
Journal of Ambient Intelligence and Smart Environments 5 (2013) 65–88 65
DOI 10.3233/AIS-120186
IOS Press

Context-aware modelling of continuous
location-dependent queries in indoor
environments
Imad Afyouni a,*, Sergio Ilarri b, Cyril Ray a and Christophe Claramunt a

a Naval Academy Research Institute, 29240 Brest Cedex 9, France
E-mail: {imad.afyouni,cyril.ray,christophe.claramunt}@ecole-navale.fr
b Department of Computer Science and Systems Engineering, University of Zaragoza, Maria de Luna 1, 50018
Zaragoza, Spain
E-mail: silarri@unizar.es

Abstract. Emerging and continuing advances in ambient systems and localization techniques have brought novel opportunities
to develop context-aware navigation services in indoor environments. Diverse kinds of services delivered to the users can be
provided by enabling real-time integration of contextual dimensions. In particular, continuous location-dependent queries can
be considered as key elements for the development of different categories of context-aware services. However, most work on
location-dependent query processing has been mainly oriented towards outdoor environments. This paper introduces a generic
architecture for continuous location-dependent and navigation-related queries in indoor environments. A multi-level model of
space is designed by taking into account contextual information and the hierarchical layout of an indoor environment. The
semantics of a query language for continuous location-dependent queries are introduced, along with some motivating sample
queries.

Keywords: Context-aware services, location-dependent queries, indoor spatial data model, query language, continuous
processing architecture

1. Introduction

Location-based services [43] have recently attracted
extensive research attention, as their development is
expected to have a significant impact for end users
in both indoor and outdoor environments. Such ser-
vices should offer customized access to information
by taking into account the location of mobile users.
More generally, context-aware systems exploit contex-
tual dimensions such as user-centred dimensions (e.g.,
user profile, user’s physical/cognitive capabilities), en-
vironmental context (e.g., location, light, etc.), tempo-
ral context, and the context of execution (e.g., network
connectivity, nearby resources, etc.). This allows to an-

*Corresponding author.

ticipate user’s needs and to customize the user’s expe-
rience [5,9,14].

A successful integration of indoor spaces (e.g.,
houses, commercial malls, etc.) and context-aware sys-
tems still requires the development of dynamic and
flexible spatial models that provide appropriate ser-
vices to mobile users acting in the environment. In a
previous work [2], we introduced a context-dependent
multi-granular spatial model that embeds different lev-
els of granularity and represents: (i) all the features that
populate an indoor environment, where a feature can
refer to either a person (i.e., a mobile user or any other
social entity of interest1) or an object of interest (e.g.,
sensors, exits, tables, continuous phenomena such as

1Human beings that are located in the vicinity and are of interest
to the query are referred to as social entities.

1876-1364/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved

66 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

a fire, etc.); (ii) their spatial properties (e.g., location
and extent); and (iii) the behaviours that emerge from
them (i.e., how these objects can interact and commu-
nicate within the environment). It should be noted that
an object of interest (OOI) may or may not have com-
munication capabilities, be mobile or static, physical
or virtual, and attractive or repellent (i.e., depending
on whether the user may want to reach it or to avoid it,
respectively)2.

A wide range of location-aware services can be
applied to indoor environments. The main goal of
these services is to provide the user with the ability
to interact with his/her physical surroundings in or-
der to achieve some objectives. Location-aware and
user-centred services can be distinguished according to
two modes of data access: pull mode and push mode.
These access modes have been studied in the field of
distributed and mobile databases [39,49]. For indoor
context-aware services, they can be summarized as fol-
lows:

– Pull-based location-aware services comprise ex-
plicit requests triggered by the user with the aim
of “pulling” some location-dependent informa-
tion from the service provider. As an example, a
user in a building may submit a request to locate
the nearest exit.

– Conversely, push-based services imply communi-
cations initiated by the service provider without
having been explicitly requested by the user. The
service provider takes into account the location
information of subscribed users to trigger alerts
or contextual advertising and push the informa-
tion to the user’s device. As an example, one can
imagine a user who is subscribed to a service that
automatically alerts him/her when one of his/her
colleagues is nearby.

Location-dependent queries [27,58] are typical ex-
amples of pull-based services needed in context-aware
systems, as well as a key building block to detect situa-
tions of interest for push-based services. The location-
dependent character of these queries means that any
change of the locations of objects that are involved in
the query may significantly affect the answer. For ex-
ample, if a user wants to find out his/her friends within
a range of 100 meters while navigating a shopping
centre, the answer depends on both the user’s current

2The distinction between attractive and repellent events is simi-
lar to the one suggested in [16] regarding attraction and repulsion
events.

position and the location of the nearest friends. This
type of query is particularly challenging because, in
most cases, the user and entities relevant for the query
(e.g., the friends of the user) are moving. Location-
dependent queries have been surveyed in [27]; some
particularly relevant queries in an indoor context are
briefly described:

1. Position queries determine the locations of mo-
bile and static objects, and are processed according to
either a geometric or symbolic model of space (cf.,
[3]). Location-dependent queries cannot be carried out
without up-to-date information on the locations of ob-
jects of interest [7].
2. Navigation queries encompass all the queries that
directly help the users to find and reach points of in-
terest by providing them with navigational informa-
tion while optimizing some criteria such as the total
traversed distance or travel time. Examples of such
queries are: (i) discovering optimal paths to a nearest
point of interest (e.g., landmark, place, etc.), (ii) plan-
ning a path to a destination, etc.
3. Range queries are used to find and retrieve informa-
tion about objects of interest or places within a user-
specified range or area [52,57]. Those queries support
navigation by continuously updating relevant details
according to users’ movements. Ranges may be char-
acterized by a circular or rectangular-shaped window
in which objects of interest must be located. In addi-
tion, range queries may be static or dynamic according
to whether or not the query point is in a static location.
Similarly, a range query can be applied on static or dy-
namic data, depending on whether the target objects
are moving or not.
4. k nearest neighbour (kNN) queries search for the k
closest qualifying objects to the moving user with re-
spect to his/her current location [46,58]. As opposed
to range queries, kNN queries are range-independent,
except in the case of constrained nearest neighbour
queries [20], where the search is constrained to a given
region. The user initiates a request by specifying some
characteristics about objects of interest, so that the k
closest objects whose specifications meet these charac-
teristics are retrieved (e.g., the closest available colour
printer or the k nearest friends).

Appropriate management of static and dynamic data
is a key issue for processing these queries, since the
result of a query is only valid for a particular loca-
tion of the query issuer and for certain locations of the
objects of interest. As those queries are time-sensitive
and location-dependent, they may be valid only for

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 67

a given period of time and within a given area (i.e.,
data returned are only spatio-temporally valid). So,
they must be processed as continuous queries [47],
which means that the system should continually keep
the answers up-to-date, until the query is explicitly
cancelled by the user. However, regularly updating
those query answers may imply significant commu-
nication overhead and additional processing cost at
the server side. Several approaches to alleviate this
problem have been proposed. For example, the con-
cept of validity region, introduced in [58], determines
a safe area around the initial user location in which
the result of the query is always valid. Many variants
of continuous location-dependent queries are summa-
rized in [27]. Although many research studies have dis-
cussed location-dependent queries and location-based
services, only a few works have discussed the prob-
lem of incorporating contextual dimensions, particu-
larly those related to the user-centric and environmen-
tal context, into query processing. Indeed, this may sig-
nificantly affect the answer to a query even if the lo-
cations of the query issuer and other involved objects
have not changed.

The research presented in this paper studies location-
and context-aware services and queries in indoor en-
vironments, with a special focus on navigation-related
queries (i.e., mainly path search, range, and nearest
neighbour queries). A unique combination of chal-
lenges arises, as the proposal must be able to repre-
sent different kinds of location-dependent queries in
a flexible manner, and to take into account additional
context information, time-dependency, and the hierar-
chical layout of the indoor environment. The remain-
der of the paper is organised as follows. Section 2 in-
troduces a hierarchical indoor data model, and empha-
sizes its interest for location-aware queries and ser-
vices. Section 3 firstly presents an architecture for con-
tinuous query processing, and discusses the integra-
tion of the indoor data model with a decentralized
query processing and data management architecture;
secondly, a query language that models continuous
location-dependent queries in an indoor environment
is proposed. Section 4 reviews related works, while
Section 5 draws some conclusions and outlines further
work.

2. Modelling approach

Indoor spatial models have been studied and devel-
oped in many areas, ranging from mobile robot map-

Fig. 1. Indoor spatial model as a basic component for the design of
context-aware information systems.

ping to Geographic Information Systems (GIS) and
ubiquitous computing [1,50]. In a previous work, pre-
liminary requirements for the development of indoor
spatial models have been introduced from a context-
aware system perspective [3]. Those are classified into
two categories: service-oriented and efficiency-related
requirements. Based on these requirements, a mod-
elling approach of an indoor-oriented system that takes
into account different levels of spatial granularity is
introduced. The modelling approach developed in this
paper is an extension of our preliminary work reported
in [2], and introduces a multi-granular spatial repre-
sentation of an indoor system that can be integrated
into a context-aware system architecture. This model
represents: (i) all the features that populate the en-
vironment, (ii) their spatial properties, and (iii) the
behaviours or actions that emerge from them (see
Fig. 1). The model is hierarchically organised and can
be viewed as a tree structure in which location infor-
mation is represented at different levels of abstraction.
This hierarchical design can support a large spectrum
of applications that can be developed at different levels
of abstraction, and offers a promising solution to al-
leviate performance and scalability issues in location-
dependent query processing.

Let us formally present the main concepts of the in-
door data model. This multi-granular context-depend-
ent model represents an indoor environment with three
complementary components 〈S,F ,A〉, where:

– The spatial component S =
⋃

i=1...|S| Si is made
of a set of layers (Si) hierarchically organised and
representing the indoor space, and thus defining
the multi-granular spatial structure of the model.

68 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

Fig. 2. A fine-grained graph of a floor plan: first level of the hierarchical spatial data model.

– The feature component F =
⋃
(P ,OOI) en-

compasses the features (i.e., persons (P) and ob-
jects of interest (OOI)) located in the environ-
ment.

– The action component A =
⋃
(FA,SA) repre-

sents actions that are either predefined and trig-
gered automatically by the system in form of in-
formative, context-aware messages (SA), or gen-
erated by a given feature acting in the environ-
ment (FA).

These three components are hereafter discussed in
more detail.

2.1. Spatial component

A spatial component S contains a set of spatial lay-
ers hierarchically organized. The illustration in Fig. 2
describes a part of a scenario where a user navi-
gates inside a three-storey laboratory building. The
ground floor of the building comprises two teaching
labs and some administrative staff offices. Offices of
the Linguistics Department are located on the first
floor. Specifically, Fig. 2 illustrates the second floor
of the building where the Computer Science Depart-
ment is located. The core layer (S1) is firstly presented.

