Initialization
CS-MAP needs to be initialized. Initialization consists of providing CS-MAP with the directory in which the dictionary files reside. This is accomplished by calling the CS_altdr function. This function takes a single argument, a character string which is the path to the appropriate directory. Calling CS_altdr with a NULL pointer as an argument will cause the value of the environmental variable named CS_MAP_DIR to be used as the data directory. CS_altdr returns and integer zero if the initialization was successful, -1 if not.
This was not a requirement in the past, thus the rather strange name for this initialization function.
Important Note 1: Whenever CS-MAP needs to go to disk to find something, that something often needs to reside in the directory specified by this function call.
Important Note 2: Failing to call this function successfully prior to using CS-MAP almost always results in a memory addressing fault.
High Level Interface
Functions are provided which can convert a coordinate from one coordinate system to another with a single function call. This set of functions was originally developed specifically for the application programmer who is coding in BASIC, FORTRAN, APL, or other language (other than C or Pascal) which can make simple function calls. It does not use structure pointers of any sort. Since the affect on performance is small (about a 20% reduction), it is now the recommended interface for most applications.
Most of the functions described in this section use CSbcclu and CSbdclu to cache coordinate system and datum conversion definitions. Therefore the performance penalty of these functions is reduced to a search of a linked list for the coordinate system names involved. These cache functions are smart enough to keep the most recently accessed items at the front of the list to further minimize the performance penalty.
The information presented in this section is intended only to associate a function name with a specific capability. Refer to Chapter 4 of the CS-MAP documentation for detailed information and prototypes for all functions referred to in this section.
Basic Coordinate Conversion -- CS_cnvrt
Given a coordinate as an array of three doubles, and the names of two coordinate systems as two character arrays, CS_cnvrt converts the coordinate from one system to another. It's that simple. Where cartesian coordinates are provided and returned, the X coordinate is the first element of the array, the Y coordinate is the second, and the Z is the third element of the array. Where geographic coordinates are provided, the first element in the array must contain the longitude, the second the latitude, and the third element must contain the height. In either case, the manner in which the values are interpreted depends upon the coordinate systems involved. For example, if the source coordinate system definition specifies the unit to be meters, the X, Y, and Z coordinates are considered to be in meters. Similarly, if the target coordinate system is defined as a latitude and longitude system with an angular unit of grads, the returned latitude and longitude coordinates will be in units of grads.
The status value returned by CS_cnvrt informs the calling application of the validity of the results. A zero return value indicates that the requested conversion was completed without complication and the results now occupy the coordinate array. A negative status return value indicates a hard error occurred and that the contents of the coordinate array remain unchanged. A positive, non-zero return status indicates that the conversion was performed, but an abnormality was encountered during the conversion. In this case, the results returned in the coordinate array may not be exactly what the user expects.
In all cases of a negative status return, the values in the provided coordinate array will remain unchanged. Taking the absolute value of the returned status value will often produce the CS-MAP error code for the specific condition causing the hard error. The numeric error code which defines the specific cause of the problem will also be stored in the cs_Error global variable, and a textual description of the error condition can be obtained by calling the CS_errmsg function before calling any other CS-MAP function. Typically, when applications detect a negative status return, the application informs the user using the textual description obtained from CS_errmsg and terminates the current operation.
CS_cnvrt returns a positive non-zero status value whenever it encounters something suspicious, but not something that precludes a conversion. Positive non-zero return values are usually caused by coordinate systems and coordinates which are incompatible, or specific values which are singularity points for the projection(s) involved. A common cause of a positive non-zero return value is the conversion of a point at either pole. CS-MAP will return a positive non-zero value in these cases as longitude is undefined at the poles, and reversing the calculation is unlikely to reproduce the initial value. Another common cause of a positive non-zero status return is providing, say, UTM coordinates when the source coordinate system is given as "LL". UTM coordinates, usually, will not be in the normal range of geographic coordinates and CS-MAP will consider this to be suspicious. A positive return value will also be returned if, for example, it is requested to convert a geographic coordinate in Europe from NAD27 to NAD83.
When a positive non-zero return value from CS_cnvrt is encountered, the typical application issues a warning message to the user and continues. These abnormal, but not necessarily fatal, conditions are often the result the user desires. It should be left the user to decide. For performance reasons, CS-MAP does not automatically generate a textual message for these conditions. However, application programs can analyze the returned status value in order to present a more specific warning message to the end user.
High Performance Interface
The High Performance Interface to the Coordinate System Mapping Package consists of thirteen functions. By virtue of the data structures described above, use of these functions is independent of the actual coordinate systems, projections, or datums in use. This represents the most efficient means to use CS-MAP to convert coordinates from one coordinate system to another. It also insulates your applications from most changes which could be made to the CS-MAP in the future. This basic API has not changed since 1992. This interface requires the use of structure pointers and, therefore, may not be appropriate for use with some languages. Therefore, use this interface wherever high performance is a top priority and the application is written in a language which can handle pointers such as C, C++, or Pascal.
These functions make use of the Coordinate System Dictionary, the Datum Dictionary, the Ellipsoid Dictionary, and the functions which access them. This need not be of concern to the application programmer using the High Performance Interface as it all goes on "behind the scenes".
In this chapter, our intent is to associate function names with capabilities and features. Refer to Chapter 4 for full details and prototypes of the functions introduced here.
Coordinate System to Coordinate System
In order to convert from one coordinate system to another, one simply obtains, from the CS_csloc function, a definition of the two coordinate systems of concern. The inverse function, CS_cs2ll, is used to convert the source coordinates to latitude and longitude and the forward function, CS_ll2cs, is used to convert to the target coordinate system. The sample code segment shown is, for example, all the code necessary to convert a file of NAD27 based UTM Zone 13 (UTM27-13) coordinates to NAD27 based Colorado State Plane, Southern Zone (CO-S). To change the conversion to use other coordinate systems, only the names provided to the CS_csloc function need be changed. Of course, these strings are rarely hard coded as has been done in this example.
int input, output;
double xy [2], ll [2];
struct cs_Csprm_ *utm, *co_s;
utm = CS_csloc ("UTM27-13");
co_s = CS_csloc ("CO-S");
while (read (input,xy,sizeof (xy)) != 0)
{
CS_cs2ll (utm,ll,xy);
CS_ll2cs (co_s,xy,ll);
write (output,xy,sizeof (xy));
}
CS_free (utm);
CS_free (co_s);
The LL Coordinate System
Many products, such as our own Tralaine, will use the above scheme to provide the ability to convert from any coordinate system to any another. This scheme is completely general, supporting any combination of coordinate systems. Sometimes, however, it is desirable to convert from or to geographic coordinates. The LL coordinate system and the Unity projection accommodate this within the general scheme of things described above. That is, the LL coordinate system is simply a coordinate system in which the coordinates are latitudes and longitudes, and the Unity projection is simply a set of conversion functions which do little other than possible units conversion.
Therefore, supplying a coordinate system name of LL, for example, for either the input or output coordinate system will produce the desired results without the application program having to know about this specific situation. (Please note that LL is a cartographically referenced coordinate system. Coordinate systems such as LL27 and LL83 are usually used in practice.)
Latitude and longitude coordinates in different units or referenced to a prime meridian other than Greenwich are possible by defining different LL type coordinate systems. These definitions, all based on the Unity pseudo-projection, can include a units specification and a specification of a prime meridian other than zero (i.e. Greenwich).
Adding Datum Conversions to the Interface
Datum conversions can be added to the basic scheme described above by adding calls to the datum conversion functions. Refer to the code given below for an example, paying special attention to the emphasized code. Once the two coordinate system definitions have been initialized, they are passed to CS_dtcsu. By examining both the source and target coordinate system definitions, CS_dtcsu is able to determine which, if any, datum transformation techniques need to be applied to accomplish the desired conversion. CS_dtcsu will select one or more datum conversions as necessary to accomplish the desired conversion. For example, to convert from NAD27 to WGS72, three conversions are actually setup: 1)from NAD27 to NAD83 via the NADCON technique, 2)NAD83 to WGS84 (which is currently a null conversion), and finally 3)WGS84 to WGS72 using a hard coded formula. CS_dtcsu assures that all preparations necessary for these conversions are initialized, and saves the results in the cs_Dtcprm_ structure to which it returns a pointer.
In the actual coordinate conversion loop, CS_dtcvt is called for each coordinate once its geographic form has been obtained from CS_cs2ll. Note that if CS_dtcsu determined that no datum conversion was required, the information contained in the cs_Dtcprm_ structure which it returns causes CS_dtcvt to simply copy the source geographic coordinates to the target array. Finally, when the conversion process is complete, CS_dtcls is used to release any system resources which were allocated for the datum conversion and which are no longer needed.
int input, output;
double xy [2], ll [2];
struct cs_Csprm_ *utm, *co83_s;
struct cs_Dtcprm_ *dtc_ptr;
.
.
utm = CS_csloc ("UTM27-13");
co83_s = CS_csloc ("CO83-S");
dtc_prm = CS_dtcsu (utm,co83_s,dat_err,blk_err);
while (read (input,xy,sizeof (xy)) != 0)
{
CS_cs2ll (utm,ll,xy);
CS_dtcvt (dtc_prm,ll,ll);
CS_ll2cs (co83_s,xy,ll);
write (output,xy,sizeof (xy));
}
CS_dtcls (dtc_prm);
CS_free (utm);
CS_free (co_s);
Sample Code Segment


