
“Google Summer of Code 2007 Project”

PGRaster – A Coverage/Raster Model and Operations for PostGIS

Participant: Xing Lin (solo.lin@gmail.com)

Mentor: Timothy H. Keitt (tkeitt@gmail.com)

Last Update: 2007/07/06

No. 1 of 25 Pages

mailto:solo.lin@gmail.com
mailto:tkeitt@gmail.com
mailto:tkeitt@gmail.com
mailto:tkeitt@gmail.com
mailto:solo.lin@gmail.com
mailto:solo.lin@gmail.com

Copyright and Trademarks

All copyright and trademarks belong to their owner and this documentation is released in the copyright
of GPL and used for non-profit purpose. The following is the list of trademarks and corresponding
copyright statement referred in this documentation. If any one of these references invades your
copyrights, please don't hesitate to contact me at solo.lin@gmail.com. I will remove it from this
documentation.

GoogleTM is the trademark and official logo of Google Inc. For more information about the company,
please refer to the website of http://www.google.com.

Copyright © 1995-2000, Oracle Corporation. All rights reserved.
Oracle® is a registered trademark of Oracle Corporation. Oracle® GeoRaster is part of the products
made by Oracle®. All the figures in documents which are referred from Oracle® GeoRaster
documentation (B14254-01) belong to Oracle®. For more information about the Oracle® and its
copyrights statement, please refer to its website of http://www.oracle.com

ESRI Proprietary Rights Acknowledgment

Copyright © 1995-2007 ESRI.
All rights reserved.
Published in the United States of America.

The information contained in this work is the exclusive property of Environmental Systems Research
Institute, Inc. (ESRI), and any respective copyright owners. This work is protected under United States
copyright law and other international copyright treaties and conventions. ESRI® & ArcSDE® are
registered trademarks that belongs to ESRI, Inc. All the figures in documents which are referred from
ESRI® ArcSDE® Raster documentation belong to ESRI, Inc. For more information about this company
and related trademarks, please refer to its website of http://www.esri.com.

No. 2 of 25 Pages

http://www.esri.com/
http://www.esri.com/
http://www.esri.com/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
mailto:solo.lin@gmail.com
mailto:solo.lin@gmail.com
mailto:solo.lin@gmail.com

PostgreSQL is released under the BSD license.
PostgreSQL Database Management System (formerly known as Postgres, then as Postgres95).

Portions Copyright (c) 1996-2005, The PostgreSQL Global Development Group.

Portions Copyright (c) 1994, The Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright
notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

For More information about PostgreSQL project, please refer to its website of
http://www.postgresql.org

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect,
PostGIS "spatially enables" the PostgreSQL server, allowing it to be used as a backend spatial database
for geographic information systems (GIS), much like ESRI's SDE or Oracle's Spatial extension.
PostGIS follows the OpenGIS "Simple Features Specification for SQL" and has been certified as
compliant with the "Types and Functions" profile.
PostGIS has been developed by Refractions Research as a project in open source spatial database
technology. PostGIS is released under the GNU General Public License. We continue to develop
PostGIS, and have added user interface tools, basic topology support, data validation, coordinate

No. 3 of 25 Pages

http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/

transformation, programming APIs and much more. Our list of future projects includes full topology
support, raster support, networks and routing, three dimensional surfaces, curves and splines and other
features. Ask us about consulting services and implementing new features.
For more information about PostGIS project, please refer to its website of http://www.postgis.org .

PROJ.4 - Cartographic Projections Library
PROJ.4 has been placed under an MIT license. I believe this to be as close as possible to public domain
while satisfying those who say that a copyright notice is required in some countries. The COPYING
file read as follows:
All source, data files and other contents of the PROJ.4 package are available under the following terms.
Note that the PROJ 4.3 and earlier was "public domain" as is common with US government work, but
apparently this is not a well defined legal term in many countries. I am placing everything under the
following MIT style license because I believe it is effectively the same as public domain, allowing
anyone to use the code as they wish, including making proprietary derivatives.
Though I have put my own name as copyright holder, I don't mean to imply I did the work. Essentially
all work was done by Gerald Evenden.

 Copyright (c) 2000, Frank Warmerdam

 Permission is hereby granted, free of charge, to any person obtaining a
 copy of this software and associated documentation files (the "Software"),
 to deal in the Software without restriction, including without limitation
 the rights to use, copy, modify, merge, publish, distribute, sublicense,
 and/or sell copies of the Software, and to permit persons to whom the
 Software is furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included
 in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 DEALINGS IN THE SOFTWARE.

No. 4 of 25 Pages

http://www.postgis.org/
http://www.postgis.org/
http://www.postgis.org/
http://www.postgis.org/
http://www.postgis.org/
http://www.postgis.org/

0. General Ideas of Design
The proposed PostGIS PGRaster will use a generic raster data model that is component-based, logically
layered, and multidimensional. The design is heavily influenced by Oracle®'s GeoRaster component. A
new object type named PGRASTER will be defined as well as some other useful object types. A table
with a column of type PGRASTER is called a PGRaster table. Each row in the PGRaster table denotes
an geo-referenced images (satellite images, aerial photos...) or other raster coverage (DTM/DEM...).
Other columns could be defined as needed. Functions will be defined and executed upon objects of
type PGRASTER, such as the functions to create subset of raster coverage, the functions to interpolate
a point within a certain raster coverage. All such new object types and functions are executable from
SQL language.
The real raster (or image) data is stored in another toasted table that is connected to its corresponding
PGRASTER object. Such tables are called Raster table, everyone of which contains special column of
type RASTER to store raster data. Within a single RASTER object, there are a sequence of image
pixels or coverage cells, each of which represent the smallest unit of information within a raster dataset.