Then, other coarser layers that can be incorporated into
the hierarchical data model are discussed.

2.1.1. Core spatial layer
The core layer S1 (referred to as Smicro) of the in-

door data model is made of a fine-grained, context-
dependent graph Gmicro = (Vmicro, Emicro, Wlength,
Wtime) embedded within a spatial grid and which cov-
ers the indoor space3 (Fig. 2). Consequently, vertices
of the base graph represent cells within the grid, and
connections between cells are materialized by edges.

In the definition of Smicro, Vmicro = {vi} is the set
of vertices and Emicro ⊆ Vmicro×Vmicro is the set of
edges. For each edge e = (vi, vj) ∈ Emicro, there exist
two time-dependent cost functions ωl i,j(t) ∈ Wlength

and ωt i,j(t) ∈ Wtime that compute the length and
travel-time from vi to vj , respectively, if traversal
is started at instant t . Besides time, this model also
takes into account other contextual dimensions such
as user profiles and real-time events, to further asso-
ciate impedances with edge weights. User profiles are
handled by considering generic graphs that are derived
from the base graph Gmicro and which correspond

3The motivation behind the use of a fine-grained graph as the core
spatial layer is provided in more detail in previous work [2,32].

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 69

to predefined categories of users. Effects of real-time
events on edge weights will be discussed later in Sec-
tion 2.2.3.

Each node v ∈ Vmicro has a set of attributes that
describe its physical location or state (i.e., whether it is
accessible or not). A node v is formally defined by the
tuple 〈vid, xv, yv, sv, Lv, Av〉. vid is the node identifier,
(xv, yv) denotes the geometric location of v according
to a reference system, and sv ∈ {free, occupied} de-
termines whether or not the node v is physically oc-
cupied by an object at that moment. We assume that
nodes which are occupied by static objects are inacces-
sible for path planning. Let Σlabel = {Σfine-grained ∪
Σroom ∪Σfloor ∪Σbuilding} be a set of labels or sym-
bolic values that consists of all the identifiers of the
topological hierarchy (i.e., local identifiers of nodes
at the fine-grained level, as well as room, floor, and
building identifiers) for a given space. Hence, Lv ⊂
Σlabel = {local-id, room-id, floor-id, building-id} is a
set of labels assigned to v , where local-id denotes its
local identifier at the fine-grained level, and the oth-
ers are associated according to their belonging to the
topological hierarchy. We assume at this level that v
belongs to one and only one room, and one building.
In contrast, floor-id is a subset of the set of floor iden-
tifiers since, for instance, a node located on a staircase
may belong to several floors. Finally, Av ⊂ A is the set
of triggered actions, i.e., contextual messages or noti-
fications that are predefined and can be executed ac-
cording to some contextual constraints (e.g., to remind
a user navigating a shopping centre to buy some food
or fruit stock when he/she is located next to a super-
market).

An edge e ∈ Emicro is defined by a tuple 〈(vi, vj),
Le, ωl i,j(t), ωt i,j(t)〉, where vi, vj ∈ Vmicro, vi �= vj ,
and Le ⊂ Σlabel is a subset of the set of labels (e might
have multiple labels when it intersects several spatial
units – e.g., rooms). ωl i,j(t) and ωt i,j(t) are time-
dependent functions associated with the traversal of e .
The traversal of some edges may be constrained by a
temporal interval defined at the application level, and
within which the traversal is possible; otherwise the
corresponding edge cannot be traversed. These func-
tions are defined as follows:

ωl i,j(t) =

{
Ed(vi, vj) if t ∈ [tstart, tend] ,
∞ otherwise,

where Ed(vi, vj) is the Euclidean distance between vi
and vj , and tstart and tend are defined at the applica-

tion level (for example, [08 : 00, 17 : 00] can be speci-
fied for an office building).

ωt i,j(t) =

{
f (ωl i,j(t)) if t ∈ [tstart, tend] ,
∞ otherwise,

where f (ωl i,j(t)) is a length-dependent time func-
tion that further associates impedances to compute the
travel time between vi and vj .

Consequently, the network distance and the travel
time from vs to vd are computed as indicated in Defi-
nitions 1 and 2, respectively.

Definition 1. Fine-grained and time-dependent net-
work distance: Let p = {vstart = v1 → v2 →
· · · → vk = vgoal} be a path that contains a
sequence of nodes vi ∈ Vmicro, i = 1, . . . , k.
The fine-grained network distance of p is given by
lengthstart,goal(tstart) =

∑k−1
i=1 ωl i,i+1(ti), where

ti = ti−1+ωt i−1,i(ti−1) represents the estimated time
instant at node vi, ∀ i = 2, . . . , k, and t1 = tstart.

Definition 2. Fine-grained and time-dependent travel
time: Let p = {vstart = v1 → v2 → · · · →
vk = vgoal} be a path that contains a sequence of
nodes vi ∈ Vmicro, i = 1, . . . , k. The fine-grained
travel time of p is given by timestart,goal(tstart) =∑k−1

i=1 ωt i,i+1(ti), where ti = ti−1 + ωt i−1,i(ti−1)
represents the estimated time instant at node vi, ∀ i =
2, . . . , k, and t1 = tstart.

The core spatial layer is built in an offline phase and
a subsequent online phase is in charge of updating po-
tential changes and time-dependent data. For instance,
in the offline phase, nodes that are covered by static
objects (e.g., a wall, a table, etc.) are marked as oc-
cupied whereas the rest are considered initially free.
Furthermore, the state of a node depends also on the
user profile, since different kinds of users may have
a completely different set of accessible nodes (e.g., a
certain node may be apparently free but correspond to
a room that can only be entered with a key card). This
can also be statically managed with the use of a user
access model, as discussed in Section 2.2.2.

2.1.2. Coarser spatial layers
A node v at a coarser layer Si ∈ {S2, . . . ,S|S|} is

defined as an aggregation of a subgraph of the finer
graph, and is denoted by 〈Lv, Av〉, where Lv ⊂ Σlabel is
the set of labels assigned to v , which is adapted accord-
ingly to fit the corresponding level of abstraction, and
Av ⊂ A comprises the set of triggered actions that are
predefined at the corresponding node. Cost functions

70 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

Fig. 3. Part of the exit hierarchy4derived from the fine-grained graph
(Floor-01, Building-1).

are derived and processed based on the edge weights
of the fine-grained level. In the following, the rele-
vant layers considered in the data model are described,
along with an explanation of how these layers can be
derived.

Exit hierarchy. An exit is an important element of the
data model used for query processing, through which a
user can leave or enter a place (e.g., doorways or stair-
cases). An exit is represented as an abstract node that
belongs to two different spatial units, and is derived by
aggregating boundary nodes of both units whose adja-
cent node lists contain at least one neighbour that be-
longs to the other spatial unit (Fig. 3). By means of
these exits, optimal network distances and travel times
between relevant pairs of exits are pre-processed and
cached in order to reduce on-the-fly computation of hi-
erarchical path searches. An exit e′ is relevant for a
given exit e if and only if e′ is directly reachable from
e (i.e., there is an accessible passageway for pedestri-
ans from e to e′ which does not involve any other exit).
An exit hierarchy is constructed at a higher level of
abstraction, which allows computing optimal distances
between locations to be used later for processing di-
verse kinds of queries.

More formally, let r, r′ ∈ Σlabel be the labels of
two connected rooms, the exit representing the door-
way between r and r′ is given by: er,r′ = {vi, vj ∈
Vmicro | ∃e ∈ Emicro, e = (vi, vj) ∧ r ∈ e.Le ∧ r′ ∈
e.Le}. Regarding its belonging to the topological hier-
archy, an exit is also characterised by: Ler,r′ ={local-
id, {r, r′}, floor-id, building-id}. FloorExit01 is an
example of an exit depicted in Fig. 3, which be-
longs to two structural units: Stair01 and HW03

4The hierarchy is not fully illustrated in Fig. 3, since the right part
rooted at FloorExit02 is developed similarly.

(see Fig. 4). Therefore, LFloorExit01 = {FloorExit-
01, {Stair01, HW03}, F loor-01, Building-1}. In a
similar way, one can derive the abstract nodes of
the second layer representing all exits on a given
floor. An abstract edge (er,r′ , er′,r′′) in the exit hi-
erarchy is a path made of a sequence of nodes and
edges of the fine-grained level that compose the op-
timal network distance from a node vstart ∈ er,r′

to a node vgoal ∈ er′,r′′ . An edge of the exit hi-
erarchy is referred to as exit-path and is denoted
by 〈source_exit_id, target_exit_id, length, time〉.
The optimal network distance and travel time are
computed by applying lengthstart,goal(tstart) and
timestart,goal(tstart), and the resulting values are as-
sociated with each edge of the exit hierarchy, thus
forming the second layer of the data model.

Moreover, exits are organised in a hierarchical man-
ner since a flat graph does not reflect their significance
from a semantic navigation point of view [23]. As il-
lustrated in Fig. 3, this hierarchical structure allows to
distinguish between a room exit and a floor exit, which
is represented at a higher level of abstraction due to its
importance, so that a direct path from a current posi-
tion to the nearest floor/building exit can be easily de-
termined. Other edges between exits of the same level
are also materialized according to their connectivity
(horizontal links illustrated as dashed lines in Fig. 3)5.
Consequently, the final representation of this layer pre-
serves the connectivity between directly accessible ex-
its while emphasizing their importance for navigation
purposes. A generalisation of this hierarchy that covers
a multi-storey building is used for path planning. Con-
sequently, an exit of a ground floor has a building exit
as a parent node, and a first-floor exit as a child node
since both are parts of a staircase.

It should be emphasized that exit-paths in this hi-
erarchy are assumed to be undirected. However, this
model can be adapted for specific scenarios where a
one-way access to several areas is required. This can
be done by either replicating edges in the opposite di-
rection or associating a property to each edge that adds
impedances to the path weight depending on the travel
direction. Adjustments of the query processing algo-
rithms will be needed accordingly.

Location hierarchy. Incorporating information about
exits into the topological hierarchy enables the mod-
elling of optimal paths at an abstract layer. Those

5For clarity’s sake, not all the edges that depict connectivity be-
tween exits are shown in Fig. 3.

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 71

Fig. 4. Part of the location hierarchy derived from the fine-grained
graph; “HW ” stands for Hallway, “MR” for Meeting Room, “R”
for Room, and “BT ” for Bathroom.

are used to facilitate hierarchical path searches and
to alleviate performance issues raised while traversing
the fine-grained graph. Although connectivity relation-
ships between those structural units can be computed
from the exit hierarchy, an adjacency relationship, for
instance, needs to be associated to each unit in a sep-
arate abstraction layer. Therefore, such topological se-
mantics are not explicitly materialised in the exit hier-
archy, even though information representing their be-
longing to the topological hierarchy has been incorpo-
rated. Consequently, a location hierarchy that is based
on a connectivity graph, which represents rooms as
nodes and doorways as edges, can be derived as an ad-
ditional layer in order to preserve topological relation-
ships (Fig. 4).