CS_errmsg ERRor MeSsaGe
Sub CS_errmsg (ByVal my_bufr As String,ByVal bufr_size As Integer)
procedure CS_errmsg (msg_bufr :PChar;bufr_size :Integer);
void CS_errmsg (char msg_bufr,int bufr_size);
CS_errmsg returns to the calling function a null terminated string which describes the last error condition detected by the CS_MAP library. The result is returned in the buffer pointed to by the msg_bufr argument, which is assumed to be bufr_size bytes long. The message is returned in one character per byte ANSI code characters.
CS_errmsg will return the null string if called before any error condition is detected.
BUGS
After returning an error message to the user, CS_errmsg should reset itself to the null string preventing the same error message from being returned a second time. It should, but is doesn't.
CS_altdr ALTernate DiRectory
Function CS_altdr (ByVal new_dir As String) As Integer
function CS_altdr (alt_dr :PChar):Integer;
int CS_altdr (Const char alt_dir);
Normally, all functions in the Coordinate System Mapping Package library expect to find data files in the C:\MAPPING directory as defined in CSdata. CS_altdr can be used to specify an alternate directory at run time; that indicated by the alt_dir argument. CS_altdr returns zero if a coordinate system dictionary was indeed found in the directory provided; otherwise, it returns -1.
Calling CS_altdr with the NULL pointer as its argument instructs CS_altdr to use the value of the environmental variable CS_MAP_DIR as the location of the CS-MAP data files. Again a zero is returned if this was successful, -1 if not. (The string defining the name of the environmental variable name is defined in the cs_map.h header file.)
Calling CS_altdr with the alt_dir argument pointing to the null string instructs CS_altdr to use the current directory on the current drive as the location of CS-MAP data files. Again a zero is returned if this selection produces a directory which contains a Coordinate System Dictionary File. Otherwise -1 is returned.
Notice, that using the return status as a guide, several attempts at locating the CS-MAP data directory can be made in any application.
The name of the directory which is searched for all data files is maintained in a global character array cs_Dir, which is defined in the CSdata module. The cs_Dir array must, initially, contain a null terminated string, the last non-null character of which must be the directory separator character. The global character pointer cs_DirP (also defined in CSdata) is expected to point to the terminating null character of the string in cs_Dir. Under this scheme, Coordinate System Mapping Package data files are accessed as follows:
extern char cs_Dir [];
extern char *cs_DirP;
.
.
strcpy (cs_DirP,"file_name");
fd = open (cs_Dir,O_MODE);
.
.
Achieving this particular setup is relatively easy using CS_stcpy:
cs_DirP = CS_stcpy (cs_Dir,"C:\\MAPPING\\");
BUGS
The purpose of this function is to insulate the library from system implementation issues. Without a function of this nature, all applications using CS-MAP would have to implement a specific directory on a specific drive. Not very pleasant. There does not appear to be a nice clean solution to this problem.