(PGRaster , Bands, and Raster data table. Source: Oracle ® GeoRaster)
Images and raster dataset will be saved in tiles/blocks. It means the entire images or raster dataset will
be divided into several smaller tiles of regular size before imported into image database. Each row in
Raster table will only store one block/tile of raster data. Other columns will be required together with
the RASTER column. This information will be used to help record the location of each blocks, so that
they could be rebuilt as a whole when necessary. For multidimensional satellites images as well as
RGB images, the blocking/tiling techniques could also be applied to the band dimension. The
parameters of blocking storage could be defined by users. By default, it will be used with an proper set
of parameters advised by PGRaster image database itself automatically.
In addition to reducing the data amount transferred over network, tiling/blocking could also be used to
improve the performance of data visualization and analysis. The entire image data could be display

No. 5 of 25 Pages

onto the viewport of client window asynchronously tile by tile. It could save the time of response and
improve user experience than show up a big final image after a long time waiting. Data analysis
process could also be improved by optimizing certain algorithms to make use of the tiling storage
system and multiple processors' environment.
Another technique that is widely used to improve the performance of large image browsing is called
pyramid structure. Pyramid structures are built from “copy” datasets, each one resampled at a coarser
resolution. These coarser copies of raster datasets will be much smaller in size than the original one but
adequate for visualization at a lower scale (zoom ratio). Imaging you have a 400pixel*400pixel
viewport in the client and a 800pixel*800pixel image in the database. You can just display a half-
reduced version of the original image, which will appear nearly the same as you put all the pixels to a
small viewport. But it will save 75% of data transfering from sever to client. When the user zoom in to
a different scale, a special level of image in the pyramid structure with a proper accuracy will be
packed, transferred to and rebuild at the client side. Pyramid structure could obviously improve the
performance of the large image browsing via Internet application. The parameters that control the
arrangement and storage of pyramid structures could be altered by user. By default, it will be used with
a set of optimized parameters that are advised by PGRaster image database itself automatically.
Blocking/tiling techniques will also be apply to pyramid levels also.

(Pictures source from ESRI® ArcSDE® 9.1 Raster. Should I contact ESRI for permission?)
Geo-reference is the thing that differs GIS raster/coverage datasets from ordinary image files. It tells
the location of raster image within a geographic coordinate system, projected coordinate system or
local coordinate system. The relationships between cell coordinates and model coordinates are modeled
by PGRaster reference systems (mapping schemes). Similarly as Oracle® GeoRaster, the following
reference systems are defined in PostGIS PGRaster:

● Spatial reference system, also called PGRaster SRS, which maps cell coordinates
(row,column,vertical) to model coordinates (X,Y,Z). Using the spatial reference system with
PGRaster data is referred to as georeferencing the data.PostGIS PGRaster SRS will include a
specified spatial reference system in SRID (in PostGIS, a spatial spatial referenced system will
be integrated with PostGIS SRID systems which is derived from the PROJ project), as well as
the mapping schema between cell/pixel coordinate system and ground coordinate systems (or
local coordinate systems). GCP or parameters for affine transformation could be applied to

No. 6 of 25 Pages

record such informations. More details about the spatial reference system will be discussed later
(Georeferencing is discussed in Section 3).

● Temporal reference system, also called PGRaster TRS, which maps cell coordinates (temporal)
to model coordinates (T).

● Band reference system, also called PGRaster BRS, which maps cell coordinates (band) to model
coordinates (S, for Spectral).

(Mapping between ULTCoordinates and Model Coordinates. Source: Oracle® GeoRaster)
Initially, the PGRaster SRS will be implemented by setting up a mapping from cell coordinates system
(up-left coordinate, ULTCoordinate) to model coordinates (geographic or projected). PGRaster
currently supports six-parameter affine transformation that geo-references two-dimensional raster data.
Such affline transformation will be recorded by the six-parameters as well as ground control point
(GCP) in a special tables (in Oracle® GeoRaster terms, such tables are called value attribute table,
VAT). There are also some other aspects about georeferencing of raster dataset, such as rectification
and orthorectification. A special object of type GEOSRS will be set up to record such information for
a raster dataset and be stored as part of metadata for PGRASTER objects.
Data compression and decompression will be one of the key techniques to be used in PostGIS
PGRaster image database. Using compression before data storage could reduce storage space and
amount of data to transfer via network. But it depends on the types of data to be compressed and kinds
of application. Currently, PGRaster will provide two native data compression algorithm to reduce data
storage space: JPEG2000 (Lossy) and LZW(Lossless). Some raster data, such as DEM/DTM data,
could be used lossless data compression algorithm, because it is always involved in a data analysis
process required the high accuracy of data. But sometimes for satellite images and aerial photos, the
lossy compression algorithms could be compelling which could have a acceptable visualization effect,
but highly reduce the data amount. This could be especially true for pyramid data. Of course, you can
choose not to do any compression or decompression staff towards the raster dataset. The compression
information will be recorded as part of PGRASTER object.
Indexing raster image is based on the spatial footprint of each block of raster data which will be stored
as a GEOMETRY object in cell coordinates space. Certain kinds of spatial index (GiST-R Tree) will be
applied on such GEOMETRY column to indexing raster images. When certain subset of the entire

No. 7 of 25 Pages

image is needed or user is navigating throughout the whole dataset, involved blocks of raster data could
be easily located and selected out with the help of spatial indexing tied to the blocks.
As required by PostgreSQL user-extended data type schema, certain types of input and output functions
need to be provided together with the definition of new object types. Because the specialty of raster
data model (RAW, cell cloud....), the similar way to WKT and WKB will be invented to help the
manual input of raster data (sometimes, people need to create some constant, blank, template, or filter
raster dataset.) Common raster data encoding techniques will be adopted here, such as RLE (Run-
Length Encoding), QTE(Quad-Tree Encoding) and so on. Some import and export tools will also be
provided to handle the translation between PostGIS PGRaster and the famous raster data format (ESRI
GRD/ASCII, ERDAS IMAGE, GEOTIFF and so on).
As well PostGIS the spatial extension for PostgreSQL, PostGIS PGRaster also need to have some
system tables as data dictionary and place to save metadata. Certain system tables will be established
after introduction new data types into PGRaster. Trigger and stored procedures will be set up to
maintain the data integrity when inserting, modifying or deleting data from PGRaster table (you need to
delete corresponding data records in Raster data table).
There are some other parts regarding the physical storage solution for raster data in ORDBMS, such as
data type, value type, band interleaving (BSQ, BIP, or BIL), data padding, raster data encoding and so
on. More detail information will be included in the following parts. For more informations, please refer
to the corresponding section below.
Finally, the raster dataset will be storage and processed within PostgreSQL/PostGIS ORDBMS in such
as schema.