A room in the location hierarchy is characterized
by 〈room_id, room_type, Adj_room_list, Lr, Ar〉,
where room_type describes whether this unit is a
room, a meeting room, a hallway, etc., Adj_room_list
denotes the list of identifiers of the adjacent units, and
Lr, Ar are introduced in a similar way as in the fine-
grained level. Such a location hierarchy can be directly
derived from the fine-grained layer, but can also be
generated from the exit hierarchy since information
about the belonging of exits to their respective struc-
tural units is stored. A staircase that connects a given
floor to another is represented as a room that belongs
to the two corresponding floors, and which is bounded
by two floor exits. On the other hand, an elevator is
represented in a similar way to stairs. A multi-floor el-
evator consists of several stages that correspond to the
number of floors of the building. Each stage of the el-
evator is modelled as a room that belongs to the two

corresponding floors and bounded by exits/entrances
to/from the corresponding floors.

From the fine-grained graph, a typical clustering
process results in an abstract layer as illustrated in
Fig. 4. Graph partitioning is thus carried out based
on the set of room labels associated to the nodes of
the base graph. Consequently, this process consists
of: (1) extracting and aggregating nodes whose room
labels are identical to form the new abstract nodes
of the location hierarchy; and (2) creating abstract
edges between connected structural units, thus favour-
ing topology-based queries. These steps are as follows:

– Step 1. Based on the set of room labels, the fine-
grained graph is partitioned into subgraphs. Let
ϕ =

⋃
i=1...|Σroom| ϕ�i be the set of subgraphs

of Smicro such that �i ∈ Σroom, and where ∀i ∈
{1, . . . , |Σroom|}, ϕ�i = (V�i , E�i) ⊂ Smicro is
a subgraph extracted from the fine-grained graph
according to node and edge labels, and where⋂

�i∈Σroom
V�i = ∅. An abstract node that repre-

sents each subgraph is then created, having �i as
its local-id.

– Step 2. The set of outgoing edges between con-
nected subgraphs is defined by: E�i,�j =(ϕ�i , ϕ�j)
∀i, j ∈ {1, . . . , |Σroom|}, i �= j. It should be
noted that, for geometric-based queries (e.g., nav-
igation, range, and nearest neighbour queries),
the exit hierarchy is more likely considered, as it
lends itself to more accurate and more realistic
pre-processing techniques. On the other hand, the
location hierarchy is more suitable for topology-
based queries (e.g., connectivity, adjacency, etc.)
or when one looks for the optimal path that con-
tains the smaller number of rooms. Therefore,
there is no need to associate precomputed net-
work distances to each edge in the location hier-
archy.

Similarly, there exists a relationship between exit
and location hierarchies since exits belong to structural
units. For instance, by retrieving the list of room labels
associated to all exits, one can derive connected rooms
and rebuild the corresponding location hierarchy. Ac-
cordingly, switching between a location hierarchy and
an exit hierarchy is always possible, thus covering a
larger range of queries (Fig. 5). Three spatial layers at
two levels of abstraction (i.e., the fine-grained layer at
the first level, and the exit and location hierarchies at
the second level) are employed and used in this work.
However, the data model can be generalized to intro-

72 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

Fig. 5. Links between neighbouring layers of the hierarchical data model.

duce higher levels of abstraction in order to cover a
wider range of applications, and with more flexibility.

2.2. Feature component

This section firstly presents the feature component
principles, and secondly highlights the management of
user profiles and real-time events.

2.2.1. Principles
A feature component F models persons and objects

of interest in an indoor space. These features are ei-
ther attached to the infrastructure (e.g., static objects
like tables, doors, walls, fixed sensors, etc.) or dy-
namic, that is, they evolve in the environment (e.g.,
mobile users, continuous phenomena). An entity may
be static or dynamic and is modelled as an object. An
object is identified and characterized by static prop-
erties (i.e., attributes) and potentially other dynamic
properties such as the interaction spaces attached to it
[10]. In addition, an object can perform a selected list
of actions that can be triggered according to some con-
textual constraints which are application-dependent.

Formally, a feature f ∈ F =
⋃
(P ,OOI) is de-

fined by a tuple 〈Id, Ct, S, FD, A, IS〉, where: Id is the
feature identifier, Ct denotes the feature class type, S
is the set of states a feature can hold, FD is the set of
values that describe f (i.e., typically, a set of string val-
ues), A ⊂ A is the list of context-dependent actions as-
sociated with f, and IS is the list of interaction spaces
associated with the feature [2,10] (explained below).
The sets of states and actions available for a given fea-
ture are specified depending on the feature class type.
A feature class type Ct is associated with a pair 〈S, A〉
where S =

⋃
i=1...|S| si and A denote the set of states

and actions, respectively. As an example, a user u ∈ P
may have some static descriptions about the user pro-
file and some predefined preferences. Besides, u can
execute an action a ∈ Au at an instant t when, for in-
stance, he/she is in state s ∈ S and located on a node v .
In contrast, an object of interest can be characterized
by some qualitative and quantitative descriptions (e.g.,
its spatial extent), and boolean parameters that deter-
mine whether the object is able to communicate or not,

whether it is mobile or static, physical or virtual, and
attractive or repellent.

Moreover, as indicated above, each feature is as-
sociated with special dynamic properties referred to
as interaction spaces (firstly introduced in [10] and
extended in a previous work [2]) that cover some
semantic information used for interaction purposes.
The component IS is a quadruple 〈ps, os, fs, rs〉 that
refers to the physical, operational, functional, and
range space. At the fine-grained level, the interaction
spaces are formally defined as sets of nodes dynami-
cally updated in real-time (see Fig. 6):

– The physical space is represented by the set of
nodes covered by the feature at a given time in-
stant. For a mobile user, the physical space cor-
responds to the node where the user is currently
located.

– The functional space denotes the nodes on which
another feature can physically interact with the
considered feature.

– The range space is a specific parameter only as-
signed to sensor objects and designates the set
of nodes covered by the sensor (i.e., detectable
nodes).

Furthermore, the notion of operational space has
been introduced to cover all features of the space
(static and/or moving objects). However, the definition
of the operational space varies significantly depending
on whether this feature is a (pseudo)-static6 or a mo-
bile object. The difference between the two definitions
is emphasized as follows:

– The operational space of a (pseudo-)static object
can be represented by the union of all the poten-
tial nodes and edges an object may cover when
it performs an action in the environment. For ex-
ample, the operational space of a window com-
prises all the potential nodes this window may
cover when opening and closing.

6A door or a window is an example of a pseudo-static object, since
it can either open or close (as illustrated in Fig. 8), but it cannot move
elsewhere.

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 73

Fig. 6. Interaction spaces of features evolving or located in space.

– The operational space of a mobile user denotes
the set of nodes accessible to the user at a given
time instant. The operational space of a mobile
user strongly depends on the contextual informa-
tion gathered. For example, the user profile di-
rectly affects the operational space according to
whether the user is a security guard, a firefighter,
a user with special needs, a normal user, etc. Time
is another important dimension that might have an
impact when visiting a shopping centre or enter-
ing a laboratory building (i.e., if the current time
is in the morning, at night, during the weekend,
etc.). Continuous phenomena such as a gas leak
or a fire that breaks out inside a building may also
have a significant impact on the operational space
of the user.

It is worth noting that functional, range, and oper-
ational spaces are computed based on a user request,
and are considered as specific continuous location-
dependent queries. In particular, the range space of a
given mobile sensor is considered as a typical range
query, by taking into account the sensor range as the
maximum threshold needed by the query. Moreover,
a continuous evaluation of the operational space for a
given user requires to retrieve all the spatial units ac-
cessible to this user at a given instant; this is typically
done in the case of reachability queries (presented in
Section 3.3.4).

2.2.2. User profiles
One assumption of our approach is that the user

model, which encapsulates knowledge about the users’
personal data and preferences, allows classifying users
into groups according to their privileges to access re-
stricted areas. The aim of this classification is to de-
rive an adaptive representation of space based on ac-

Fig. 7. Classification of user profiles based on access control infor-
mation.

cess control information associated with the user. This
filtering process allows to derive adaptive graphs from
the generic base graph by eliminating the set of nodes
that are actually inaccessible for a specific type of user,
thus reducing the amount of data that need to be pro-
cessed in real-time for each query and supporting the
retrieval of more accurate answers based on user pro-
files. A similar process takes place to update the time-
dependent accessibility of some nodes, for instance,
abstract nodes corresponding to rooms that are closed
at specific times.

Users are therefore classified into three main cat-
egories: (i) unrestricted user, (ii) restricted user, and
(iii) user with special needs. Additional types could be
obtained by referring to these basic categories and in-
corporating further restrictions, thus yielding different
configurations (see Fig. 7).

An unrestricted user has full access privileges and
so he/she can navigate the complete map of the build-
ing, that is, the generic graph representing all the floors
of the building. A example of an unrestricted user is a
firefighter or a security guard, who should have a com-
plete knowledge of all the emergency exits in a build-
ing. A restricted user category includes staff members,
guests, and visitors. Usually, staff users have premium
member privileges, but with some restricted areas, and
can also have different configurations, whereas visitors
have access to all the public places in a building. Users
with special needs follow the same rules as restricted
users except that additional penalties might be added
to edge weights so that the most appropriate routes can
be selected (e.g., using the elevator instead of the stairs
for wheelchair users). Access control information is
subject to very few changes over time, and thus it can
be processed statically.

When there are no clearly defined privileges for cer-
tain areas inferred from a given user model, which may

74 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

be due to unavailable information or lack of attention
when deploying a context-aware system, the closest
upper-level category of user profiles (from the ones
discussed above) is considered. This upper-level cate-
gory is less restrictive. Therefore, there might be some
inaccessible areas whose corresponding data could be
considered for query processing. Consequently, the
system may generate some answers which are not well
adapted to a specific user, such as a route that passes
through a restricted area.

2.2.3. Real-time event management
The occurrence of real-time events may have a sig-

nificant impact on the nodes accessibility. For exam-
ple, when considering a fire that is spreading in the
Computer Science Department, fire alarms are ex-
pected to detect this event and communicate it to the
system. With periodical updates performed automati-
cally, the system is capable of representing the grow-
ing spatial extent of the fire, thus marking nodes of that
physical space as inaccessible to users. This subset of
nodes will be temporarily blocked when computing the
operational space of the users. Instead, other subsets of
nodes which correspond to emergency exit routes will
be favoured to build the new operational space.