CS_cnvrt generalized CoNVeRT function
Function CS_cnvrt (ByVal src_cs As String,ByVal trg_cs As String,
ByRef coord As Double) As Integer
function CS_cnvrt (src_cs,trg_cs :PChar;var coord :double) :Integer;
int CS_cnvrt (Const char *src_cs,Const char *trg_cs,double coord [3]);
CS_cnvrt is in essence a High Level Interface to the CS_MAP library. Using this single function, one can convert coordinates from any defined system to any other. Simply provide the key name of the source system via the src_cs argument, and the key name of the destination coordinate system via the trg_cs argument, and CS_cnvrt will cause the coordinate in the array given by the coord argument is converted from the source system to the destination system. CS_cnvrt returns zero if the conversion completed successfully without incident. Otherwise, a CS-MAP error code value is returned (see cs_map.h).
CS_cnvrt relies on a cache of coordinate systems, and for each conversion linearly searches the cache for the definitions of the two coordinate system definitions, and the datum conversion definition, it needs to perform its function. Thus, the performance penalty incurred from using this High Level Interface is not as great as one may think.
Currently, the third element of the coord argument is unused; but may be used in the future.
CS_cnvrt3D 3D generalized CoNVeRT function
Function CS_cnvrt3D (ByVal src_cs As String,ByVal dst_cs As String,
ByRef coord As Double) As Integer
function CS_cnvrt3D (src_cs,dst_cs :PChar; var coord :Double) :Integer
int CS_cnvrt3D (Const char *src_cs,Const char *dst_cs,double coord [3]);
CS_cnvrt3D is in essence a High Level Interface with regard to three dimensional conversions. Using this single function, one can convert three dimensional coordinates from any defined system to any other. Simply provide the key name of the source system via the src_cs argument, and the key name of the destination coordinate system via the dst_cs argument, and CS_cnvrt3D will cause the coordinate in the array given by the coord argument to be converted from the source system to the destination system. CS_cnvrt3D returns a zero if the conversion completed successfully without incident. Otherwise, a CS_MAP error code value is returned.
CS_cnvrt3D relies on a cache of coordinate systems, and for each conversion linearly searches the cache for the definitions of the two coordinate system definitions, and the datum conversion definition, it needs to perform its function. Thus, the performance penalty incurred from using this High Level Interface is not as great as one may think.
Use CS_cnvrt3D only when converting data maintained in a three dimensional database. Note that if the application is able to supply the returned Z value during an inverse calculation, the inverted result may not match the original values.
CS_recvr RECoVeR resources
Sub CS_recvr
procedure CS_recvr;
void CS_rcvr (void);
CS_rcvr will release all system resources allocated by use of the single function user interface functions CS_cnvrt, CS_cnvrg, and CS_scale. It essentially frees up the coordinate system cache and the datum conversion cache established by these functions to enhance performance.



