<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">Doug,<div class=""><br class=""></div><div class=""><div><blockquote type="cite" class=""><div class=""><div style="font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; background-color: rgb(255, 255, 255);" class="">Geotiff supports multiple bands. If your workflow is set up to generate a single band at a time, you can use gdalbuildvrt <a href="https://gdal.org/programs/gdalbuildvrt.html" id="LPlnk" class="">https://gdal.org/programs/gdalbuildvrt.html</a> to make a virtual multiband raster of the individual bands , then gdal_translate , <a href="https://gdal.org/programs/gdal_translate.html#gdal-translate" id="LPlnk706764" class="">https://gdal.org/programs/gdal_translate.html#gdal-translate</a> to convert your virtual multiband raster into a multiband geotiff.</div></div></blockquote><div><br class=""></div></div>I’m seeing that I could create one PDAL pipeline per dimension, so that if the target GeoTIFF had six dimensions, I’d have six JSON files writing six GeoTIFFs, then use GDAL to perform the merge and output a six-band GeoTIFF.</div><div class=""><br class=""></div><div class="">Is there a more elegant way to do this in PDAL, creating a single pipeline that processes six dimensions of data and writes it to a multi-band raster? My end goal is converting LAS files into rasters with separate bands for terrain height, surface height, and surface characteristics (ground, foliage, structure, etc).</div><div class=""><br class=""></div><div class=""><div class="">I can get around well in GDAL, particularly the C++ API, but am new to PDAL Hence I don’t have a good sense on how it’s typically employed for more complex processing tasks.</div></div><div class=""><br class=""></div><div class="">Thanks,</div><div class=""><br class=""></div><div class="">Andreas</div></body></html>