The distinction between attractive and repellent
events is embodied by associating negative or positive
impedance values to edge weights, respectively. There-
fore, unscheduled or unexpected events are charac-
terized by a triple: event 〈info_source, event_ps,
±value〉7. Common sources of information about
events (info_source) include the system supervisor
(if any), users and the social entities situated in the
environment, and the communicating sensors. Their
main task is to gather information about changes in
the environment and to communicate that informa-
tion to the system. The physical space of the event
(event_ps) should also be determined in real-time in
order to change edge weights as well node states ac-
cordingly. Finally, depending on the nature of each
event, a positive or negative value (±value) is as-
signed to edge weights, so that adapted paths can be
recomputed. Therefore, algorithms for handling con-
tinuous location-dependent queries are adapted in or-
der to deal with these dynamic factors and with the
information uncertainty.

7Temporal events are, on the other hand, regularly evaluated by
means of the time-dependent functions previously described, and so
they do not belong to this category of events.

2.3. Action component

The action component A =
⋃
(FA,SA) models

the set of actions that are either triggered automati-
cally by the system (SA) or performed by a given
feature acting in the environment (FA). System ac-
tions (SA) denote context-aware notifications that are
mainly triggered based on users’ locations and im-
plement a publish/subscribe approach; this means that
events are published by service providers to address
their subscribers. This also includes geocast messag-
ing [6,37], which can be described as a location-based
multicast where messages are delivered to users lo-
cated in a specific area instead of those subscribed to a
given group.

Feature actions (FA) encompass static and mov-
ing object actions, as well as continuous phenomenon
actions (see Fig. 8). When considering objects, ac-
tions specify whether and how objects of a given type
change their states in order to behave in a certain way.
For instance, objects can adapt their behaviour and
properties according to some contextual changes in the
environment. This model implicitly builds semantic
and topological relations among the features situated
in space, by establishing relations between interaction
spaces of different features.

Actions are context-dependent; this means that, at a
given time instant and for a certain feature, only a spe-
cific list of possible actions is valid, which can then
be performed according to some execution constraints.
For a mobile user, actions comprise a sequence of
movements, interactions with other neighbouring en-
tities and artefacts, and requests for some services in
order to achieve a predefined goal (Fig. 8). This ap-
proach allows to represent artefacts of interest located
in the environment, so that users who are engaged in a
certain activity can gather knowledge and understand
their physical surroundings, as well as reconfigure and
manipulate physical artefacts (e.g., a chair, a door, a
heating, etc.) or virtual artefacts (e.g., a 2D/3D image
of a physical artefact, a digital user interface, some
recommendation/information, etc.) in order to produce
changes in the environment. Moreover, a user can com-
municate with any fixed or mobile sensor located in the
range space of a (mobile) sensor integrated in his/her
device or attached to him/her (e.g., a MEMS sensor,
an RFID tag, etc.). When considering continuous phe-
nomena, their actions can materialize the way a given
phenomenon diffuses in space.

The following sections will more closely consider
typical user requests and services by integrating this

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 75

Fig. 8. A set of actions performed by different types of features.

modelling approach in the general system architecture
for query processing.

3. Continuous query processing architecture and
motivating queries

A reasonable assumption of the approach, typically
adopted in other related works, is that moving ob-
jects cooperate with the system by providing up-to-
date location data (and possibly other information)
when needed. Thus, a minimum intervention of a user
device is required for query processing by communi-
cating the location of the user to the system accord-
ing to a certain location update policy [51]. It is worth
noting that no constraints are imposed on the move-
ments and directions of the reference and target objects
(following the terminology used in [26]). Accordingly,
the object that represents the reference for a location-
dependent constraint (i.e., the reference object) can be
either in a static location or moving freely in space.
Similarly, a location-dependent query can request in-
formation about static or dynamic data, depending on
whether the target objects (objects of interest to the
query) are moving or not. An additional challenging
issue is how to deal with dynamically changing edge
weights, as described earlier. Therefore, a unique com-

bination of challenges arises, as the proposed archi-
tecture must be able to continuously process different
kinds of location-dependent queries, and to take into
account additional context information, such as time-
dependency and user profiles, as well as the hierarchi-
cal layout of the indoor environment.

This section presents the general architecture pro-
posed for the continuous processing of several types
of location-dependent queries in indoor environments.
First, the main elements and components considered in
the architecture are introduced, and then some distribu-
tion issues are discussed. Secondly, a query language,
which will be used to express location-dependent
queries, is presented. Finally, some motivating sample
queries are illustrated.

3.1. Architecture principles

The general query processing flow is illustrated in
Fig. 9. Navigation-related queries are processed in ac-
cordance with this flow, and are executed continuously
while the request is not explicitly cancelled by the user.
Unlike many query processing approaches that focus
on specific types of queries and specific scenarios, this
architecture has the advantage of supporting many dif-
ferent types of queries without making any restrictive
assumption. The features that are managed in the en-

76 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

Fig. 9. Execution of location-dependent queries in indoor environments.

vironment are: (i) mobile persons, each of them carry-
ing a mobile device that allows computing their cur-
rent location and communicating with other entities,
and (ii) objects of interest, which contribute to enrich
the context of the query and are used by the user to pro-
vide his/her preferences and constraints (e.g., by us-
ing a digital user interface). These features are man-
aged by a set of fixed servers, each of them in charge
of: (1) maintaining a part of the hierarchical spatial
graph that represents the environment (i.e., a part of
the graph covering a certain spatial area); (2) managing
data and communicating with objects located within
its area; and (3) executing queries or parts of queries
whose data are locally available.

3.1.1. Architecture overview
The main phases of the query processing architec-

ture are illustrated in Fig. 9 and can be described as
follows:

Phases 1 and 2 A user interacts with the system in-
terface to issue a query. The system transforms the
query expressed in a natural or high-level language
into an SQL-like format, as proposed in [26]. We as-

sume that an expert user can also directly issue an
SQL-like query based on the syntax described in Sec-
tion 3.2.

Phase 3 Parsing a query implies lexical, syntactic,
and semantic analysis of the query expressed in an
SQL-like format in order to derive a valid internal rep-
resentation (e.g., a query graph [28]).

Phase 4 A query plan is prepared that is composed
of all the operations that are needed to appropriately
answer the user request. This not only includes typical
relational operations (e.g., selection, projection, join,
etc.), but also external calls to specific functions that
implement new query operators that are defined and
discussed in the next section. For optimization pur-
poses, some typical transformations can take place,
such as the removal of redundant predicates, the sim-
plification of complex expressions, etc. In addition, for
each constraint in the query, the reference object and
its target classes are obtained. Furthermore, informa-
tion regarding the location granules (defined in [25]
and discussed in the next section) of the reference and
target objects is retrieved, if the use of location gran-
ules is specified in the query.

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 77

Phase 5 All navigation-related queries that need to
expand routes either towards a specified target object
(e.g., an optimal path search towards a destination) or
in all directions with a maximum threshold (in the case
of range queries), are directed to the route manager in
charge of determining the candidate routes based on
user-defined preferences and context data (e.g., infor-
mation about user profiles and descriptions of objects
of interest). The main tasks performed by the route
manager are explained in Section 3.1.2.

Phase 6 Obtaining standard SQL queries from an
SQL-like query is needed, since data elements are as-
sumed to be stored in relational databases, which only
accept standard SQL. A location-dependent query is
broken up into standard queries and operations that are
organised in an execution plan to optimise system re-
sources. Not all the operators are necessarily translated
to equivalent standard queries; for instance, operators
related to route computation are directly handled at the
algorithmic level. The candidate routes obtained by ap-
plying such operators could, however, be used as the
input data to complete the construction of some stan-
dard queries.

Phase 7 In this phase, candidate routes along with
an execution plan including standard queries and op-
erations arrive at the query execution engine. Times-
tamped data about locations of relevant objects as well
as other context data are associated with operations, so
that the query engine can execute these queries appro-
priately. The continuous processing of a query means
that the execution of simple queries and operations is
kept alive until receiving an explicit request from the
user to cancel that query. Therefore, the engine must
repeatedly perform the following tasks: (1) update sim-
ple queries with the locations of relevant objects and
with the new set of relevant routes, if needed; (2) ex-
ecute standard queries; (3) correlate the results of the
different subqueries; and finally (4) present the answer
to the user.

3.1.2. Route management
Two main tasks are performed by the route manager

in order to execute navigation-related queries.

Task 1: Obtaining an initial answer. Depending on
whether a target object is specified or not, different
strategies are applied. A specified target implies ex-
panding a directed tree routed at the node where the
reference object is located, and oriented towards the
target object. For a static shortest path problem, this
can typically be solved using Dijkstra’s or A*’s algo-

rithm [18,22]. A more complex and challenging sce-
nario for estimating the route cost and computing the
optimal path arises when considering parameters such
as dynamic edge weights, a hierarchical graph struc-
ture and, most importantly, the need for an incremen-
tal approach for continuous path search with moving
reference and target objects.

In a range query, a maximum threshold or a radius
is specified instead of a target object. Therefore, all
the qualifying objects located within this radius are
retrieved. A slightly different strategy consists of ex-
panding all the routes whose network distance from the
source node is less than or equal to the specified radius.
Once again, this typical problem becomes significantly
more complex when incorporating the aforementioned
elements.

We are currently evaluating extensions of classical
path search algorithms that can appropriately deal with
all these challenges [4].

Task 2: Maintaining the answer up-to-date. Incre-
mental search algorithms are required in order to ex-
ecute continuous location-dependent queries, with-
out having to solve each search problem indepen-
dently from scratch [45,57]. Incremental search im-
plies reusing information from previous searches in
order to obtain the current result adaptively. In the
case of navigation and range queries, a route planner
needs to maintain the set of relevant routes up-to-date,
especially when dealing with moving objects. For a
navigation query, this means transforming the search
tree to an updated tree depending on the movements
of objects and other changes in the environment. In a
range query, this implies either expanding new sub-
trees from boundary nodes (i.e., leaves) or eliminating
some of them if the new network distance exceeds the
specified threshold [4].

3.1.3. Distribution management
Another component that contributes to the process

of refining candidate routes and to the execution of
queries is the distribution manager. The architecture
for processing continuous location-dependent queries
over a large space should consider scalability and per-
formance requirements. When considering a large in-
door space, a decentralised approach should therefore
be proposed to alleviate performance problems when
answering continuous queries and managing the corre-
sponding data about moving objects [21,26]. This ap-
proach makes no assumptions about either the num-
ber of computers deployed in the environment (one or
many) or the geographic area that should be managed

78 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

by each computer. Therefore, decisions about data dis-
tribution management can be taken at the application
level.

