<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<p>Hi Veronica</p>
<p>Thank you. It goes in the direction of my idea evn if my problem
is exactly trying to take into account the correct gaps between
that data <br>
</p>
<p>I have another idea.</p>
<p>if it works I will come back here to explain how I did</p>
<p>thank you again</p>
<p>Ivan<br>
</p>
<p><br>
</p>
<div class="moz-cite-prefix">On 22/12/23 13:45, Veronica Andreo
wrote:<br>
</div>
<blockquote type="cite"
cite="mid:CAAMki4HYT0feL6DNC2xQNp1jGzzj8-2Cz_RY8eVTfHJshQw72w@mail.gmail.com">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<div dir="ltr">Hello Ivan,
<div><br>
</div>
<div>AFAIU you could use the slope and offset maps from
t.rast.series within t.rast.algebra to detrend the values of
the maps within the strds, something like "detrended_strds =
trend_strds - (trend_strds*map(slope) + map(offset))". Others
suggest, to detrend by subtracting the previous value, i.e.
that would imply using the temporal algebra with the temporal
index, something like "detrended_strds = trend_strds[1] -
trend_strds[0]". </div>
<div><br>
</div>
<div>I haven't tested any of these, just a couple of ideas ;-)
However, I do not know how this might interact with
seasonality within data, or irregular gaps. </div>
<div><br>
</div>
<div>hth somehow</div>
<div>Vero</div>
</div>
<br>
<div class="gmail_quote">
<div dir="ltr" class="gmail_attr">El vie, 22 dic 2023 a las
5:10, Ivan Marchesini via grass-user (<<a
href="mailto:grass-user@lists.osgeo.org"
moz-do-not-send="true" class="moz-txt-link-freetext">grass-user@lists.osgeo.org</a>>)
escribió:<br>
</div>
<blockquote class="gmail_quote"
style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear
colleagues<br>
<br>
I would like to the advantage of the t.* modules for
detrending a strd.<br>
<br>
In the strd I have earth observation data irregularly sampled
(2 or 3 <br>
times per month), in the period November-February, for 7
years. They are <br>
not equally spaced (i.e gaps have different duration)<br>
<br>
A simple t.rast.series analysis (opion=slope,offset)
highlights that <br>
probably there is a descending trend when considering the maps
ordered <br>
by id.<br>
<br>
I would like to fit a proper time depending fitting curve for
each pixel <br>
and then subtract the function from the real data.<br>
<br>
any hints on how I can do this task exploiting the GRASS GIS
modules or <br>
some simple bash/python scripting?<br>
<br>
thank you<br>
<br>
Ivan<br>
<br>
<br>
<br>
<br>
_______________________________________________<br>
grass-user mailing list<br>
<a href="mailto:grass-user@lists.osgeo.org" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">grass-user@lists.osgeo.org</a><br>
<a href="https://lists.osgeo.org/mailman/listinfo/grass-user"
rel="noreferrer" target="_blank" moz-do-not-send="true"
class="moz-txt-link-freetext">https://lists.osgeo.org/mailman/listinfo/grass-user</a><br>
</blockquote>
</div>
</blockquote>
</body>
</html>