PostgreSQL/PostGIS or MYSQL Spatial

Prepared by Shoaib Burq

October 2004
Introduction

Choosing an appropriate enterprise database requires a great deal of thought and will often be influenced by the application in question, data size, data type, query complexity and the available expertise.

Comparison as a Relational Database Management System (RDBMS)

From a purely RDBMS point-of-view we may identify two possible application extremes: In the first, the data's Atomicity, Consistency, Isolation and Durability are crucial. In other words the database must meet the famous ACID test. Performance may be compromised to a limited extent for ACID compliance. In the second, performance is the primary concern and data integrity is not.

For the first type of application (for example: a Bank's database) PostgreSQL is perhaps the only opensource option available. Transaction support of PostgreSQL is unmatched from the ACID test perspective. Having foreign keys, views, subselects, and transactions can all be very attractive in PostgreSQL - if one needs them and makes use of them. If one doesn’t need them or won't use them, then MySQL and its relatively superior performance are probably a better option.

Comparison as a Spatial Database

However, the picture becomes a bit more complicated when we start to look at spatially enabled databases. Our choice will depend on what we want to do with the spatial data once it’s stored in either PostgreSQL (spatially extended with PostGIS) or MySQL (Spatial). In terms of spatial data structure they are identical; both implement R-Tree spatial indexing.

However, if we after a large number of spatial functions and complex query support (See Appendix I), compliance to the latest OpenGIS specifications, synergy with other opensource GIS packages and map servers and an active user and developer community then PostgreSQL/PostGIS is the database of choice.

Most spatial databases aim to support a functional GIS and a map server. This requires the use of other opensource GIS/mapping tools. MySQL is severely lacking in this area.

PostgreSQL/PostGIS on the other hand has become the de facto opensource spatial-database and hence most GIS tools support it as a data source. This makes its integration with new or existing GIS’s hassle-free which is not the case with MySQL. To learn of some examples of how this is being done with PostGIS see the following message thread from PostGIS-users mailing list titled “Who is Using PostGIS?”

http://postgis.refractions.net/pipermail/postgis-users/2004-March/thread.html#4228
Here are some tools that include default PostGIS integration support:

· MapServer: MapServer is an OpenSource development environment for building spatially enabled Internet applications. Uses PostGIS as the default backend. mapserver.gis.umn.edu
· GeoServer: The GeoServer project is a Java implementation of OpenGIS’s Web Feature Server specification 1.0 and uses PostGIS as the default backend. www.geoserver.sourceforge.net
· QGIS: Quantum GIS (QGIS) is a Geographic Information System (GIS) built for Linux/Unix. It supports vector, raster, and database formats including PostGIS. www.qgis.org
· PHP Mapscript: PHP MapScript module is a PHP dynamically loadable module that makes MapServer's MapScript functions and classes available in a PHP environment. www.maptools.org/php_mapscript
· GEOS: a C++ port of the Java Topology Suite (JTS). www.geos.refractions.net
Appendix I

	MySQL Spatial Functions:
	PostgreSQL/PostGIS Spatial Functions:

	Dimension(g)

Envelope(g)

GeometryType(g)

SRID(g)

Boundary(g)

IsEmpty(g)

IsSimple(g)

Point funcitons:

X(p)

Y(p)

LineString Functions

EndPoint(ls)

GLength(ls)

IsClosed(ls)

NumPoints(ls)

PointN(ls,n)

StartPoint(ls)

IsRing(ls)

MultiLineString Functions:

GLength(mls)

IsClosed(mls)

Polygon Functions

Area(poly)

ExteriorRing(poly)

InteriorRingN(poly,n)

NumInteriorRings(poly)

MultiPolygon Functions

Area(mpoly)

Centroid(mpoly)

PointOnSurface(mpoly)

GeometryCollection Functions

GeometryN(gc,n)

NumGeometries(gc)

Spatial Operators

Buffer(g,d)

ConvexHull(g)

Difference(g1,g2)

Intersection(g1,g2)

SymDifference(g1,g2)

Union(g1,g2)

Relations on Geometry Minimal Bounding Rectangles (MBRs)

MBRContains(g1,g2)

MBRDisjoint(g1,g2)

MBREqual(g1,g2)

MBRIntersects(g1,g2)

MBROverlaps(g1,g2)

MBRTouches(g1,g2)

MBRWithin(g1,g2)

NOT IMPLEMENTED YET: Functions That Test Spatial Relationships Between Geometries