Let us consider the sample scenario described in
Section 2.1. This three-storey building could be man-
aged by deploying three servers, one on each floor,
so that a hierarchical graph is created for each floor
and stored in the corresponding server8. Consequently,
subqueries and operations whose data are locally avail-
able are computed independently and results are com-
municated to other servers, if needed, or to the user if
no other dependencies exist. Therefore, two challeng-
ing tasks must be performed by the distribution man-
ager in order to support a distributed query processing:

1. Keeping track of the relevant servers required to ex-
ecute a given continuous query. One can observe that
the set of relevant servers changes depending on the
locations of the reference and target objects. In the sce-
nario mentioned above, a user from the Linguistics De-
partment located on the first floor may want to reach
his/her colleague currently located on the second floor.
This scenario needs the first and second servers to be
involved in the path planning query. If the target col-
league moves down to the ground floor, the distribu-
tion manager must detect that the target leaves the area
that is currently being watched and then, based on the
new location of the target, the third server should be
added to the set of relevant servers.
Therefore, each server is considered to be in charge
of keeping (and providing) information about moving
objects located within a fragment of the hierarchical
data model. Then, for a given query in an indoor en-
vironment, a path or a set of paths, that can change
dynamically along time, is computed. In this particu-
lar scenario, a path between the reference object (i.e.,
the query issuer in this example) and the target col-
league is computed. On the contrary, in the case of a
range query (which requests the objects that satisfy the
specified constraints and are located within a certain
radius from the reference object), the set of all the po-
tential paths within the radius specified is computed.
From this set of paths, the set of relevant servers for
the query is derived. Therefore, queries that refer to a
specific spatial area only require the service of a small
subset of servers.
This optimisation has more important effects in large
spaces (e.g., a campus with several buildings or in sce-

8Nodes corresponding to a staircase between two floors could be
assigned to the server of either of such floors.

narios with a high number of moving objects), where
using only the relevant servers can significantly reduce
the query processing overhead. It should be noted that
the information about the hierarchical graph itself is
also distributed9. In that case, some nodes in the sub-
graph stored in a server actually represent entry nodes
in another subgraph cached in a different server. Such
nodes store the information needed to contact the other
server.
2. Computing the answer in a distributed environ-
ment. Once the relevant servers have been identified,
each server is queried in parallel to retrieve the objects
located within the relevant fragments of the graph.
This query has to be executed as a continuous query,
as the relevant objects may move continuously. More-
over, objects’ movements and changes in the environ-
ment can lead to changes in the set of relevant paths,
which may in turn modify the set of relevant servers.
Therefore, the query processing is assumed to be exe-
cuted according to a certain refreshment period (as in
other works, such as [26]), since the answer can change
continuously.

Thanks to the distribution management, this archi-
tecture is generic and can be easily adapted to meet the
requirements of a specific scenario. It works in small
scenarios where a single server is enough as well as in
scenarios that require a higher number of servers.

3.2. A language for location-dependent queries in
indoor environments

As previously mentioned, several types of queries,
such as navigation, range, and nearest neighbour
queries, are of interest in an indoor environment. In or-
der to improve query expressiveness, a query grammar
is introduced to present those queries. This grammar
is illustrated in Fig. 10, which has been extended from
a previous work [25] to support navigation queries
(of key importance in context-aware indoor naviga-
tion systems), and to incorporate some other prefer-
ences and semantics in the query model. For exam-
ple, this grammar includes operators (e.g., All-routes)
and constraints (e.g., Stop-vertices) used for naviga-
tion queries and inspired by [11], where the authors
have introduced an approach for query processing in
multimodal transportation systems based on the def-
inition of a query language that provides users with
the ability to choose between different modes of trans-

9Nevertheless, it could also be stored in a centralised manner, as
the proposal is general enough to support any scheme.

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 79

General query structure
Query → (Standard-query | Navigation-query)
Standard-query → select (Attr-Projections | ‘*’) from Class-names (where

Conds)?
Navigation-query → select (Attr-Projections | ‘*’) from All-routes-expression (‘,’

Class-names)* (with Stop-vertices)? (where Conds)?
(optimization-criteria)?

Attr-Projections → Attr-Loc-Select (‘,’ Attr-Loc-Select)*
Attr-Loc-Select → attribute | Loc-Select
attribute → Qualified-attr | Unqualified-attr
Qualified-attr → Class-name ‘.’ Unqualified-attr
Loc-Select → Object-id ‘.’ ‘loc’ | gr ‘(’Map-id ‘,’ Class-name ‘)’ | gr

‘(’Map-id ‘,’ Route-id ‘)’
Class-names → Class-name (‘,’ Class-name)*
All-routes-expression → All-routes ‘(’ Loc-Ref ‘,’ Loc-Target ‘)’
Loc-Ref → Object-id (‘.’ coord)? | gr ‘(’Map-id ‘,’ Object-id ‘)’ | gr-map

‘(’Map-id ’,’ Gr-id ‘)’ | Vertex-id
Loc-Target → Class-name | Object-id | Object-id ‘.’ coord | gr ‘(’ Map-id

‘,’ Class-name ‘)’
Stop-vertices → Stop-vertex (‘,’ Stop-vertex)*
Stop-vertex → Vertex-id
optimization-criteria → (minimize | maximize) Measure
Measure → time | distance

Conditions can be standard conditions on attributes or location-dependent conditions
Conds → Cond ((and | or) Cond)*
Cond → (Bool-Cond | LDQ-Cond)
Bool-Cond → attribute Comp Value |

intersect ‘(’ Vertex-set ‘,’ Vertex-set ‘)’ |
Value IN Vertex-id ‘.’ POI

Location-dependent conditions
LDQ-Cond → inside ‘(’ Args-Inside ‘)’ | nearest ‘(’ Args-Nearest ‘)’ | ...
Args-Inside → Radius ‘,’ Loc-Ref ‘,’ Loc-Target
Args-Nearest → K ‘,’ Loc-Ref ‘,’ Loc-Target
Radius → Real Units

Basic grammar productions
String → ([a-z] | [A-Z] | [0-9])+
Real → ([0-9]+) (‘.’ [0-9]+)?
K → [1-9] [0-9]*
Class-name → “ String ” /* Name of a class of objects */
Unqualified-attr → “ String ” /* Name of a class attribute */
Object-id → “ String ” /* Identifier of an object */
Map-id → “ String ” /* Identifier of a granule map */
Gr-id → “ String ” /* Identifier of a granule */
Vertex-id → “ String ” /* Identifier of a vertex */
coord → ‘(’ Real ‘,’ Real ‘)’ /* Two dimensions are assumed */
Units → meters | kilometres | ...
Comp → ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘<>’
Value → ([0-9]+) | “ String ”
POI → “ String ” /* A point of interest */

Fig. 10. Query grammar for location-dependent queries in an indoor environment.

portation and define spatio-temporal restrictions and
preferences on the resulting path. In the grammar pre-
sented in Fig. 10, non-terminals start in upper-case and
literals are in italics (reserved words) or in lower-case.
The following description of the query language high-

lights the main elements involved in the definition of
the queries.

In the general structure of the query language, two
kinds of queries are identified: the former typically
represents an SQL standard structure (Standard-query)

80 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

along with specific kinds of location-dependent con-
straints, which are mainly used to express range and
nearest neighbour queries. The latter (Navigation-
query) represents navigation queries that incorporate
route computation into the query processing while op-
timising distance/time criteria. For a navigation query,
the 〈 FROM clause 〉 contains an external call to the
All-routes operator, which has a general syntax as fol-
lows: All-routes(Loc-Ref, Loc-Target). This operator
returns a non-materialised set of tuples representing
valid routes between the current locations of the refer-
ence and target objects. A route is a sequence of nodes
and edges that can belong to different levels of granu-
larity, which is determined by taking into account the
context-dependent data integrated into the hierarchical
data model. As a non-materialised table, the set of tu-
ples (routes) obtained as a result of this operator are
generated at runtime, and used only to execute the cor-
responding query. Each generated route is defined as:
route (route-id, source-vertex-id, target-vertex-id, 〈v1-
id, e1-id, v2-id, e2-id, . . . , vk-id〉, length, time), where
route-id is a route identifier automatically assigned by
the system when the route is computed. The Loc-Ref
and Loc-Target arguments may correspond to either
a “Vertex-id” or to the locations of the reference and
target objects, respectively, but they can also be inter-
preted as the location granules that contain the corre-
sponding objects, as discussed below. Moreover, Loc-
Target can refer to the class name of objects of interest
(target objects); this is used, for instance, in an inside
constraint to retrieve all the objects of a given type.

The 〈 WITH Stop-vertices 〉 clause is an optional
statement that expresses a user preference implying
that the route must go through some place/s that is/are
of interest to the user. Several Stop-vertices can be
specified within a single query, and it is assumed that
vertices are processed in the order they appear in the
query. Furthermore, two different optimisation criteria
are applied: time and distance, which can be consid-
ered based on the time-dependent functions defined in
Section 2.1.1. In the standard structure of the query,
two kinds of location-dependent conditions can be ex-
pressed in the 〈 WHERE clause 〉: inside(Radius, Loc-
Ref, Loc-Target) and nearest(K, Loc-Ref, Loc-Target).
A constraint inside is applied when performing a con-
tinuous range query processing, which takes into ac-
count the radius as a maximum threshold to consider,
and is used to build the set of paths (around the refer-
ence object) whose network distances are less than the
radius. The nearest constraint is expressed to process
continuous K nearest neighbour queries, by specifying

the class name of objects of interest in Loc-Target, so
that the K objects of interest that are the closest to the
current location of the reference object are retrieved.

The concept of location granule proposed in [25]
is used. A location granule identifies a set of fine-
grained geographic locations (i.e., geometric coordi-
nates of vertices in the base graph) under a common
name. This is completely consistent with the hierar-
chical spatial graph proposed in Section 2. The use
of location granules allows to formulate queries with
a location resolution which is appropriate for the in-
tended application. With them, it is possible to formu-
late queries using the location terminology required by
the user (e.g., vertices at the fine-grained level, rooms,
floors, buildings, etc.). For example, a user may be in-
terested in persons that are near the room where an-
other (moving) object is currently located (see Exam-
ple 1 in Section 3.3.2). In such a case, the location
granule is set to the room level. The operator gr is a
shorthand for granule and returns the location granule
associated with a certain object according to a speci-
fied granule map (i.e., a named set of granules).