(Source: Oracle® GeoRaster. Modified to be proper within PostgreSQL environment)

1. User-Defined Object Types (1): PGRASTER & RASTER
As mentioned in the section of Introduction, the PGRaster extension for PostGIS will mainly include
two new object types: the PGRASTER class which represents a whole raster dataset in a real
application, and the RASTER class which will handle the storage of raster data in blocks. The whole

No. 8 of 25 Pages

raster dataset / image, viewed as a PGRASTER object, is stored as blocks/tiles within an external table,
each row of such table denotes a RASTER object. There is a 1-to-many relationship between the
PGRASTER object and RASTER object. The following is the main class diagram for the PGRaster
extension of PostGIS.

6.1 PGRASTER Definition

PGRASTER object denotes a whole image/raster dataset for a certain region, such as New York city of
the United States. You can have a table with a PGRASTER column (we call it PGRaster table in
PostGIS PGRaster system) to store all the satellites for the whole country. Each row of this table has a
instance of PGRASTER object, telling the remote sensing image for a certain city. Of course, you can
have some other columns together such as:
 CREATE TABLE us_images

{
CityName TEXT,
Image PGRASTER

};
Here you save all the geo-referenced satellite images in the column of Image which is in type of
PGRASTER.

The object type of PGRASTER is defined as follow and more details about the components of this new
user-defined object typs to PostGIS.

typedef struct _georaster
{

long rasterObjectID,
 /* byte rasterObjectType, */

byte rasterDimensions,
byte rasterBandType,
byte rasterDataType,
byte rasterValueType,

No. 9 of 25 Pages

string rasterDataTable,
int rasterBandCount,
int rasterCellDepth,
byte rasterPyramidEnabled,
int rasterPyramidDepth,
int blockSizeRows,
int blockSizeColumns,
int blockSizeBands,
byte blockPadding,
byte blockbandInterleaving,
byte blockCompression,
int blockQuality,
double nodataValue,
GEOR_SRS rasterSRS,
GEOR_STA rasterStatistics,
GEOMETRY spatialExtent,

 /* XMLDocument metadataXML * TBD */
} PGRASTER;

 rasterObjectID – This attributes is used to identify the unique PGRASTER object with
PostGIS PGRaster systems. The data type of this attribute is long (serial???) and an special
function will be invented to help generate a unique ID for the newly created PGRASTER
object. Another alternative might be just set the rasterObjectID to be serial integers. This
rasterObjectID will be used to referred related PGRASTER object in raster data table.

 rasterDimensions – An attribute in byte that tells the number of dimensions of this
raster dataset. Currently, only the two-dimensional raster dataset is supported in PostGIS
PGRaster. But in the future, it could be extended to support higher dimensional coverage, such
as 3D raster object and even 4D raster object. Currently, the rasterDimensions could only
be 2.

 rasterBandType – BandType means how the information in represented in bands. A
enumerated data will be recorded in rasterBandType as a byte attribute. Currently, the
following enumerated items are supported: BT_SINGLE=0, BT_RGB=1, BT_RGBA=2,
BT_MULTI=3, and BT_OTHERS=4. Among them,
○ BT_GREY means there is only one band (white/black, or greyscale image) with the dataset;
○ BT_RGB means the 24 bits colorful image. In this type, the each cell of 3 channels of image

data can only be stored as a whole in the blocking physical storage. More information will
be included in the discussion of data type.

○ BT_RGBA means the 32 bits colorful image. In this type, the each cell of 3 channels of
image data can only be stored as a whole in the blocking physical storage. More information
will be included in the discussion of data type.

No. 10 of 25 Pages

○ BT_MULTI means a multi-sepctral remote sensing dataset which could hold more than one
multi-spectral bands of images.

○ BT_OTHERS means a unknown band type is set.
Here the first three type are set for the optimization of image storage and processing which is
mostly for visualization only.

 rasterDataType – means the type of data cell used to store the information in each
geographic pixel in the raster dataset or image. The data type for recording raster cell
information should be coincide with the rasterCellDepth. Currently, we support the
following data type for raster cell data:
○ DT_1BIT = 0 which mean a boolean data unit and has a cell depth of 1.
○ DT_2BIT = 1 which mean a 2 bits unsigned integer and has a cell depth of 2.
○ DT_4BIT = 2 which mean a 4 bits unsigned integer and has a cell depth of 4.
○ DT_8BIT_U = 3 which mean a 8 bits unsigned byte with a cell depth of 8.
○ DT_8BIT_S = 4 which mean a 8 bits signed byte and has a cell depth of 8.
○ DT_16BIT_U = 5 which mean a 16 bits unsigned integer (short) and has a cell depth of 16.
○ DT_16BIT_S = 6 which mean a 16 bits signed integer (short) and has a cell depth of 16.
○ DT_32BIT_U = 7 which mean a 32 bits unsigned integer (long) and has a cell depth of 32.
○ DT_32BIT_S = 8 which mean a 32 bits signed integer (long) and has a cell depth of 16.
○ DT_24BIT_RGB = 9 which mean a 24 bits RGB pixel and has a cell depth of 24. *
○ DT_32BIT_RGBA = 10 which mean a 32 bits RGBA pixel and has a cell depth of 32. **
○ DT_32BIT_REAL = 11 which mean a 32 bits single floating point number (float) and has a

cell depth of 32.
○ DT_64BIT_REAL = 12 which mean a 64 bits double floating point number (double) and

has a cell depth of 64.
(*) and (**) are set separately for the optimization of geo-referenced image data that are purely
for visualization. In such situation, each pixel of a image will be treated as a whole in contrast
to multi-spectral remote sensing datasets.

 rasterValueType – Types of value or referred as scale of measurement set up a
limitation on how the raster data could be interpreted, processed or represented in a real
application. In GIS, the following value types are usual.
○ VT_NOMINAL - a qualitative, non-numerical and non-ranking scale that classifies features

on intrinsic characteristics. For example, in a land use classification scheme, polygons can
be classified as industrial, commercial, residential, agricultural, public and institutional.