CS_csloc Coordinate System LOCate and initialize
struct cs_Csprm_ *CS_csloc (Const char *cs_nam);
struct cs_Csprm_ *Cscsloc1 (Const struct cs_Csdef_ *cs_ptr);
struct cs_Csprm_ *Cscsloc2 (Const struct cs_Csdef_ *csPtr,
Const struct cs_Dtdef_ *dtPtr,
Const struct cs_Eldef_ *elPtr);
struct cs_Csprm_ *CScsloc (Const struct cs_Csdef_ *csPtr,
Const struct cs_Datum_ *dtPtr);
CS_csloc locates the coordinate system definition indicated by cs_nam and returns a pointer to a malloc'ed, coordinate system parameter structure initialized for the specified coordinate system. The return value is the argument required by CS_cs2ll, CS_ll2cs, CS_csscl, and CS_cscnv. When no longer needed, the memory pointed to by the returned pointer should be released using CS_free.
CS_csloc accesses the definition dictionaries as is necessary to accomplish its task. The alternative functions enable applications to create coordinate system parameter structures using definitions that may have been obtained from sources other than the dictionaries. For example, certain applications may store definitions in vehicles other than the dictionaries, and then desire to construct a coordinate system parameter structure from these definitions.
Note that Cscsloc1 does not need to access the coordinate system dictionary as the coordinate system definition is provided by the cs_ptr argument. However, it will need to access the datum and ellipsoid dictionaries to resolve datum and ellipsoid references. Cscsloc2 is completely independent of all dictionaries as all three definitions must be provided. CScsloc is simply a basic function is encapsulates the basic functions of CS_csloc and its alternatives, and thus prevents duplication of large amounts of code.
ERRORS
CS_csloc, CScsloc1, CScsloc2, and CScsloc return a NULL pointer and set cs_Error through the use of CS_erpt if any of the following conditions occur:
	cs_UNKWN_PROJ
	The projection specified in the coordinate system definition is unknown to the system.


CS_csloc uses the following functions that detect a majority of the exceptional conditions that may occur:
	CS_csdef
	Locates and fetches the coordinate system definition from the Coordinate System Dictionary.

	CS_dtloc
	Locates and fetches the datum definition from the Datum Dictionary.

	CS_eldef
	Locates and fetches the ellipsoid definition from the Ellipsoid Dictionary.


CScsloc1 uses the following functions that detect a majority of the exceptional conditions that may occur:
	CS_dtloc
	Locates and fetches the datum definition from the Datum Dictionary.

	CS_eldef
	Locates and fetches the ellipsoid definition from the Ellipsoid Dictionary.