As depicted in Fig. 10, the location granule operator
can be referenced in the SELECT clause, the FROM
clause and/or the WHERE clause of a query, depend-
ing on whether the granules are used for the visuali-
sation of the results and/or for the processing of con-
straints or routes. For visualisation purpose, a location
granule operator can be used in a Loc-Select projec-
tion in the SELECT clause, according to the request
submitted by the user, to show the result at the desired
level of granularity; for example, SELECT gr(‘room-
level’, Person) can be used to project the rooms where
the persons retrieved by the query are located. In addi-
tion, the gr operator can be applied on a route, which is
the result of a navigation query, to show the sequence
of nodes and edges obtained in the route at one cho-
sen abstraction level. For instance, SELECT gr(‘room-
level’, Routes.id) could be used to illustrate the se-
quence of rooms of the valid route, which is made of
nodes and edges of different levels (e.g., fine-grained
and exit hierarchy levels). In this case, nodes and edges
of the resulting route are abstracted to the room level,
and the corresponding nodes of this chosen level are
shown.

On the other hand, the same gr operator can be spec-
ified for processing-oriented uses as a Loc-Ref and/or
Loc-Target argument within the FROM clause (i.e., in
an All-routes-expression), and/or within the location-
dependent query constraints (i.e., inside and nearest
constraints), in reference to the locations of the ref-

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 81

erence and target objects, so that they can be inter-
preted as granules according to a given granule map
(i.e., a given level of granularity). For instance, in-
side(100 meters, gr(‘room-level’, ‘o1’), Person) is a
constraint satisfied by the persons within 100 meters
around the room where object o1 is located (Exam-
ple 1 in Section 3.3.2); similarly, inside(100 meters,
gr(‘room-level’, ‘room12’), Person) is satisfied by the
persons within 100 meters around room 12 (note that,
in contrast to the previous example, the reference ob-
ject here is not moving). On the contrary, inside(100
meters, ‘o1’, Person) would be used when the desired
range is determined around object o1 itself; it should
be clarified that gr(‘micro-level’, ‘o1’) is equivalent to
o1, that is, a fine-grained granule corresponding to the
current fine-grained location of the object is consid-
ered by default when the gr operator is not explicitly
expressed.

3.3. Location-dependent queries in indoor
environments

This section presents typical examples of location-
dependent queries. These examples follow the scenario
introduced in Section 2.1. In particular, we consider
navigation queries, range queries, nearest neighbour
queries, and also other specific types of queries.

3.3.1. Navigation queries
The continuous processing of navigation queries is

based on a hierarchical path search that relies on a
bottom-up technique with different levels of abstrac-
tion (i.e., fine-grained, room, floor, and building). The
hierarchical path search starts from a user-specified
level of granularity, depending on the location granule
specified in the request and which contains the initial
query point. The main steps of the process can be sum-
marized as follows:10

1. Find the optimal path within the initial granule
until reaching the nearest exit.

2. Search at the abstract level (exit hierarchy) for
the optimal path from the exit of the initial gran-
ule to the granule containing the target object.

3. Find the optimal path within the last granule to
the target object starting from the corresponding
entrance of the granule.

10Steps 1 to 3 represent the first iteration that performs the hierar-
chical path search, while step 4 addresses the continuous processing
of the navigation query.

4. Start a continuous path search by taking into ac-
count updated locations of reference and target
objects (considering moving targets). This im-
plies transforming an initial search tree rooted
at the previous vstart to an updated tree rooted
at the current vstart. The process continues ei-
ther by expanding new sub-trees from the leaves
towards the target and/or by removing sub-trees
that are no longer needed.

Below are some typical examples of navigation
queries:

1. A user identified by ‘userID’ wants to find the
fastest path from his/her current location to the meet-
ing room ‘MR01’ of the Computer Science Depart-
ment11 that goes through a break-room, showing the
result at the room level:

SELECT gr(‘room-level’, RO)
FROM Room AS R, Person AS P,
All-routes(gr(‘micro-level’,P.id),R)

AS RO
WITH Stop-vertices v1
WHERE R.id = ‘MR01’ AND P.id =‘userID’
AND ‘break-room’ IN v1.POI
MINIMIZE time(RO)

where time(RO) = timestart→goal(tstart) is the esti-
mated time to traverse the path RO from ‘userID’ lo-
cated at vstart to ‘MR01’. As previously mentioned,
the gr operator used in the SELECT statement returns
an ordered set of nodes of the optimal route at the room
level.
2. Find the shortest route from person ‘userID1’ to
person ‘userID2’, showing the results at the room
level:

SELECT gr(‘room-level’, RO)
FROM Person AS P1, Person AS P2
All-routes(gr(‘micro-level’, P1.id),

gr(‘micro-level’, P2.id)) AS RO
WHERE P1.id = ‘userID1’
AND P2.id = ‘userID2’
MINIMIZE length(RO)

where length(RO) = lengthstart→goal(tstart) is the
time-dependent network distance from ‘p1’ located at
vstart to ‘p2’ located at vgoal.

11MR01 is a unique identifier of the structural unit specified by
the user and which belongs to the Computer Science Department.

82 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

3. Retrieve the time needed by all my colleagues of
the Computer Science Department to reach the room
where I am located:

SELECT MAX(t)
FROM Person As P,
(SELECT RO.time
FROM All-routes(gr(‘micro-level’,P.id)

, gr(‘room-level’, ‘myID’)) AS RO
MINIMIZE time(RO)) AS t
WHERE ‘C.S. Department member’ IN P.FD

A similar query could be “Retrieve the time needed
to evacuate the building”, which could be computed
as the estimated time needed for the evacuation of the
slowest person in the building.

3.3.2. Range queries
Range queries are used to retrieve information about

objects or places within a specified range or area. Some
range queries have a static reference object and oth-
ers have a moving reference object. Similarly, the tar-
get objects of the queries can be static or moving. The
continuous processing of range queries consists in hi-
erarchically expanding all routes whose network dis-
tance from the source node is less than or equal to the
specified radius. A hierarchical network expansion is
performed once for the first iteration so that all visited
nodes that compose the range around the reference ob-
ject are stored. To continuously process a range query,
the set of parent nodes is maintained up-to-date when
changing the root of the sub-tree (i.e., when the ref-
erence object moves). Boundary nodes are checked to
decide, for each of them, whether to further expand
that node or to perform a reverse search towards the
source to remove nodes that are not relevant any more.
Examples of such queries are:

1. Retrieve the identifiers of persons accessible at
a network distance smaller 100 meters of the room
where object o1 is located:

SELECT Person.id
FROM Person
WHERE inside(100 meters,

gr(‘room-level’, ‘o1’), Person)

2. Retrieve all the communicating entities accessible
at a network distance smaller than 100 meters of the
user identified by ‘userID’ and with a communication
range of at least 200 meters:

SELECT CO.id
FROM Object AS CO
WHERE inside(100 meters,

gr(‘micro-level’,‘userID’), CO)
AND CO.communicate = true
AND CO.commRange >= 200

3. Retrieve all the persons who belong to the Com-
puter Science Department and that are accessible at a
network distance smaller than 100 meters of the user
identified by ‘userID’:

SELECT P.id
FROM Person AS P
WHERE inside(100 meters,

gr(‘micro-level’,‘userID’), P)
AND ‘C.S. Department member’ IN P.FD

In the previous query examples, the query issuer does
not play the role of the reference object of the query,
which shows the generality of the types of queries sup-
ported. On the other hand, the reference object can cer-
tainly be the query issuer himself/herself.

3.3.3. K nearest neighbour queries
A (K) nearest neighbour query retrieves the (K) ob-
jects that meet certain specifications and which are the
closest to a certain object or location. As in the case of
other location-dependent queries, this kind of queries
can also be issued by either a static or a dynamic ref-
erence object, and applied to either static or dynamic
data. Let us show some examples:

1. Find the nearest available bathroom to the user
identified by ‘userID’:

SELECT BR.id
FROM Bathroom AS BR
WHERE nearest(1, gr(‘micro-level’,

‘userID’), BR)
AND BR.state = ‘free’

2. Find the two nearest colour printers to each member
of the C.S. department:

SELECT Pr.id, P.id
FROM Printer AS Pr, Person AS P
WHERE
nearest(2, gr(‘micro-level’,P.id), Pr)
AND ‘C.S. Department member’ IN P.FD
AND Pr.type = ‘ColourPrinter’

3. Retrieve the nearest extinguisher to each person lo-
cated in buildings where a fire alarm is beeping:

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 83

SELECT P.id, Ex.id
FROM Sensor AS Ex,
(SELECT Person.id
FROM Person, Sensor AS FS
WHERE
inside(0,gr(‘building-level’,FS.id),P)
AND FS.state = ‘active’
AND FS.type = ‘Fire-Sensor’
) AS P
WHERE
nearest(1,gr(‘micro-level’,EX.id),P)
AND Ex.type = ‘Extinguisher’

3.3.4. Reachability queries and reverse range queries
Finally, examples that show the relevance of the pro-

posed query language and implicitly embed interac-
tion spaces associated with each object are hereafter il-
lustrated. Reachability queries check for places and/or
objects that are reachable from the current position
of the reference object. Indeed, those queries are im-
plicitly processed as range queries by assigning a de-
fault threshold value θ to the inside constraint, which
is large enough to determine whether the target objec-
t/place is reachable or not.

1. Reachability queries:

– Is the room where the object ‘objID’ is currently lo-
cated accessible to the user identified by ‘userID’?
This request should check whether the room that
contains ‘objID’ is within the range of ‘userID’ hav-
ing a maximum threshold value set to θ:

SELECT Room.id
FROM Room
WHERE inside(θ meters,
gr(‘micro-level’,‘userID’),
gr(‘room-level’, Room))
AND inside(0 meters,Room.id,‘ObjID’)

– Retrieve all the rooms that are accessible to the user
‘userID’:

SELECT Room.id
FROM Room
WHERE inside(θ meters,
gr(‘micro-level’, ‘userID’),
gr(‘room-level’, Room))

– Retrieve all the floors of the building that have at
least one room accessible to the user ‘userID’:

SELECT DISTINCT gr(‘floor-level’,
Room)

FROM Room
WHERE inside(θ meters,
gr(‘micro-level’, ‘userID’),
gr(‘room-level’, Room))

2. Continuous reverse range queries. Retrieve all the
entities of type ‘Sensor’ that are covering the user
‘userID’ can be considered as an example of a contin-
uous reverse range query, according to the definition
provided in [54], since it continuously checks whether
a moving object is inside the range of some sensor:

SELECT S.id
FROM Sensor AS S, Person AS P
WHERE inside(S.radius, S.id, P)
AND P.id = ‘userID’

3.4. Discussion

The architecture presented provides a continuous
query processing approach that can be applied on both
static and moving objects, and proposes a generic ex-
ecution flow for different kinds of location-dependent
queries in indoor environments. The query language
grammar supports navigation-related queries and in-
corporates other preferences and semantics into the
query model. This language handles the granularity of
moving objects’ locations, thus favouring the hierar-
chical indoor data model previously presented.