○ VT_ORDINAL - a nominal scale with ranking which differentiates features according to a
particular order. For example, in a land use classification scheme, residential land can be
denoted as low density, medium density and high density

○ VT_INTERVAL - an ordinal scale with ranking based on numerical values that are recorded
with reference to an arbitrary datum. For example, temperature readings in degrees

No. 11 of 25 Pages

centigrade are measured with reference to an arbitrary zero (i.e. zero degree temperature
does not mean no temperature)

○ VT_RATIO - an interval scale with ranking based on numerical values that are measured
with reference to an absolute datum. For example, rainfall data are recorded in mm with
reference to an absolute zero (i.e. zero mm rainfall mean no rainfall)

○ VT_IMAGE – a special value type that is set up for the optimization of image data that is
purely for geo-visualization purpose.

 rasterDataTable – refers to the name of data table in PostgreSQL/PostGIS that contains
the blocking data of this PGRASTER object.

 rasterBandCount – refers to the number of bands in this raster dataset. Normally, except
for multi-spectral remote sensing dataset, the rasterBandCount will always equal to one
(including RGB and RGBA images).

 rasterCellDepth – means how long in bits of data are used to record the information
within this geo-referenced cell.

 rasterPyramidDepth – refers the number of pyramid levels available for this
PGRASTER data. The pyramid levels are named from 0 to Depth-1. If this PyramidDepth equal
to 1, it means that there is no Pyramid Structure available for visualization optimization. This
information can't not be set by end-used. The PostGIS PGRaster will provide a specific set of
functions to build, update or remove pyramid structures for a PGRASTER object.

 blockSizeRows – refers the size of block along the row dimension. This size of block
apply to all data block stored in raster data table except the ones near the lower edge of cell
space. By default, the block size will be (128,128,B), which means each block will store data of
all bands within a region of 128 pixel * 128 pixel.

 blockSizeColumns - refers the size of block along the column dimension. This size of
block apply to all data block stored in raster data table except the ones near the right edge of
cell space. By default, the block size will be (128,128,B), which means each block will store
data of all bands within a region of 128 pixel * 128 pixel.

 blockSizeBands - refers the size of block along the band dimension. This size of block apply to
all data block stored in raster data table except the ones near the last bands. By default, the
block size will be (128,128,B), which means each block will store data of all bands within a
region of 128 pixel * 128 pixel. It means the blockSizeBands will equal to the bands count by
default.

 blockPadding - whether to use data padding for the blocks near the image edges or not.

 blockBandInterleaving – Since data of multi-bands are stored together within a single
block or file, it is very common to take the interleaving techniques to arrange the data of each
bands. As a enumerated data, blockBandInterleaving records how the data of multi-
bands images/raster dataest are arranged within the blocks. Three of them are popular:
○ BI_BSQ = 0 : band sequential. For example, the three bands remote sensing, if taking the

BSQ band interleaving schema, the whole image data of first band will store first, then the
second band, and finally the third band.

No. 12 of 25 Pages

○ BI_BIL = 1 : band interleaved by line. For example, the three bands remote sensing, if
taking the BIL band interleaving schema, the 1st line of image data in first band will store
first, then the 1st line of second band, and finally the 1st line of the third band. Then, the 2nd

line of the first band, the 2nd of the second band and finally the 2nd line of the third band. Do
it the same as band interleaved by line until all the data has been recorded.

○ BI_BIP = 2 : band interleaved by pixel. For example, the three bands remote sensing, if
taking the BIP band interleaving schema, the 1st pixel of image data in first band will store
first, then the 1st pixel of second band, and finally the 1st pixel of the third band. Then, the
2nd pixel of the first band, the 2nd pixel of the second band and finally the 2nd pixel of the
third band. Do it the same as band interleaved by pixel until all the data has been recorded.
The pixel is following a sequence of from up-to-down and left-to-right throughout the cell
space.

By default, the BI_BSQ will be taken which any user specified blockBandInterleaving
information.

 blockCompression – denotes the attribute that records the data compression method to
compress/decompress the blocked data in each row of raster data table. Currently, both lossy
and losses compression methods are supported as following:
○ JPEG-B = 0 (I don't know whether I could find a good open-source JPEG2000 library.)
○ JPEG-F = 1 (I don't know whether I could find a good open-source JPEG2000 library.)
○ LZW (LZ77) = 2
○ NONE = 3
By default, the lossless LZW/LZ77 compression method is taken. Because none raster data
could be compressed/decompressed in a lossy way except for those image files which are
merely for geo-visualization purpose. Users can also choose to save the uncompressed raster
data. What's more, all the functions that could operated upon decompressed (uncompressed)
data could also act on compressed ones because PostGIS PGRaster will decompress the data if
necessary and then carry out the operation required. For more information, please refer to the
following section for details.
The JPEG2000 algorithms could only be applied to raster datasets that have one, three and four
bands. The other dataset should choose the LZW/LZ77 for compression if needed. The
JPGE2000 is especially useful for image data.

 blockQuality – If JPEG2000 algorithm is specified in the blockCompression
section, you can also specify a quality index from 0 to 100 for it.

 spatialExtent – In PostGIS PGRaster, only regular extent of raster dataset is supported.
Here the spatialExtent in GEOMETRY type is used to store the spatial extent (rectangle)
in the ground coordinate systems or local coordinate systems. If this PGRASTER object has
not been geo-referenced yet, this attribute will be set to NULL. More information about the
PGRaster spatial reference system (SRS) will be introduced later.