CS_cs2ll Coordinate System TO Latitude/Longitude
void CS_cs2ll (Const struct cs_Csprm_ *csprm,double ll [2],Const double xy [2]);
Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_cs2ll will convert the coordinates xy to latitude and longitude, returning the results in ll. The ll and xy arguments may point to the same array.
In the array arguments, the X coordinate and the longitude occupy the first element, the Y coordinate and the latitude the second element. West longitudes and south latitudes are negative. The returned values are in degrees.
CS_ll2cs Latitude/Longitude TO Coordinate System
void CS_ll2cs (Const struct cs_Csprm_ *csprm,double xy [2],Const double ll [2]);
Given the definition of the coordinate system, csprm, such as returned by CS_csloc, CS_ll2cs will convert the latitude and longitude given by ll to X and Y coordinates, returning the results in xy. The ll and xy arguments may point to the same array.
In the arrays, the X coordinate and the longitude occupy the first element, the Y coordinate and the latitude the second element. The latitude and longitude must be given in degrees where negative values are used to indicate west longitude and south latitude.
CS_dtcsu DaTum Conversion Set Up
struct cs_Dtcprm_ *CS_dtcsu (Const struct cs_Csprm_ *src_cs,
Const struct cs_Crprm_ *dest_cs,
int dat_err,
int blk_err);
CS_dtcsu, CS_dtcvt, and CS_dtcls, are designed to provide a generic application interface for datum conversion. The objective is to enable application programmers to incorporate datum conversion capabilities into applications with a minimum of impact. Therefore, application programmers use CS_dtcsu to set up a datum conversion and CS_dtcvt to perform the actual conversions independently of the number or type of datum conversions that may or may not be supported. CS_dtcls provides a means of recovering any system resources that may be allocated by the activation of a datum conversion.
Application programmers use CS_dtcsu to initiate a datum conversion process. Src_cs points to the coordinate system definition of the source data that is to be converted while dest_cs points to the coordinate system definition for the results. CS_dtcsu examines the datum references in these coordinate systems, initializes the appropriate datum shift conversion, and returns a pointer to a malloc'ed datum conversion parameter block. The returned pointer is a required argument for the CS_dtcvt function.
As is often the case, should the source and destination coordinate systems share the same datum, the null datum conversion is activated. That is, source latitudes and longitudes are copied directly to the destination array without modification.
The dat_err argument is used to indicate the desired disposition of certain errors that are encountered during the setup of the datum conversion. The error disposition control afforded by dat_err applies only to errors indicating that an unsupported datum conversion was requested. System errors, such as physical I/O or insufficient memory for example, are always treated as fatal errors and a NULL pointer is returned.
The following values for dat_err are recognized:
	cs_DTCFLG_DAT_I
	Ignore unsupported datum conversion request errors and, in the event of such an error, silently activate the null conversion.

	cs_DTCFLG_DAT_W
	In the event of an unsupported datum conversion request error, report the condition as a warning to CS_erpt (cs_DTC_DAT_W) and activate the null conversion. In this case, the user is notified, but data processing continues.

	cs_DTCFLG_DAT_F
	In the event of any error, report the condition as a fatal error to CS_erpt (cs_DTC_DAT_F) and return the NULL pointer.


The blk_err argument is used to indicate the desired disposition of certain errors that are encountered during the conversion of individual coordinate values. The error disposition control afforded by blk_err applies only to errors indicating that the required data for the geographic region containing the coordinate to be converted is not available. System errors, such as physical I/O or insufficient memory for example, are always treated as fatal errors.
The following values for blk_err are recognized:
	cs_DTCFLG_BLK_I
	Ignore datum conversion errors caused by data availability problems and silently use the null conversion for the specific coordinate that could not be converted and cause CS_dtcvt to return a zero value.

	cs_DTCFLG_BLK_W
	In the event a datum conversion fails due to data availability, report a warning through CS_erpt (cs_DTC_BLK_W), convert the coordinate using the null conversion, and cause a CS_dtcvt to return a positive non-zero value for the specific coordinate that could not be converted. The warning message is issued for each coordinate that could not be converted.

	cs_DTCFLG_BLK_1
	In the event a datum conversion fails due to data availability, cause CS_dtcvt to return a positive non-zero value for the specific coordinate that could not be converted. That such an error has been reported is recorded in the datum parameter block and this is used to suppress repeated reporting of the error with regard to the same block.

	cs_DTCFLG_BLK_F
	Report a fatal condition through CS_erpt (cs_DTC_BLK_F), convert the coordinate using the null conversion, and cause CS_dtcvt to return a negative non-zero value to indicate that the expected conversion did not take place.


