
OSGeo-Journal Vol. 1, 2007

Processing geospatial operations via
Internet on remote servers – PyWPS
PyWPS and Embrio

Jáchym Čepický and Lorenzo Becchi

Document OGC 05-007r4 describes the way, how geospa-
tial operations should be offered in networks using Web
Services. This paper introduces one of it’s implementa-
tion – PyWPS. Even if the original target of PyWPS was
to make modules of GRASS GIS accessible from Internet,
in general it is possible to use any command-line oriented
tool or tool, which has bindings to Python Programming
language. With help of PyWPS we can perform time con-
suming calculations on the server side, as well as build
your real WebGIS application, running in web browser.
Let us look, how it works and if PyWPS could fit your
needs.

OGC Web Processing Service

Since OGC Web Processing Service (WPS) standard
is still relatively new and not so known as for exam-
ple it’s cousin Web Map Service (WMS) is, we would
like to give a brief overview of the standard on this
place.

Basic unit in the WPS is the process – geospatial
operation, with inputs and outputs of defined type.
Client is communicating with the server with help
of three types of requests. The request can be sent
to the server via HTTP GET with parameters sorted
like KVP (Key-Value Pairs) or via HTTP POST, with
parameters sorted in XML file.

GetCapabilities – Server responses with XML,
which is describing server provider, fees and
general description and giving a list of pro-
cesses, prepared to be performed.

DescribeProcess – Server responses with XML,
which describes concrete inputs and outputs
type, so the client is able to formulate the Ex-
ecute request.

Execute – Client requests the performance of some
geospatial operation, with all required input
data. Depending on, if the server is supposed
to run the process in the background and if
it is supposed to store the resulting data on
the server, resulting XML or e.g. GML file
is returned immediately after the request is
obtained or first after the calculation is per-
formed.

Let us introduce some illustrative examples of
these requests. Let us assume, we would like to per-
form line-of-sigh calculation from defined x and y co-
ordinates on some raster file, which can be obtained
on remote server. The process name will be visibility.

Basic usage of OGC Web Processing ser-
vice

First we need to find out, which calculations the
server offers:

http://pywps.ominiverdi.org/cgi-bin/wps.
py?service=WPS\&request=GetCapabilities

From the resulting XML it is clear, that the pro-
cess visibility is available on the server and abstract
tells us, that it does what we would like. In the sec-
ond step, we need to find out, what kind of input and
outputs does the process need or will send back:

http://pywps.ominiverdi.org/cgi-bin/wps.
py?service=WPS\&request=DescribeProcess\
&version=0.4.0\&identifier=visibility

• x of type LiteralValue

• y of type LiteralValue

• maxdist – maximum distance from the ob-
server. Type LiteralValue, minimal allowed
value is 0, maximal 5000 meters.

• observer – observer height. Type LiteralValue,
minimal allowed value is 0, maximal 50 meters.

• dem – ComplexValue – raster map of digital el-
evation model, on which the visibility should
be calculated.

Now we can formulate the input request, sent it
to to server and looking forward to calculation re-
sults.

http://pywps.ominiverdi.org/cgi-bin/wps.
py?service=WPS\&version=0.4.0\&request=
Execute\&identifier=visibility\&datainputs=
x,602829.1875,y,4925326.875,maxdist=2000,
observer=1.2,dem,http://somewhere/?some\
&service

Server will download the input digital elevation
model, perform the lines-of-sight calculation and re-
turn resulting raster image back the the client.

ISSN 1614-8746 2

http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=GetCapabilities
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=GetCapabilities
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=visibility
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=visibility
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=visibility
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service

OSGeo-Journal Vol. 1, 2007

Introduction to PyWPS

PyWPS is relatively new project (it’s
development started in April 2006). Original project
target was, making the connection between (UMN)
MapServer and GRASS GIS easy possible, so that we
could build real WebGIS application, which would
be able to perform for example interpolation of raster
data or various digital elevation model analysis.
Time has shown, that even if GRASS GIS is powerful
tool, it does not necessary have to be the best or the
only one program for all possible tasks. Design of Py-
WPS has changed, so it can be used without GRASS
GIS in the background, with any other tool or just
with Python itself.