 NodataValue – Nodata value is always used to pad those cells that have no valid
information there, but for regular storage schema you need a value to be a placeholder. Nodata
value is always choosed to be the unusual one beyond the normal range of raster data, but have

No. 13 of 25 Pages

the same cell depth as normal data (sometime it is impossible to do so). If padding techniques is
used in the blocked data, the NodataValue is used for padding.

 rasterSRS – rasterSRS attribute is used to stored the spatial referenced information for the
PGRASTER object. It is an instance of new user defined object type called GEOR_SRS. More
about the GEOR_SRS could be found in the following sections.

 rasterStatistics – the attribute used to recorded the pre-computed statistical data of
the PGRASTER object after data import for the sake of performance optimization. Such
statistical data could be of great help while carrying out some special functions upon
PGRASTER objects. It is recorded in a new user-define data types named GEOR_STA. More
about the GEOR_STA could be found in the following sections.

PGRASTER object type will be implemented as a user-defined object type into PostgreSQL as well as
PostGIS spatial type of GEOMETRY.

6.2 RASTER Definition

Physically, the data of PGRASTER is blocked and stored in an external table call Raster table of type
RASTER. Each row in the Raster table denotes an instance of blocking data. There could be more than
one Raster table connected to a PGRaster table.
The RASTER object type as well as the Raster table is defined as follow and more details about each
column in the Raster table will come after the definition.

Typedef struct _raster
{

long rasterObjectID,
int pyramidLevel,
int bandBlockNumber,
int rowBlockNumber,
int columnBlockNumber,
int blockBandSize,
int blockRowSize,
int blockColumnSize,
GEOMETRY blockMBR,
BLOB dataBlock

} RASTER;
 rasterObjectID – the raster object id to be referred as the hosting PGRASTER object in

PGRaster table.
 pyramidLevel – denotes level in the pyramid structure for current block of data.

 bandBlockNumber – denotes the number of block along the band dimension.

 rowBlockNumber - denotes the number of block along the row dimension.

 columnBlockNumber - denotes the number of block along the column dimension.

No. 14 of 25 Pages

 blockBandSize – denotes the actual block size along the band dimension. Normally, it
will equal to the standard block size in the band dimension. But at the corners of cell space
(row, column, band), it might be less than the standard block size recorded in the PGRASTER
object.

 blockRowSize - denotes the actual block size along the row dimension. Normally, it will
equal to the standard block size in the row dimension. But at the corners of cell space (row,
column, band), it might be less than the standard block size recorded in the PGRASTER object.

 blockColumnSize - denotes the actual block size along the column dimension. Normally,
it will equal to the standard block size in the column dimension. But at the corners of cell space
(row, column, band), it might be less than the standard block size recorded in the PGRASTER
object.

 blockMBR - records the minimal bounding rectangle (MBR) in type of GEOMETRY for each
block of data in the cell coordinate system (ULTCoordinate). All the coordinates in this MBR
geometry will be integers with a SRID of -1 (not spatial reference system is specified). This
attribute will be used to index the blocked raster data using spatial indexes, such as GiST-R in
PostgreSQL/PostGIS.

 dataBlock – a BLOB (or bytea in PostgreSQL) column to store the actual blocked raster
data. It is toasted storage approach for the data. More details about the physical storage schema
and blocking techniques will be illustrated in the following sections.

Among these attributes, the primary key will be defined as {rasterObjectID,
pyramidLevel, bandBlockNumber, rowBlockNumber, columnBlockNumber}. A
spatial index will also be established on the field of blockMBR.

2. User Defined Object Types (2)
(To Be Finished.......)
In addition to PGRASTER and RASTER object types, there are some other object types useful
for end users to understand and handle the data stored in PostGIS PGRaster. In PostGIS PGRaster,
these object types will also be defined and supported as followings.

2.1. GEOPIXEL

(coming soon...)

2.2.PIXEL

(coming soon...)

2.3.COLORPALETTE (Pseudo Color Table, PCT)

(coming soon...)

2.4.HISTOGRAM

(coming soon...)

No. 15 of 25 Pages

2.5.GEOR_STA

(coming soon...)

2.6.GEOR_SRS: PGRaster Spatial Referenced System

(This object type and its storage will be included in the next seciton.)

3. Georeferencing

3.1.Geo-Referencing method for PostGIS PGRaster
As the same approach to Oracle® GeoRaster, the PostGIS PGRaster uses the low order polynomials
when geo-referencing image or raster dataset according to the following six-parameter affine
transformation formulas:

row = a + b * x + c * y
col = d + e * x + f * y

In these formulas:
 row = Row index of the cell in raster space
 col = Column index of the cell in raster space
 x = East-West position of the point on the ground or in model space.
 y = North-South position of the point on the ground or in model space.
 a, b, c, d, e, and f are coefficients, and they are stored in the SRS metadata.
 b*f – c*e should not be equal to 0 (zero).