Although the management of location granules dur-
ing query processing introduces a certain overhead due
to some extra geometric computations, this cost is lim-
ited and affordable. Indeed, the use of location gran-
ules together with incremental processing help reduc-
ing the communication overhead. Moreover, dealing
with coarse location granules reduces the number of
location updates that must be communicated to the mo-
bile device. Similarly, efforts needed to keep track of
the current positions of the reference and target ob-
jects are also smaller when coarse location granules are
specified in the query constraints.

A stand-alone platform based on an extensible
DBMS (PostgreSQL [35] with extensions: PostGIS
[38]/Hermes [41], TelegraphCQ [13]) is currently un-
der development. The main parts that are being devel-
oped in this platform are:

– The data model that represents the hierarchical
network.

84 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

– The operators and location-dependent constr-
aints introduced in Section 3.2. Those are de-
signed as PL/pgSQL functions applied on user-
defined types.

– The algorithms to process continuous location-
dependent queries. A potential use of the Tele-
graphCQ extension is expected for handling con-
tinuous spatial streams as an input to the algo-
rithms.

This implementation effort supports open source
spatio-temporal databases and data stream manage-
ment systems to handle continuous queries. Moreover,
the hierarchical data modelling, i.e., abstract layers
generation, is carried out by means of the supplied
spatio-temporal functionality. Furthermore, the exten-
sible query language allows for developing new data
types, functions, and operators required to express the
location-dependent queries presented in Section 3.2.
An experimental evaluation of these algorithms as well
as of the whole system with respect to the most related
work in the literature will be performed in order to en-
sure the scalability and efficiency of the proposed so-
lutions.

4. Related work

This section presents related work in three different
areas: location-dependent query processing, context-
aware indoor navigation, and query languages for
location-dependent queries.

Location-dependent query processing

Most work on location-dependent query process-
ing has been developed with an outdoor environment
in mind (cf., [27] for a recent survey). However, in-
door environments have brought special features and
constraints that should be considered during query
processing. As an example, the Euclidean distance is
meaningless to compute routes in indoor spaces, due to
path constraints. Therefore, approaches for query pro-
cessing based on the network distance are preferred
and more realistic. However, existing approaches for
network-based query processing usually assume an
outdoor environment (e.g., [17,30,40,44]), where for
example hierarchical networks do not appear and there
are no accessibility rules based on user profiles.

Nevertheless, recent works have studied location-
dependent queries in indoor environments [55–57].

Specific graph data models that represent the indoor
space have been designed in these approaches, thus al-
lowing a better processing of specific kinds of queries
on top of the generated spatial network. In [57], the
authors have introduced an approach to support range
queries based on a virtual cell-based network gen-
erated for each query. Besides, an extension of this
method has been proposed in the same paper to con-
tinuously process range queries whenever the query
point moves. However, this approach is designed to ad-
dress only one kind of query, and is only applied to
static data (i.e., static points of interest). Moreover, for
each query, a new virtual network that connects the
query point to the predetermined points of interest is
required, and additional computations are also needed
to update the network each time the query point leaves
its safe area.

Other solutions for continuous range query process-
ing as well as k nearest neighbour query processing
over moving objects have been provided in [55] and
[56], respectively. Both methods are developed on top
of the same graph data model. The former deploys a
set of sensors to continuously monitor users’ move-
ments, thus maintaining the query result up-to-date,
while the latter uses a probability estimation mecha-
nism to prune unqualified candidates from the candi-
date set, so that the most probable k nearest neighbours
are retrieved. The results show that the provided data
model is flexible, since it allows for different kinds
of queries to be performed, and the solutions on top
of these foundations are efficient and scalable. How-
ever, the model underneath is based on sensor-range-
based positioning techniques, which is not perfectly
suitable for navigation queries that may require fine-
grained location information. Moreover, other context
dimensions such as the time and user profiles are not
considered in the query processing. Furthermore, in
the case of large indoor spaces, a generic architecture
that allows distributing and managing data over several
pieces of a database would still be required.

Context-aware indoor navigation

Graph-based data models support practical solutions
to compute an optimal and realistic route to a desti-
nation by taking into consideration architectural con-
straints and dynamic changes in the environment [3].
A context-aware navigation task should comprise a
next-step selection algorithm that keeps continuous
track of the user’s location and tries to adapt possible
route deviations. Although very few works have dis-

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 85

cussed the integration of such a dynamic mechanism,
several studies have incorporated dynamic changes
into querying tasks by introducing time-dependent and
length-dependent optimal routing in a spatial network
[15,19]. Others have proposed algorithms for shortest
and fastest path search with improved tracking strate-
gies [8,45,53]. The main focus of these algorithms is
to keep real-time tracking of moving objects. However,
each of them deals with either time or distance con-
straints without incorporating other elements such as
the user preferences or events that may significantly
influence the answer. Hierarchical spatial data models
have also been proposed to deal with performance and
scalability issues when performing path searches over
large graphs [12]. A bottom-up path finding approach
[12], similar to the one presented in this paper, has
shown to be up to 10-times faster for a 1% degradation
in the path quality.

From a context-aware systems perspective, an in-
door data model should support activity-oriented in-
teractions by representing artefacts of interest located
in the environment, as well as location-aware commu-
nication (e.g., communication between users and sen-
sors, as suggested in [42]). Unfortunately, most of the
existing data models are not designed for that pur-
pose and thus do not support interactions with these
artefacts and the tasks they might participate in. In-
deed, the evaluation of mobile indoor navigation sys-
tems presented in [24] shows that most of the exist-
ing systems do not support context-awareness. There
are only a few works that integrate some context di-
mensions other than the location, especially the se-
mantics behind the user profiles, and provide context-
dependent adaptation according to these dimensions
[29,33,48]. C-NGINE [29] supports an ontology-based
modelling approach along with a rule-based reasoning
technique to develop a navigation system adapted to
the user’s needs and preferences. The major shortcom-
ing of such a semantic approach is the lack of geomet-
ric details about objects of interest and places repre-
sented in space. On the other hand, OntoNav [48] is
based on a hybrid data model, which combines an in-
door navigation ontology with a geospatial model (i.e.,
GIS layers representing a building blueprints), and a
user model that helps processing path queries adapted
to the user context. CoINS [33] is another indoor nav-
igation system that supports navigation queries. It in-
tegrates a hybrid (i.e., symbolic and geometric) spa-
tial data model, as well as a user model with access
permissions to enable adaptive pathfinding. Neverthe-
less, these three systems aim at providing a navigation

service, and thus they do not support other location-
dependent queries such as range and nearest neighbour
queries. Moreover, none of these systems has proposed
a general architecture for the continuous processing of
location-dependent queries.

Query languages for location-dependent queries

The query language grammar presented in Sec-
tion 3.2, has been extended from a previous work [25]
and adapted to the context of indoor environments, by
adding support for navigation queries and incorporat-
ing some other preferences and semantics in the query
model. To the best of the authors’ knowledge, no other
work in the literature supports enhancing the expres-
siveness of location-dependent queries by considering
the granularity of moving objects’ locations. The ap-
proach presented in [25] covers the use of location
granules from both a query processing as well as a
result visualisation points of view. The results shown
from using the location granules in query processing
are considered very satisfactory. Indeed, the experi-
ments show that the advantages of location granules
do not come at the expense of performance. Moreover,
the distributed approach increases the performance and
scalability of the query processing [26].

Similar semantically enriched query languages for
path planning in outdoor environments have been pro-
posed in [11,36]. A query model for multimodal trans-
portation systems has been presented in [11], which
provides users with the ability to choose between
different modes of transportation and applies spatio-
temporal restrictions adapted to the user’s preferences.
As explained in Section 3.2, some concepts have been
adopted from that query model. Another approach
based on fuzzy logic theory that helps identifying am-
biguous and possibly contradictory preferences have
been proposed in [36]. However, the authors do not
provide an architecture for continuous processing of
location-dependent queries.

5. Conclusions and future work

The research introduced in this paper presents an
approach to model continuous location-dependent
queries in indoor environments. A generic architecture
for continuous query processing has been introduced,
along with a specific query language to enhance query
expressiveness. This architecture proposes a generic
execution flow applied to different kinds of location-

86 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

dependent queries in indoor environments, and allows
for managing data in a distributed manner. This archi-
tecture is built on top of a hierarchical and context-
dependent data model, which leads to the considera-
tion of other context dimensions besides the location
of the involved entities, such as time and user pro-
files. The main advantage of the indoor data model re-
lies on its hierarchical and context-dependent design,
which allows adaptive and appropriate processing of
location-dependent queries. The query language gram-
mar allows to represent a variety of location-dependent
queries and incorporates user preferences and other se-
mantics into the query model. Moreover, the use of lo-
cation granules in the query language significantly in-
creases the query expressiveness, and is perfectly con-
sistent with the hierarchical layout of the environment.

Future work is oriented towards: (1) taking advan-
tage of this proposal to deal with the continuous pro-
cessing behind the operators defined in Section 3.2
(i.e., the All-routes operator, and the inside and nearest
constraints). Two algorithms for continuous process-
ing of navigation and range queries on top of the mod-
elling approach presented in this paper have already
been developed [4], but experimental evaluation and
comparison with related works are still under progress;
(2) integrating an extended context model that incor-
porates users’ activities as well as content generated by
other social entities into the location-dependent query
processing; and (3) generalising the hierarchical data
model to higher levels of abstraction (floor and build-
ing levels), thus building a nested-graph model similar
to the Hypernode/Master-node data model described in
[31] and [34], respectively.

Acknowledgements

This research was partially supported by a Short
Term Scientific Mission performed by the first au-
thor at the University of Zaragoza and funded by the
COST Action IC0903 on “Knowledge Discovery from
Moving Objects” (MOVE project). We would also
like to acknowledge the support of the CICYT project
TIN2010-21387-C02-02 and DGA-FSE.

References

[1] G.D. Abowd and E.D. Mynatt, Charting past, present, and fu-
ture research in ubiquitous computing, ACM Transactions on
Computer-Human Interaction 7(1) (2000), 29–58.

[2] I. Afyouni, C. Ray, and C. Claramunt, A fine-grained context-
dependent model for indoor spaces, in: Proc. of the 2nd
ACM SIGSPATIAL International Workshop on Indoor Spatial
Awareness, ACM, 2010, pp. 33–38.

[3] I. Afyouni, C. Ray, and C. Claramunt, Spatial models for in-
door and context-aware navigation systems: A survey, Journal
of Spatial Information Science 4(1) (2012), 85–123.

[4] I. Afyouni, C. Ray, S. Ilarri, and C. Claramunt, Algorithms
for continuous location-dependent and context-aware queries
in indoor environments, in: Proc. of the 20th ACM SIGSPA-
TIAL International Conference on Advances in Geographic In-
formation Systems, ACM, 2012, pp. 329–338.