PyWPS is implementation of OGS’s Web Process-
ing Service standard, as it is defined in document
OGC 05-007r4. Currently, not complete standard is
supported, but we can say, that 95% of the standard
is implemented and usable.

It is a simple CGI script, which is trying to make
life of WebGIS coder as easy as possible.

• It parses all inputs and creates all outputs

• It performs basic control of the input, like type
of LiteralValue input, maximum file size for the
ComplexValue input and similar.

• It creates and removes on-the-fly generated
temporary files and directories, like temporary
GRASS locations and mapsets and temporary
generated files created as part of calculation.

• And other useful operations

The coder has to do only one thing: he has to de-
fine his process with inputs and outputs, which is
basically a script in Python programming language.
The process is one class Process, with one manda-
tory method execute, in which the calculation is pro-
vided. Input and output data are defined on similar
way, it is a complex dictionary structure1:

{

’Identifier’:’maxdist’,

’Title’: ’Maximal distance’,

’Abstract’:’Maximal distance of visibility’,

’LiteralData’: {

’values’:[[0.,5000]],

},

’dataType’: type(0.0),

},

{

’Identifier’: ’dem’,

’Title’: ’Digital elevation mode’

’Abstract’: ’Raster map with elevation model’,

’ComplexValueReference’: {

’Formats’:["image/tiff"],

}

},

The execute() method can then use e.g. GRASS
modules directly:

def execute(self):

importing dem

os.system("r.in.gdal in=%s out=dem" %\

(self.datainputs[’dem’]))

setting region according to dem file

os.system("g.region rast=dem")

lines-of-sight module

os.system("r.los input=dem output=output \

coordinate=%s,%s max_dist=%f \

obs_elev=%d" % \

(self.datainputs[’x’],

self.datainputs[’y’],

self.datainputs[’maxdist’],

self.datainputs[’observer’]))

exporting raster map

os.system("r.out.gdal in=output out=out.tif")

setting the output value

self.dataoutputs[’output’] = "out.tif"

return

As the source code is the best documentation,
around ten example processes are distributed to-
gether with PyWPS source, so the user can get gen-
eral picture about the process definition. There is also
on-line and offline documentation available, which is
trying to describe the installation process and setup
of own processes.

Currently, new class has been defined, which pro-
vides easy definition of process In- and Outputs as
well as better support for GRASS GIS modules. Any
web-interface will be able to track e.g. progress of
data importing, derived directly from the r.in.gdal
module. This improvement will be available in next
release of PyWPS.

Further development

First “stable” version of PyWPS with number 1.0.0
was released in November 2006. Currently, PyWPS
development team would like to release version 2.0.0
soon, with added functionality and few bug fixes.
Common effort in the development goes in three di-
rections:

• Implementation of OGC WPS standard to max-
imal degree

• Making the application as secure as possible, to
avoid server compromitation

1Note that this has been replaced by new methods Add*Input() in current svn version

ISSN 1614-8746 3

OSGeo-Journal Vol. 1, 2007

• Making life of the process-coder as easy as pos-
sible.

The PyWPS development team would also like to
start discussion across geospatial communities about
process metadata definition. The OGC WPS stan-
dard defines the input types from the process point
of view, however, it does not say anything about in-
put (or output) type from the user (interface) point
of view. For example, coordinate x is type of Liter-
alValue but this does not say anything about, that x
is coordinate so it could be useful to setup this input
value with mouse click in the map window rather
then with keyboard in some input form field.

If you want to have closer look at PyWPS, feel free
to visit PyWPS project page at http://pywps.wald.
intevation.org, where the source code as well as
links to projects already using PyWPS are available.

Using ka-Map & PyWPS to create a
GRASS WEB GIS

As far as PyWPS has been published we,
Ominiverdi.org, started developing on it.