In the formulas, if b = 0, f = 0, c = -e, and both c and e are not 0 (zero), the raster data is rectified, and
the formula becomes:

row = a + c * y
col = d - c * x

This is the simplest case for georeferencing when the horizontal and vertical axises are parallel to the
axises of ground coordinate system.
In the current release, the cellRepresentationType value must be UNDEFINED. In other words, a cell is
just a scalar value (or an element of an array) without any shape defined in its cell space. However,
when the PGRaster object is georeferenced, each cell covers a specific square or rectangular area or
represents a point of this area in the model space. In the cell space, each cell has an integer coordinate.
Through georeferencing, the cell's integer coordinate can be transformed into model coordinates, which
identify an exact location of a point. This point or model coordinate may be either the upper-left corner
or the center of the area represented by the cell in the model space.
If the original georeferencing information in the source data is in the inverse direction, such as in an
ESRI world file, the transformation formulas are the following:

x = A * col + B * row + C
y = D * col + E * row + F

In this case, the preceding A, B, C, D, E, and F coefficients that you specify to the GEOR.georeference
procedure are automatically adjusted internally to produce the correct georeferencing result: a, b, c, d,

No. 16 of 25 Pages

e, and f coefficients.
The model coordinates have the same unit as that of the specified SRID and should be in the value
range defined by the model coordinate system. For example, if the PGRaster object is georeferenced to
a geodetic coordinate system such as 8307, the unit of the model coordinates derived from the SRS
must be decimal degrees, and Georeferencing 1-18 Oracle® Spatial GeoRaster values should be in the
ranges of -180.0 to +180.0 or 0.0 to 360.0 for longitude and -90.0 to +90.0 for latitude. In this case, you
cannot use meters or other unit.

3.2.GEOR_SRS Object type

As the same approach and schema to Oracle® GeoRaster, the PostGIS PGRaster will use a special
object type to store the spatial referencing information for a concrete PGRASTER object. The
GEOR_SRS object is defined as followings:

typedef struct _geor_srs
{

boolean isReferenced,
boolean isRectified,
boolean isOrthoRectified,
long SRID,
double spatialResolutionX,
double spatialResolutionY,
double spatialResolutionZ,
double spatialTolerance,
byte coordLocation,
double rowOff,
double columnOff,
double heightOff,
double xOff,
double yOff,
double zOff,
double rowScale,
double columnScale,
double heightScale,
double xScale,
double yScale,
double zScale,
double rowRMS,
double columnRMS,
double totalRMS,
double[] rowNumberator,

No. 17 of 25 Pages

double[] rowDenominator,
double[] columnNumerator,
double[] columnDenominator,

} GEOR_SRS;
The followings comes the detail explanation for each attributes of the GEOR_SRS objects.

● isReferenced - TRUE if the PGRaster object is georeferenced; FALSE if the PGRaster
object is not georeferenced.

● isRectified - TRUE if the PGRaster object is both georectified and georeferenced;
FALSE if the PGRaster object is not georectified.

● IsOrthoRectified - TRUE if the PGRaster object is orthorectified, georectified, and
georeferenced; FALSE if the PGRaster object is not orthorectified.

● SRID - SRID value of the model (ground) coordinate system.

● spatialResolutionX – spatial resolution along the X/Column dimension. The unit of
resolution is derived from the ground coordinate system (SRID).

● SpatialResolutionY - spatial resolution along the Y/Row dimension. The unit of
resolution is derived from the ground coordinate system (SRID).

● SpatialResolutionZ - spatial resolution along the Z/Height dimension. The unit of
resolution is derived from the ground coordinate system (SRID). This field is reserved for 3D
raster dataset and currently not being used.

● spatialTolerance - Tolerance value.

● coordLocation – A enumerated data that tells the model coordinate location representing
either the upper-left corner or the center of each cell in the model space when cell coordinates
(integer numbers) are converted to model coordinates (double numbers). Two values are
supported, CL_CENTER=0, and CL_UPPERLEFT=1.

● rowOff - Reserved for future use regarding the offset along the row dimension of raster
dataset in the cell coordinate system. Must be 0 (zero) for the current release.

● ColumnOff - Reserved for future use regarding the offset along the column dimension of
raster dataset in the cell coordinate system. Must be 0 (zero) for the current release.

● HeightOff - Reserved for future use regarding the offset along the height dimension of 3D
raster dataset in the cell coordinate system. Must be 0 (zero) for the current release.

● xoff - Must be 0 (zero) for the current release.

● Yoff - Must be 0 (zero) for the current release.

● Zoff - Must be 0 (zero) for the current release.

● RowScale - Must be 1 for the current release.

● ColumnScale - Must be 1 for the current release.

● HeightScale - Must be 1 for the current release.

No. 18 of 25 Pages

● Xscale - Must be 1 for the current release.

● Yscale - Must be 1 for the current release.

● Zscale - Must be 1 for the current release.

● RowRMS - Must be NULL for the current release.

● ColumnRMS - Must be NULL for the current release.

● TotalRMS - Must be NULL for the current release.

● rowNumberator – parameters for the affine transformation from ground coordinate (or
local coordinate system) to cell coordinate systems along the row dimension. pType, nVars,
order, nCoefficients, and all coefficients of the numerator of the row polynomial, where
pType=1, nVars=2, order=1, and nCoefficients=3. The three coefficients are a, b, c in the
formulas in Section 6.1.

● rowDenominator - parameters for the affine transformation from cell coordinate system
along the row dimension to ground coordinate (or local coordinate system). nVars, order,
nCoefficients, and all coefficients of the denominator of the row polynomial, where pType=1,
nVars=0, order=0, and nCoefficients=1. The value of the single coefficient must be 1 for the
current release.

● columnNumerator - parameters for the affine transformation from ground coordinate (or
local coordinate system) to cell coordinate systems along the column dimension. pType, nVars,
order, nCoefficients, and all coefficients of the numerator of the column polynomial, where
pType=1, nVars=2, order=1, and nCoefficients=3. The three coefficients are d, e, f in the
formulas in Section 6.1.

● columnDenominator - parameters for the affine transformation from cell coordinate
system along the column dimension to ground coordinate (or local coordinate system). nVars,
order, nCoefficients, and all coefficients of the denominator of the row polynomial, where
pType=1, nVars=0, order=0, and nCoefficients=1. The value of the single coefficient must be 1
for the current release.

4. Physical Data Storage (1): Schema
The multi-toasted table is used to store the data of PostGIS PGRASTER objects in the following
schema.

No. 19 of 25 Pages

● Two main kinds of tables will be setup to store the metadata and raster data seperately for
PGRASTER object. One is called PGRaster table for the meta, and the other is call Raster data
table for the blocked raster data.