Contains(g1,g2)

Crosses(g1,g2)

Disjoint(g1,g2)

Distance(g1,g2)

Equals(g1,g2)

Intersects(g1,g2)

Overlaps(g1,g2)

Related(g1,g2,pattern_matrix)

Touches(g1,g2)

Within(g1,g2)

	
Geometry Relationship Functions

Distance(geometry,geometry)

Equals(geometry,geometry)

Disjoint(geometry,geometry)

Touches(geometry,geometry)

Crosses(geometry,geometry)

Within(geometry,geometry)

Overlaps(geometry,geometry)

Contains(geometry,geometry)

Intersects(geometry,geometry)

Relate(geometry,geometry, intersectionPatternMatrix)

Relate(geometry,geometry)

Geometry Processing Functions

Centroid(geometry)

Area(geometry)

Length(geometry)

PointOnSurface(geometry)

Boundary(geometry)

Buffer(geometry,double)

ConvexHull(geometry)

Intersection(geometry,geometry)

SymDifference(geometry,geometry)

Difference(geometry,geometry)

GeomUnion(geometry,geometry)

GeomUnion(geometry set)

MemGeomUnion(geometry set)

Geometry Accessors

AsText(geometry)

SRID(geometry)

Dimension(geometry)

Envelope(geometry)

IsEmpty(geometry)

IsSimple(geometry)

IsClosed(geometry)

IsRing(geometry)

NumGeometries(geometry)

GeometryN(geometry,int)

NumPoints(geometry)

PointN(geometry,integer)

ExteriorRing(geometry)

NumInteriorRings(geometry)

InteriorRingN(geometry,integer)

EndPoint(geometry)

StartPoint(geometry)

GeometryType(geometry)

X(geometry)

Y(geometry)

Z(geometry)

Geometry Constructors

GeomFromText(text,[<srid>])

GeometryFromText(text,[<srid>])

PointFromText(text,[<srid>])

LineFromText(text,[<srid>])

LinestringFromText(text,[<srid>])

PolyFromText(text,[<srid>])

PolygonFromText(text,[<srid>])

MPointFromText(text,[<srid>])

MLineFromText(text,[<srid>])

MPolyFromText(text,[<srid>])

GeomCollFromText(text,[<srid>])

GeomFromWKB(text,[<srid>])

GeomFromWKB(text,[<srid>])

PointFromWKB(text,[<srid>])

LineFromWKB(text,[<srid>])

LinestringFromWKB(text,[<srid>])

PolyFromWKB(text,[<srid>])

PolygonFromWKB(text,[<srid>])

MPointFromWKB(text,[<srid>])

MLineFromWKB(text,[<srid>])

MPolyFromWKB(text,[<srid>])

GeomCollFromWKB(text,[<srid>])

[All PostGIS functions till here are OpenGIS "Simple Features Specification for SQL"]

Other Functions

DropGeometryTable([<schema_name>], <table_name>)

A &> B

A << B

A >> B

A ~= B

A ~ B

A && B

area2d(geometry)

asbinary(geometry,'NDR')

isvalid(geometry)

asbinary(geometry,'XDR')

box3d(geometry)

expand(geometry, float)

collect(geometry set)

memcollect(geometry set)

distance_sphere(point, point)

distance_spheroid(point, point, spheroid)

extent(geometry set)

find_srid(varchar,varchar,varchar)

force_collection(geometry)

force_2d(geometry)

force_3d(geometry)

force_4d(geometry)

length2d(geometry)

length3d(geometry)

length_spheroid(geometry,spheroid)

SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]

max_distance(linestring,linestring)

mem_size(geometry)

multi(geometry)

nrings(geometry)

npoints(geometry)

numb_sub_objects(geometry)

perimeter(geometry)

perimeter2d(geometry)

perimeter3d(geometry)

point_inside_circle(geometry,float,float,float)

postgis_version()

postgis_lib_version()

postgis_scripts_installed()

postgis_scripts_released()

postgis_geos_version()

postgis_proj_version()

postgis_uses_stats()

postgis_full_version()

summary(geometry)

transform(geometry,integer)

translate(geometry,float8,float8,float8)

xmin(box3d) ymin(box3d) zmin(box3d)

xmax(box3d) ymax(box3d) zmax(box3d)

simplify(geometry, tolerance)

line_interpolate_point(geometry, proportion)

segmentize(geometry, maxlength)

AsSVG(geometry, [rel], [precision])

AsGML(geometry, [precision])