[5] M. Baldauf, S. Dustdar, and F. Rosenberg, A survey on
context-aware systems, International Journal of Ad Hoc and
Ubiquitous Computing 2(4) (2007), 263–277.

[6] S. Basagni, I. Chlamtac, and V.R. Syrotiuk, Geographic mes-
saging in wireless ad hoc networks, in: Proc. of the 49th Ve-
hicular Technology Conference (VTC), Vol. 3, IEEE, 1999, pp.
1957–1961.

[7] C. Becker and F. Durr, On location models for ubiquitous com-
puting, Personal and Ubiquitous Computing 9(1) (2005), 20–
31.

[8] A. Berger, M. Grimmer, and M. Müller-Hannemann, Fully
dynamic speed-up techniques for multi-criteria shortest path
searches in time-dependent networks, in: Proc. of the 9th
International Symposium on Experimental Algorithms (SEA),
Springer, 2010, pp. 35–46.

[9] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, and D. Riboni, A survey of context modelling
and reasoning techniques, Pervasive and Mobile Computing
6(2) (2009), 161–180.

[10] M. Bhatt, F. Dylla, and J. Hois, Spatio-terminological infer-
ence for the design of ambient environments, in: Proc. of the
9th International Conference on Spatial Information Theory
(COSIT), Springer, 2009, pp. 371–391.

[11] J. Booth, P. Sistla, O. Wolfson, and I.F. Cruz, A data model for
trip planning in multimodal transportation systems, in: Proc.
of the 12th International Conference on Extending Database
Technology (EDBT), ACM, 2009, pp. 994–1005.

[12] A. Botea, M. Muller, and J. Schaeffer, Near optimal hierarchi-
cal path-finding, Journal of Game Development 1(1) (2004),
7–28.

[13] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin,
J.M. Hellerstein, W. Hong, S. Krishnamurthy, S.R. Madden,
F. Reiss, and M.A. Shah, TelegraphCQ: Continuous dataflow
processing, in: Proc. of the 2003 ACM SIGMOD International
Conference on Management of Data, ACM, 2003, pp. 668–
668.

[14] G. Chen and D. Kotz, A survey of context-aware mobile com-
puting research, Technical Report TR2000-381, Dartmouth
College Hanover, NH, USA, 2000.

[15] D. Delling, Time-dependent SHARC-routing, Algorithmica
60(1) (2011), 60–94.

[16] T. Delot, S. Ilarri, N. Cenerario, and T. Hien, Event sharing in
vehicular networks using geographic vectors and maps, Mobile
Information Systems 7(1) (2011), 21–44.

[17] K. Deng, X. Zhou, H.T. Shen, S. Sadiq, and X. Li, Instance op-
timal query processing in spatial networks, The VLDB Journal
18(3) (2009), 675–693.

[18] E.W. Dijkstra, A note on two problems in connexion with
graphs, Numerische mathematik 1 (1959), 269–271.

I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments 87

[19] B. Ding, J.X. Yu, and L. Qin, Finding time-dependent short-
est paths over large graphs, in: Proc. of the 11th Interna-
tional Conference on Extending Database Technology (EDBT),
ACM, 2008, pp. 205–216.

[20] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abbadi,
Constrained nearest neighbor queries, in: Proc. of the 7th In-
ternational Symposium on Advances in Spatial and Temporal
Databases (SSTD), Springer, 2001, pp. 257–278.

[21] B. Gedik and L. Liu, MobiEyes: A distributed location mon-
itoring service using moving location queries, IEEE Transac-
tions on Mobile Computing 5(10) (2006), 1384–1402.

[22] P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Trans-
actions on Systems Science and Cybernetics 4(2) (1968), 100–
107.

[23] H. Hu and D.L. Lee, Semantic location modeling for location
navigation in mobile environment, in: Proc. of the IEEE In-
ternational Conference on Mobile Data Management (MDM),
IEEE, 2004, pp. 52–61.

[24] H. Huang and G. Gartner, A survey of mobile indoor navi-
gation systems, in: Proc. of the 1st ICA Symposium on Car-
tography in Central and Eastern Europe, Springer, 2010, pp.
305–319.

[25] S. Ilarri, C. Bobed, and E. Mena, An approach to process
continuous location-dependent queries on moving objects with
support for location granules, Journal of Systems and Software
84(8) (2011), 1327–1350.

[26] S. Ilarri, E. Mena, and A. Illarramendi, Location-dependent
queries in mobile contexts: Distributed processing using mo-
bile agents, IEEE Transactions on Mobile Computing 5(8)
(2006), 1029–1043.

[27] S. Ilarri, E. Mena, and A. Illarramendi, Location-dependent
query processing: Where we are and where we are heading,
ACM Computing Surveys 42(3) (2010), 1–73.

[28] D. Kossmann, The state of the art in distributed query process-
ing, ACM Computing Surveys 32(4) (2000), 422–469.

[29] M. Kritsotakis, M. Michou, E. Nikoloudakis, A. Bikakis,
T. Patkos, G. Antoniou, and D. Plexousakis, Design and im-
plementation of a semantics-based contextual navigation guide
for indoor environments, Journal of Ambient Intelligence and
Smart Environments 1(3) (2009), 261–285.

[30] D.L. Lee, M. Zhu, and H. Hu, When location-based services
meet databases, Mobile Information Systems 1(2) (2005), 81–
90.

[31] M. Levene and G. Loizou, A graph-based data model and its
ramifications, IEEE Transactions on Knowledge and Data En-
gineering 7(5) (1995), 809–823.

[32] X. Li, C. Claramunt, and C. Ray, A grid graph-based model
for the analysis of 2D indoor spaces, Computers, Environment
and Urban Systems 34(6) (2010), 532–540.

[33] F. Lyardet, D.W. Szeto, and E. Aitenbichler, Context-aware
indoor navigation, in: Proc. of the 2nd European Conference
in Ambient Intelligence (AmI), Springer, 2008, pp. 290–307.

[34] M. Mainguenaud, Modelling of the geographical information
system network component, International Journal of Geo-
graphical Information Systems 9(6) (1995), 575–593.

[35] N. Matthew and R. Stones, Beginning Databases with Post-
greSQL: From Novice to Professional, Apress, 2005.

[36] Amine Mokhtari, Système personnalisé de planification d’iti-
néraire : Une approche basée sur la théorie des ensembles flous,
PhD thesis, Université de Rennes 1, IRISA, France, 2011.

[37] J.C. Navas and T. Imielinski, GeoCast – Geographic address-
ing and routing, in: Proc. of the 3rd Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Networking,
ACM, 1997, pp. 66–76.

[38] R. Obe and L. Hsu, PostGIS in Action, Manning Publications
Co., 2011.

[39] M.T. Özsu and P. Valduriez, Principles of Distributed Data-
base Systems, third edition, Springer, 2010, Chapter 1 “Intro-
duction”, pp. 1–40.

[40] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, Query pro-
cessing in spatial network databases, in: Proc. of the 29th
International Conference on Very Large Data Bases (VLDB),
VLDB Endowment, 2003, pp. 802–813.

[41] N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopou-
los, Hermes – a framework for location-based data manage-
ment, in: Proc. of the 10th International Conference on Extend-
ing Database Technology (EDBT), Springer, 2006, pp. 1130–
1134.

[42] I. Satoh, A location model for smart environments, Pervasive
and Mobile Computing 3(2) (2007), 158–179.

[43] J.H. Schiller and A. Voisard, Location-Based Services, Morgan
Kaufmann, San Francisco, CA, USA, 2004.

[44] D. Stojanovic, A.N. Papadopoulos, B. Predic, S. Djordjevic-
Kajan, and A. Nanopoulos, Continuous range monitoring of
mobile objects in road networks, Jounrnal of Data & Knowl-
edge Engineering 64(1) (2008), 77–100.

[45] X. Sun, W. Yeoh, and S. Koenig, Efficient incremental search
for moving target search, in: Proc. of the 21st Interna-
tional Joint Conference on Artifical Intelligence (IJCA), Mor-
gan Kaufmann, 2009, pp. 615–620.

[46] Y. Tao, D. Papadias, and Q. Shen, Continuous nearest neighbor
search, in: Proc. of the 28th International Conference on Very
Large Data Bases (VLDB), VLDB Endowment, 2002, pp. 287–
298.

[47] D. Terry, D. Goldberg, D. Nichols, and B. Oki, Continuous
queries over append-only databases, in: Proc. of the ACM
SIGMOD International Conference on Management of Data,
ACM, 1992, pp. 321–330.

[48] V. Tsetsos, C. Anagnostopoulos, P. Kikiras, and S. Had-
jiefthymiades, Semantically enriched navigation for indoor en-
vironments, International Journal of Web and Grid Services
2(4) (2006), 453–478.

[49] A.B. Waluyo, B. Srinivasan, and D. Taniar, Research in mobile
database query optimization and processing, Mobile Informa-
tion Systems 1(4) (2005), 225–252.

[50] M. Weiser, Some computer science issues in ubiquitous com-
puting, Communications of the ACM 36(7) (1993), 75–84.

[51] O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha, Updat-
ing and querying databases that track mobile units, Distributed
and parallel databases 7(3) (1999), 257–387.

[52] K.L. Wu, S.K. Chen, and P.S. Yu, Incremental processing of
continual range queries over moving objects, IEEE Trans-
actions on Knowledge and Data Engineering 18(11) (2006),
1560–1575.

[53] M. Xu, Z. Pan, H. Lu, Y. Ye, P. Lv, and A. El Rhalibi,
Moving-target pursuit algorithm using improved tracking strat-
egy, IEEE Transactions on Computational Intelligence and AI
in Games 2(1) (2010), 27–39.

[54] Z. Xu and A. Jacobsen, Adaptive location constraint process-
ing, in: Proc. of the ACM SIGMOD International Conference
on Management of Data, ACM, 2007, pp. 581–592.

88 I. Afyouni et al. / Context-aware modelling of continuous location-dependent queries in indoor environments

[55] B. Yang, H. Lu, and C.S. Jensen, Scalable continuous range
monitoring of moving objects in symbolic indoor space, in:
Proc. of the 18th Conference on Information and Knowledge
Management (CIKM), ACM, 2009, pp. 671–680.

[56] B. Yang, H. Lu, and C.S. Jensen, Probabilistic threshold k near-
est neighbor queries over moving objects in symbolic indoor
space, in: Proc. of the 13th International Conference on Ex-
tending Database Technology (EDBT), ACM, 2010, pp. 335–
346.

[57] W. Yuan and M. Schneider, Supporting continuous range
queries in indoor space, in: Proc. of the 11th International Con-
ference on Mobile Data Management (MDM), IEEE, 2010, pp.
209–214.

[58] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, Location-
based spatial queries, in: Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data, ACM, 2003, pp.
443–454.