● The PGRaster table should at least have a column in the type of PGRASTER which stored the
necessary metadata information for a PGRASTER object. More than one column could be of
the type PGRASTER. Such as, you can save both the SPOT and TM images for each state in
USA. Or you can save SPOT images for three different years: 1980, 1990, and 2000.

● The Raster data table store the blocked data for image or raster dataset in a GIS application. For
each row of raster data table, there can only be one PGRASTER object connected to it. But a
single raster data table could host the blocked data for more than one PGRASTER object, while
the data of a PGRASTER object could only be saved within the same raster data table. Due to
the limitation of physical storage size of a single table, it is strongly recommended that one
raster data table should only host the data for one PGRASTER object.

● There is a one-to-many mapping between the records in PGRaster table and Raster data table.
● There could also be some other tables, such as table for storing GCP points, table for histogram,

the Value Attribute Tables (VAT), and some other additional tables connected to PGRaster data
table by the same PGRASTER_OBJECTID. About the definition of such tables could be
found in the following sections.

5. Physical Data Storage (2): Blocking, Pyramids Structure and Compression
Blocking storage techniques, pyramid structures and data compression are the three key approach to
improve the performance of PostGIS PGRaster in data processing and visualization.

No. 20 of 25 Pages

5.1.Blocking Technique
Blocking technique is using to improve the performance of data storage for PostGIS PGRaster. If the
whole data is stored in a single record, there wouldn't be any points to implement such a PGRaster data
model within a ORDBMS like PostgreSQL. Blocking techniques could be applied to improve the
storing performance in three main aspects: asynchronous data processing, asynchronous data
visualization and extended limitation of data size. Normally, a single file on modern 32 bit OS have the
limitation of size to 4G. It means the largest data size within a ORDBMS record is about 4G.

As the name says, the blocking technique will divided the whole image into small blocks or tiles before
storage. Then each block of data will be numbered and saved within a single record in raster data table.
While need, the whole or subset of the image could be rebuilt using the number of blocks. When it is
necessary, blocks of data could also by processed asynchronously block by block.

By default, the PostGIS PGRaster will carry out a algorithm to specify a proper block size for each
input raster dataset which takes into consider the data type, cell depth, dimension, range and bands
information. Mostly, the prefer block size are equals to (128, 128, B), which means each block will
hold a data range of 128 pixels by 128 pixels and store data of all bands with this range in one single
data block. User could also specify the block size in the storageParams while creating a new
PGRASTER object by importing from a external image files. StorageParams is a text base data
structure to express the users' requirement for data storage. More details about storageParams could be
found in the later sections. In the stroageParams, you can set blocking flag to TRUE and set the
blockSize to any one you like or just skip it to use the default size of each data block. For examples, in
the storageParams, you can write the following words to specify your requirement on the blocksize.

No. 21 of 25 Pages

“storageParams='blocking=TRUE;blocksize=(256,256,B)';...”
The decision on how to choose a proper block size for a certain input raster dataset is not so easy.
Larger blockSize will cause less data records with heavy data read/write overhead for each record.
Smaller blockSize also means more data records which could also slow down the performance. But
anyway, there should be one that is well-tailored according both the raster dataset/image and the
database's ability.

Usually, The dimension sizes (along row, column, and band dimensions) may not be evenly divided by
their respective block sizes. Under such circumstance, two approaches could be applied. One is called
data padding, which will fill the exceeded area of a block from the edge of image with NoDataValue, as
shown in the last figure. Another approach uses three additional attributes together in the Raster data
table to remember the actual size of each block along the row, column and band dimension. Currently,
both approaches are supported in PostGIS PGRaster. By specifying the blockPadding attribute of
PGRASTER object to TRUE to inform the usage of data padding for the blocks near the edges.

5.2.Pyramid Structure
Pyramid structure is a fantastic one which could highly improve the performance of visualization,
especially for delivering the wide-range high-resolution geo-referenced images via network
environment. The mechanism behind the pyramid could be illustrated using the following figure.

In fact, the pyramid structure will set up several copies of the original image in a coarser resolution by
using a certain kind of resampling algorithm. As shown the above figure, after resampling, the number
of image pixel will decrease badly along the pyramid level up. It will cost much smaller space of
storage on disk(about 75 percents less when one pyramid level up). But the “duplicated” image will
cover the same area region with less pixel but bigger spatial resolutions, as shown in the right figure.

In PostGIS PGRaster, user can specify whether to use pyramid structure or not in the storageParams as
well as the rasterPyramidEnable attribute of PGRASTER object. But the rasterPyramidDepth
can't be sepcified by end-user, because it will be filled automatically after the PGRaster finish building
up the whole pyramid of images after the users set to take the pyramid structure.

No. 22 of 25 Pages

If taken, the pyramid levels or pyramid depth could be calculated using the following algorithm:

 1. Taking the whole image, build the first pyramid up and resize the image to ¼ of the original.

 2. Check whether the resized image could be hold within a single block. If yes, stop building
pyramid structure and count the pyramid level.

 3. Otherwise, take the last resized pyramid level as the original one, do the same operation as
No.2. Until the pyramid level could determine.

Typically, in GIS raster spatial analysis field, they are many algorithms of resampling available for
building up the pyramid structures. These five are most popular:

 Nearest neighbor (RM_NN = 0)

 Bilinear interpolation using 4 neighboring cells (RM_BL = 1)

 Cubic convolution using 16 neighboring cells (RM_CUBIC = 2)

 Average 4: using 4 neighboring cells (RM_A4 = 3)

 Average16: using 16 neighboring cells (RM_A16 = 4)

Building up the raster pyramid structures for PostGIS PGRaster, it will take up quite a lot temporary
disk space and computation resource. After built up, it will keep static and seldom change.

You can specified the parameters for building up pyramid structures in the stroageParams which will be
accepted by many PostGIS PGRaster functions. By default, the pyramid structure will be enabled and
the nearest neighbor resmapling method will be taken. You can write such words to the storage Params.

