<div dir="ltr"><div><div>I just read on the p-value regression ticket a comment from Markus Metz [1]. If I understood correctly, he mentions that the chances of getting small p-values at random is high and we should do a correction. But this would result in non-significant p-values. He concludes that it would be more "appropriate to make prior assumptions about slope, intercept, and effect
size, then judge the results according to these prior assumptions". <br></div><div><br></div><div>Does this means that I should not rely on the p-value obtained?<br><br></div>Where can I find more information about this? Some colleagues and I are in the process of finishing a paper that uses applies a regression to annual NDVI data and right now, we are discussing if we should (or not) consider the p-values obtained.<br><br></div>Thanks and sorry if this is a bit of topic<br><div><div><br>Cheers</div><div>Daniel</div><div><br></div><div>[1] <a href="https://trac.osgeo.org/grass/ticket/2376#comment:3">https://trac.osgeo.org/grass/ticket/2376#comment:3</a><br><div><div><br><div class="gmail_quote"><div dir="ltr">On Mon, Oct 16, 2017 at 2:12 PM Daniel Victoria <<a href="mailto:daniel.victoria@gmail.com">daniel.victoria@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Replying to self and in case helps anyone.<div><br></div><div>Solved it by using R and the raster package. Here is a Stackoverflow post about it</div><div><br></div><div><a href="https://stackoverflow.com/questions/20262999/how-to-output-regression-summarye-g-p-value-and-coeff-into-a-rasterbrick" target="_blank">https://stackoverflow.com/questions/20262999/how-to-output-regression-summarye-g-p-value-and-coeff-into-a-rasterbrick</a><br></div><div><br></div><div>Cheers</div></div><div dir="ltr"><div>Daniel</div></div><br><div class="gmail_quote"><div dir="ltr">On Wed, Oct 11, 2017 at 10:44 AM Daniel Victoria <<a href="mailto:daniel.victoria@gmail.com" target="_blank">daniel.victoria@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div>OK, dumb question since I'm a bit (or very) bad at stats.<br><br></div>I'm calculating the slope from a series of rasters using r.series. I see that I can also get the t-value and the coefficient of determination. Is there a way to get the p-value for the regression?<br><br></div>I've seen that this question has been asked before (in 2012) [1] and it ended with the addition of the t-value calculation in r.series. But I failed to see how the p-value can be obtained.<br><br></div>I also found this ticket [2], related to the p-value question.<br><br></div>Thanks<br></div>Daniel<br><div><div><div><div><br>[1] - <a href="http://osgeo-org.1560.x6.nabble.com/Calculate-p-value-for-regression-slope-in-r-series-td5014228.html" target="_blank">http://osgeo-org.1560.x6.nabble.com/Calculate-p-value-for-regression-slope-in-r-series-td5014228.html</a></div><div><br></div><div>[2] <a href="https://trac.osgeo.org/grass/ticket/2376" target="_blank">https://trac.osgeo.org/grass/ticket/2376</a></div><div><br></div></div></div></div></div></blockquote></div></blockquote></div></div></div></div></div></div>