Special Cases
Three special cases have been coded into this function. Normally, the geographic coodinates of the source datum are converted to WGS84 values, and the resulting WGS84 values are then converted to the target datum.
There are three cases where this genberal technique proved to be unsatisfactory. In these three cases, CS_dtcsu has been expressly coded to look at the source and target datums, and implement direct conversions where appropriate. Note, that in each case, a specific Geodetic Data Catalog file is also involved. Thus, if the required Geodetic Data Catalog file is not present, all of the special processing is disabled.
The following table defines the special cases:
	Source Datum
	Target Datum
	Geodetic Data Catalog
	Description

	NAD27
	ATS77
	Nad27ToAts77.gdc
	Converts directly from NAD27 to ATS77 using the very special TRANSFORM algorithm.

	ATS77
	CSRS
	Ats77ToCsrs.gdc
	Converts directly as direct NTv2 format files are generally available.

	NAD27
	CSRS
	Nad27ToCsrs.gdc
	Converts directly as direct NTv2 format files are generally available.


ERRORS
Should the requested datum conversion requested be unsupported, CS_dtcsu will perform as indicated by the dat_err argument. Should the initialization of a supported datum conversion fail due to a system error, the NULL pointer will be returned and cs_Error set to indicate the nature of failure. Should a datum conversion for which appropriate code is present fail because a required data file is not present, the failure is treated as an unsupported datum conversion request.
CS_dtcvt DaTum ConVerT
int CS_dtcvt (struct cs_Dtcprm_ *dtc_ptr,Const double src_ll [2],double dest_ll [2]);
CS_dtcvt performs the datum conversion indicated by dtc_ptr returning in the array pointed to by dest_ll the result of converting the latitude and longitude values pointed to by src_ll. Src_ll and dest_ll may point to the same array. Latitude and longitude values must be given in degrees, where negative values indicate south and west. The longitude is carried in the first element of the array and the latitude is carried in the second element. The dtc_ptr argument is that which is returned by CS_dtcsu.
ERRORS
Should a system error occur during the conversion (e.g. a physical I/O error or insufficient memory) CS_dtcvt returns a negative non-zero value and sets cs_Error to indicate the cause of the failure.
Conversion failures caused by a lack of data covering the specific coordinate to be converted are handled as indicated by the blk_err element of the cs_Dtcprm_ structure pointed to by the dtc_ptr argument. The blk_err element is set by CS_dtcsu to the value of its blk_err argument prior to returning dtc_ptr. Refer to CS_dtcsu for a detailed description of how such errors are handled.
In all cases, the null conversion is always performed before any other processing is attempted.
EXAMPLE
This function, and its companion CS_dtcsu have been designed such that the following sequence of code is all that is necessary to perform a complete coordinate conversion, including a datum conversion (error handling omitted):
#define XX 0
#define YY 1
struct cs_Csprm *src_cs, *dest_cs;
struct cs_Dtcprm_ *dtc_ptr;
double src_xy [2], ll [2], dest_xy [2];
.
.
src_cs = CS_csloc (src_name);
dest_cs = CS_csloc (dest_name);
dtc_ptr = CS_dtcsu (src_cs,dest_cs,cs_DTCFLG_DAT_F,cs_DTCDLG_BLK_1);
.
.
while (TRUE)
{
.
.
src_xy [XX] = ???;
src_xy [YY] = ???;
CS_cs2ll (src_cs,ll,src_xy);
CS_dtcvt (dtc_ptr,ll,ll);
CS_ll2cs (dest_cs,dest_xy,ll);
??? = dest_xy [XX];
??? = dest_xy [YY];
.
.
}
CS_free (src_cs);
CS_free (dest_cs);
CS_dtcls (dtc_ptr);
Notice, that adding the datum conversion to a simple cartographic conversion requires only the insertion of three lines of code (error handling aside) to the simple High Performance Interface described elsewhere in this manual.
CS_dtcls DaTum conversion CLoSe
void CS_dtcls (struct cs_Dtcprm_ *dtc_ptr);
Initializing a datum conversion can use file descriptors (handles) and allocate memory from the heap. Applications may need to recover these system resources for other use prior to exiting. CS_dtcls will release all system resources allocated to the datum conversion indicated by the dtc_ptr argument (as returned by CS_dtcsu). This function is, essentially, the inverse of CS_dtcsu.

