed up the classification [2].

Segmentation Methods
1. Region growing and merging (available in i.segment module)

This segmentation algorithm sequentially examines all current segments in the raster map. The

similarity between the current segment and each of its neighbors is calculated according to the

given distance formula. The basic approach of a region growing algorithm is to start from a seed

region (typically one or more pixels) that are considered to be inside the object to be segmented.

The pixels neighboring this region are evaluated to determine if they should also be considered

part of the object. If so, they are merge to the region and the process continues as long as new

pixels are added to the region.

2. Mean-shift (plan to be implemented during GSoC 2016)

The mean shift segmentation is a local homogenization technique that is very useful for damping

shading or tonality differences in localized objects [3]. For the algorithm implementation of this

case, basically the algorithm replaces each pixel with the mean of the pixels in a range-r

neighborhood and whose value is within a distance d. The Mean Shift takes usually 3 inputs: 1)

A distance function for measuring distances between pixels. Usually the Euclidean distance, but

any other well defined distance function could be used. The Manhattan Distance is another useful

choice sometimes. 2) A radius. All pixels within this radius (measured according the above

distance) will be accounted for the calculation. 3) A value difference. From all pixels inside radius

r, we will take only those whose values are within this difference for calculating the mean [4].

3. Watershed (plan to be implemented during GSoC 2016)

Watershed segmentation classifies pixels into regions using gradient descent on image features

and analysis of weak points along region boundaries. Imagine water raining onto a landscape

topology and flowing with gravity to collect in low basins. The size of those basins will grow with

increasing amounts of precipitation until they spill into one another, causing small basins to merge

together into larger basins. Catchment basins are formed by using local geometric structure to

associate points in the image domain with local extrema in some feature measurement such as

curvature or gradient magnitude. The watersheds technique is also more flexible in that it does

not produce a single image segmentation, but rather a hierarchy of segmentations from which a

single region or set of regions can be extracted a-priori, using a threshold, or interactively, with

the help of a graphical user interface.

Main Goal
Implement more image segmentation methods to extend the available i.segment for image

processing in GRASS. As the general logistics of the i.segment module is in place, adding mean-

shift and watershed segmentation algorithms should be possible. The core of the GSoC project

thus is to add a series of these algorithms. In addition, the current implementation only uses

distance within the multidimensional space of all input bands as the criteria whether to merge

segments or not. Adding shape as an additional merge criteria will be helpful. If time permits, this

feature of additional shape criteria will be implemented.

Possible difficulties and solution
As it usually happens with software development, I might come across problems during

implementation of the above mentioned ideas which may take longer than I expected, in such a

case, I have kept two weeks (week 5 and week 9) as caching weeks which are intended to let me

catch up on unimplemented parts of the project.

I will be working on this project full time. I plan to communicate with my mentor as much as I can

and will be reporting to him every time I am done with finishing things on my to-do list. My college

semester ends on May 5. New semester starts at the middle of August. After that, I have no other

obligations and am completely free to work on the project.

If my project need more work or maintenance after the summer ends, I would love to stick around

and help. I actually have an own idea and want to implement and add to the GRASS lib after the

training through GSoC. Afterwards I will look at other projects and see what I’m interested in.

Timeline
Preparation: Discuss with Mentors. Gather ideas from the community. Feature requests, image

segmentation literature, and any other ideas and suggestions.

16 – 21 May week 0: Setup coding environment, get familiar with programming manual, test

through existing code.

23 -- 28 May week 1: Start coding, develop pseudo code to outline the work

30 May -- 4 June week 2: implement mean-shift image segmentation algorithm

6 -- 11 June week 3: Validation mean-shift algorithm

13 -- 18 June week 4: Debugging mean-shift algorithm

20 -- 26 June Week 5: Caching week, further refine and validate the code

27 June Mid-term evaluation: Evaluate the existing program, determine the plan for the remaining

3-4 weeks.

28 June -- 2 July Week 6: based on the evaluation of the mid-term, test and ensure a solid existing

program.

4 -- 9 July Week 7: Implement watershed image segmentation algorithm

11 -- 16 July Week 8: Validation and debugging watershed algorithm

18 -- 23 July Week 9: Further refine tests and documentation for the whole project.

25 July – 13 August Week 10-12: Improving the main algorithm, if time permits, adding shape as

an additional merge criteria,

15 August - 23 August Final week: Tidy code, write tests, improve documentation and submit

code.

Reference
[1] OTB software guide: https://www.orfeo-toolbox.org/packages/OTBSoftwareGuide.pdf

[2] GRASS Manuals: https://grass.osgeo.org/grass71/manuals/i.segment.html

[3] Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 1–37.

[4] http://stackoverflow.com/questions/4831813/image-segmentation-using-mean-shift-explained

