<html style="direction: ltr;">
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
    <style type="text/css">body p { margin-bottom: 0cm; margin-top: 0pt; } </style>
  </head>
  <body style="direction: ltr;"
    bidimailui-detected-decoding-type="latin-charset" bgcolor="#FFFFFF"
    text="#000000">
    <br>
    <br>
    <div class="moz-cite-prefix">On 05/15/2015 04:40 PM, Adam Laža
      wrote:<br>
    </div>
    <blockquote
cite="mid:CAOvRMtwFJXYk8Sb=9M2a1g=R7irgoiQsgoFM7LPpf+NTuY++eg@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div class="gmail_quote">Hi all,
          <div dir="ltr">
            <div class="gmail_quote">
              <div>
                <div>
                  <div dir="ltr">
                    <div class="gmail_quote">
                      <div dir="ltr">
                        <div><font color="#000000"><br>
                          </font></div>
                        <div><font color="#000000">I've got some data
                            from UAS (SenseFly eBee) exported as point
                            cloud. I'd like to ask if there's any way
                            how to classify the data in GRASS. As an
                            input I have a point cloud exported in .las
                            or .txt file. As an output I need another
                            .las file containing only terrain (I need to
                            filter out objects, buildings and
                            vegetation) for next step which is
                            generating DTM.</font></div>
                      </div>
                    </div>
                  </div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
    Using the libLAS utility 'las2las' you can filter out only those
    points with classification "ground" (the classification value is 2)
    like so:<br>
    las2las in.las --output=ground.las --keep-classes 2<br>
    <br>
    You can find all the point classes in this doc:<br>
    <a class="moz-txt-link-freetext" href="http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf">http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf</a><br>
    <br>
    <br>
    <blockquote
cite="mid:CAOvRMtwFJXYk8Sb=9M2a1g=R7irgoiQsgoFM7LPpf+NTuY++eg@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div class="gmail_quote">
          <div dir="ltr">
            <div class="gmail_quote">
              <div>
                <div>
                  <div dir="ltr">
                    <div class="gmail_quote">
                      <div dir="ltr">
                        <div><font color="#000000"><br>
                          </font></div>
                        <div><font color="#000000">I've already tried
                            some modules, import(r.in.lidar, v.in.lidar)
                            works well. Then I focused on v.lidar.*
                            modules (v.lidar.edgedetection,
                            v.lidar.growing, v.lidar.correction) but
                            already the first step of recognizing and
                            extracting object didn't work for me. I
                            suppose it's due to the v.lidar.* modules
                            need data only from LiDAR, but I have data
                            from phtogrammetry (eBee carries Canon RGB
                            camera).</font></div>
                        <div><font color="#000000"><br>
                          </font></div>
                        <div><font color="#000000">Any idea how to
                            classify my data?</font></div>
                        <div><font color="#000000"><br>
                          </font></div>
                        <div><font color="#000000">Thank in advance,</font></div>
                        <div><font color="#000000">Adam</font></div>
                      </div>
                    </div>
                    <font color="#000000"><br>
                    </font></div>
                  <div><font color="#000000">Data sample at google
                      drive:</font></div>
                  <div><font color="#000000">las:</font></div>
                </div>
              </div>
            </div>
            <font color="#000000"><a moz-do-not-send="true"
href="https://drive.google.com/file/d/0B3qa8r8b0sq0TTdnSVNHdE1UQ2M/view?usp=sharing"
                target="_blank">https://drive.google.com/file/d/0B3qa8r8b0sq0TTdnSVNHdE1UQ2M/view?usp=sharing</a></font>
            <div><font color="#000000">txt:<br>
              </font>
              <div><font color="#000000"><a moz-do-not-send="true"
href="https://drive.google.com/file/d/0B3qa8r8b0sq0NVFRMmNEZHNkbDA/view?usp=sharing"
                    target="_blank">https://drive.google.com/file/d/0B3qa8r8b0sq0NVFRMmNEZHNkbDA/view?usp=sharing</a></font><br>
              </div>
            </div>
          </div>
        </div>
        <br>
      </div>
      <br>
      This mail was received via Mail-SeCure System.<br>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
grass-user mailing list
<a class="moz-txt-link-abbreviated" href="mailto:grass-user@lists.osgeo.org">grass-user@lists.osgeo.org</a>
<a class="moz-txt-link-freetext" href="http://lists.osgeo.org/mailman/listinfo/grass-user">http://lists.osgeo.org/mailman/listinfo/grass-user</a>
This mail was received via Mail-SeCure System.


</pre>
    </blockquote>
    <br>
  </body>
</html>