“storageParams='...;Pyramid=TRUE;RESAMPLE=RM_BL;...;'”
This text tell the PostGIS PGRaster to enable the pyramid structure using the bilinear interpolation
resampling method.

5.3.Data Compression
Data compression or image compression/encoding technique is also important in PostGIS PGRaster.
Some excellent image encoding algorithm such as JPEG2000 could greatly reduce the size of image
with an acceptable image quality. This quality of compression could also be controlled by user. For
some other raster dataset that require a lossless data compression, the LZW/LZ77 algorithm could also
be applied. You can specify the image compression method and quality if needed to the stroageParams
as well as the attributes of PGRASTER objects.

“storageParams='...;Compression=JPEG-F;Quality=80;...;'”
Currently, the following compression / image encoding method will be applied.

 CM_JPEG-B = 0

 CM_JPEG-F = 1

 CM_LZW/LZ77 = 2

 CM_RLE (Run Length Encoding) = 3

 CM_NONE = 4.

The optimization of image data which is merely for visualization purpose only, data of both the original

No. 23 of 25 Pages

image and pyramid structures will be stored directly in JPEG-F or JPEG-B format block by block.
While used, each block of image data could be easily converted smaller pieces of JPEG images and
displayed asynchronously in the special order (such as GiST-R tree. Please read more about the spatial
indexing of PostGIS PGRaster data).

The end user have the power to choose whether to use the data compression / image encoding
techniques. The following image from ESRI shows the image compression ratio and quality for
different type of algorithms.

6. Input & Output Functions for PGRASTER object

As required by PostgreSQL, any new user-define object type should provide at least a text-based input
and output function for it. There are also some need to create a PGRASTER by hand using the text as
input in SQL language. In this section, both text-based and binary input/output function will be
illustrated here. Specified image encoding schema will be applied during the implementation of such
import/export functions.

6.1 TEXT Input & Output Functions
Text input and output functions for PGRASTER object in PostGIS/PostgreSQL will follow both a
WKT and a XML style.

● The WKT/Flat Text Style (Default)

As a WKT/Flat Text style, the raster data and related meta will be provided in text of “name=value”
items which are separated using “;”.

● The XML Style

6.2 Binary Input & Output Functions

(To Be Finished....)

7. Utility Functions for PGRASTER Objects

(Coming Soon....)

8. System Tables and Namespace
(Coming Soon....)

9. Indexing PGRASTER in PostGIS

(Coming Soon....)

10.Useful Tools: Import, Export and Viewer
(Coming Soon....)

No. 24 of 25 Pages

11.Examples and Demo
(Coming Soon....)

12.Task and Schedule
(Coming Soon....)

13.Acknowledgment
(Coming Soon....)

14.Appendix A: Object Types and Functions
(Coming Soon....)

15.Appendix B: Table Structures and System Tables
(Coming Soon....)

16.Reference & Web-Links
● References
[1] PostGIS Documentation of Manuals, http://postgis.refractions.net/docs/
[2] PostGIS Online Wiki, http://www.postgis.org/support/wiki/
[3] PGCHIP - The GDAL PostGIS driver for raster data, http://simon.benjamin.free.fr/pgchip/
[4] Oracle® Spatial GeoRaster 10g Release 2 (10.2) Documentation, http://download-uk.oracle.com
/docs/html/B14254_01/toc.htm
[5] Oracle® Spatial User's Guide and Reference 10g Release 2 (10.2), http://download-uk.oracle.com/
docs/html/B14255_01/toc.htm
[6]

● Web Links
[1] PostgreSQL Website, http://www.postgresql.org
[2] PostGIS Website, http://www.postgis.org/
[3]

No. 25 of 25 Pages

http://www.postgis.org/
http://www.postgis.org/
http://www.postgis.org/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/docs/html/B14255_01/toc.htm
http://download-uk.oracle.com/
http://download-uk.oracle.com/
http://download-uk.oracle.com/
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://download-uk.oracle.com/docs/html/B14254_01/toc.htm
http://simon.benjamin.free.fr/pgchip/
http://simon.benjamin.free.fr/pgchip/
http://simon.benjamin.free.fr/pgchip/
http://www.postgis.org/support/wiki/
http://www.postgis.org/support/wiki/
http://www.postgis.org/support/wiki/
http://postgis.refractions.net/docs/
http://postgis.refractions.net/docs/
http://postgis.refractions.net/docs/

	ESRI Proprietary Rights Acknowledgment
	PostgreSQL is released under the BSD license.
	0.General Ideas of Design
	1.User-Defined Object Types (1): PGRASTER & RASTER
	6.1PGRASTER Definition
	6.2RASTER Definition

	2.User Defined Object Types (2)
	2.1. GEOPIXEL
	2.2.PIXEL
	2.3.COLORPALETTE (Pseudo Color Table, PCT)
	2.4.HISTOGRAM
	2.5.GEOR_STA
	2.6.GEOR_SRS: PGRaster Spatial Referenced System

	3.Georeferencing
	3.1.Geo-Referencing method for PostGIS PGRaster
	3.2.GEOR_SRS Object type

	4.Physical Data Storage (1): Schema
	5.Physical Data Storage (2): Blocking, Pyramids Structure and Compression
	5.1.Blocking Technique
	5.2.Pyramid Structure
	5.3.Data Compression

	6.Input & Output Functions for PGRASTER object
	6.1TEXT Input & Output Functions
	6.2Binary Input & Output Functions

	7. Utility Functions for PGRASTER Objects
	8.System Tables and Namespace
	9.Indexing PGRASTER in PostGIS
	10.Useful Tools: Import, Export and Viewer
	11.Examples and Demo
	12.Task and Schedule
	13.Acknowledgment
	14.Appendix A: Object Types and Functions
	15.Appendix B: Table Structures and System Tables
	16.Reference & Web-Links