Our first goal was to create a FOSS Web Client
to access GRASS functions. PyWPS has not been
the first attempt to do a connection between GRASS
and the Web but none of the others was based on
open standards causing the impossibility to create a
shared platform.

From the beginning we started planning two dif-
ferent projects: Embrio and Wuiw.

Embrio

This is the first implementation we had in mind: use
of PyWPS to let UMN Mapserver and its mapscript
to interact with GRASS.

An other important goal was a Web rich client
and that’s why we decided to base our effort on ka-
Map. Ka-Map use mapscript to access the power-
ful set of features of UMN Mapserver and offers a
Google Maps alike navigation experience.

The output of PyWPS, once the Process returns a
map, can be in geo Tiff, for raster output, and in GML
for vector output. Both formats are natively accessi-
ble by UMN Mapserver then easy to be coupled with
an existing map environment.

In this way a request for the Visibility module can
return a geo Tiff that is kept by ka-Map and inserted
in the actual map coordinates system. Then a style,
that can be an SLD, is applied to raster values and a
temporary cache is created on the fly while tiles are
sent back to the client. The temporary cache is related
to the sessionId.

This system allow to run different module in par-
allel and to compare their outputs using the ka-Map
interface. Layer opacity control and layer vertical po-
sition can be useful to understand the resulting out-
put. Even the query function is synchronised if the
output is query-able; es: Visibility module can out-
put the incident angle with the point of view, the
query function can return the value for each pixel
clicked.

Figure 1: Screenshot of the most recent Embrio inter-
face

Wuiw

WUIW is still a concept more than an application. It’s
intended to offer a Javascript API that connect the
WPS to data resource as OWS and render the output
independently from any mapserver application.

We are still evaluating current limits of the WPS
draft that are not yet relating the input definition
with a complex type definition. The first idea has
been to use Metadata informations to create this kind
of interaction but the risk is to develop a parallel di-
alect that will loose the standard interoperability.

We hope the WPS path to version 1.0 will create a
comfortable solution to this limitation.

Further development

It’s easy to see that WPS, PyWPS, Embrio and Wuiw
have all young histories. Even if most has still to be
done the beginning is strongly promising. Specifying
Embrio future, we imagine to develop a decent inter-
action with WPS script process feedback and show
a process progress bar. Many more GRASS modules
can be developed and we hope to find the help of the
GRASS community for this.

Another important goal is to add many other in-
teractions with CLI (command line interface) acces-
sible applications. We are actually thinking at R,
GDAL/OGR, ecc. for geo statistics, format conver-
sion and many many other functions.

ISSN 1614-8746 4

http://pywps.wald.intevation.org
http://pywps.wald.intevation.org

OSGeo-Journal Vol. 1, 2007

We are even dreaming to add an AJAX CLI to in-
teract with a protected system passing from WPS.

Licenses

It important to note that this project use many differ-
ent softwares and each one has its licence.

• GNU/GPL: GRASS, PyWPS, R

• MIT/BSD: UMN Mapserver, Mapscript, ka-
Map, Embrio

Resources

Last Embrio live example: http://pywps.
ominiverdi.org/demo/embrio/ka-map/htdocs/
index_wps_qgis.html

Embrio home page: http://pywps.ominiverdi.
org/subversion/trunk/web/

Jáchym Čepický
http: // les-ejk. cz

jachym AT les-ejk cz

Lorenzo Becchi
http: // ominiverdi. org

lorenzo AT ominiverdi org

ISSN 1614-8746 5

http://pywps.ominiverdi.org/demo/embrio/ka-map/htdocs/index_wps_qgis.html
http://pywps.ominiverdi.org/demo/embrio/ka-map/htdocs/index_wps_qgis.html
http://pywps.ominiverdi.org/demo/embrio/ka-map/htdocs/index_wps_qgis.html
http://pywps.ominiverdi.org/subversion/trunk/web/
http://pywps.ominiverdi.org/subversion/trunk/web/
http://les-ejk.cz
mailto:jachym AT les-ejk cz
http://ominiverdi.org
mailto:lorenzo AT ominiverdi org

