
7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 1 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

PostGIS 1.3.4 Manual
Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS
(Geographic Information Systems) objects to be stored in the database. PostGIS includes
support for GiST-based R-Tree spatial indexes, and functions for analysis and processing of
GIS objects.

This is the manual for version 1.3.4

Table of Contents

1. Introduction

1.1. Credits
1.2. More Information

2. Installation

2.1. Requirements
2.2. PostGIS

2.2.1. Creating PostGIS spatially-enabled databases from an in-built template
2.2.2. Upgrading
2.2.3. Common Problems

2.3. JDBC
2.4. Loader/Dumper

3. Frequently Asked Questions
4. Using PostGIS

4.1. GIS Objects

4.1.1. OpenGIS WKB and WKT
4.1.2. PostGIS EWKB, EWKT and Canonical Forms
4.1.3. SQL-MM Part 3

4.2. Using OpenGIS Standards

4.2.1. The SPATIAL_REF_SYS Table
4.2.2. The GEOMETRY_COLUMNS Table
4.2.3. Creating a Spatial Table
4.2.4. Ensuring OpenGIS compliancy of geometries

4.3. Loading GIS Data

4.3.1. Using SQL
4.3.2. Using the Loader

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415138
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#credits
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415306
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415424
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415429
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#PGInstall
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#templatepostgis
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416085
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416205
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416280
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416319
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416778
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#RefObject
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416802
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416909
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417056
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417140
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417169
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417370
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417493
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417597
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417666
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417680
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417718

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 2 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.4. Retrieving GIS Data

4.4.1. Using SQL
4.4.2. Using the Dumper

4.5. Building Indexes

4.5.1. GiST Indexes
4.5.2. Using Indexes

4.6. Complex Queries

4.6.1. Taking Advantage of Indexes
4.6.2. Examples of Spatial SQL

4.7. Using Mapserver

4.7.1. Basic Usage
4.7.2. Frequently Asked Questions
4.7.3. Advanced Usage
4.7.4. Examples

4.8. Java Clients (JDBC)
4.9. C Clients (libpq)

4.9.1. Text Cursors
4.9.2. Binary Cursors

5. Performance tips

5.1. Small tables of large geometries

5.1.1. Problem description
5.1.2. Workarounds

5.2. CLUSTERing on geometry indices
5.3. Avoiding dimension conversion

6. PostGIS Reference

6.1. OpenGIS Functions

6.1.1. Management Functions
6.1.2. Geometry Relationship Functions
6.1.3. Geometry Processing Functions
6.1.4. Geometry Accessors
6.1.5. Geometry Constructors

6.2. PostGIS Extensions

6.2.1. Management Functions
6.2.2. Operators
6.2.3. Measurement Functions
6.2.4. Geometry Outputs
6.2.5. Geometry Constructors

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417950
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417963
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418116
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418292
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418342
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418395
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418510
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418528
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418611
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418862
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418904
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419129
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419561
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419718
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419807
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419842
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419851
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419860
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419872
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419878
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419884
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419912
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419964
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420014
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420050
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420076
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420082
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420159
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420654
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id421019
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id421536
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422141
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422147
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422474
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422695
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422985
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id423183

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 3 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.2.6. Geometry Editors
6.2.7. Linear Referencing
6.2.8. Misc
6.2.9. Long Transactions support

6.3. SQL-MM Functions
6.4. ArcSDE Functions

7. Reporting Problems

7.1. Reporting Software Bugs
7.2. Reporting Documentation Issues

A. Appendix

A.1. Release Notes

A.1.1. Release 1.3.3
A.1.2. Release 1.3.2
A.1.3. Release 1.3.1
A.1.4. Release 1.3.0
A.1.5. Release 1.2.1
A.1.6. Release 1.2.0
A.1.7. Release 1.1.6
A.1.8. Release 1.1.5
A.1.9. Release 1.1.4
A.1.10. Release 1.1.3
A.1.11. Release 1.1.2
A.1.12. Release 1.1.1
A.1.13. Release 1.1.0
A.1.14. Release 1.0.6
A.1.15. Release 1.0.5
A.1.16. Release 1.0.4
A.1.17. Release 1.0.3
A.1.18. Release 1.0.2
A.1.19. Release 1.0.1
A.1.20. Release 1.0.0
A.1.21. Release 1.0.0RC6
A.1.22. Release 1.0.0RC5
A.1.23. Release 1.0.0RC4
A.1.24. Release 1.0.0RC3
A.1.25. Release 1.0.0RC2
A.1.26. Release 1.0.0RC1

Chapter 1. Introduction
Table of Contents

1.1. Credits
1.2. More Information

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id423521
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424122
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424348
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424696
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id425042
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426314
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426433
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426438
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426501
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#release_notes
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426624
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426629
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426648
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426665
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426680
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426759
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426806
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426839
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426956
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427070
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427193
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427356
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427489
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427617
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427934
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428041
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428174
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428413
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428491
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428592
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428692
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428766
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428838
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428964
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id429137
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id429236
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#credits
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415306

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 4 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

PostGIS is developed by Refractions Research Inc, as a spatial database technology research
project. Refractions is a GIS and database consulting company in Victoria, British Columbia,
Canada, specializing in data integration and custom software development. We plan on
supporting and developing PostGIS to support a range of important GIS functionality, including
full OpenGIS support, advanced topological constructs (coverages, surfaces, networks),
desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1. Credits
Sandro Santilli <strk@refractions.net>

Coordinates all bug fixing and maintenance effort, integration of new GEOS
functionality, and new function enhancements.

Mark Leslie <mleslie@refractions.net>

Ongoing maintenance and development of core functions.

Chris Hodgson <chodgson@refractions.net>

Maintains new functions and the 7.2 index bindings.

Paul Ramsey <pramsey@refractions.net>

Keeps track of the documentation and packaging.

Jeff Lounsbury <jeffloun@refractions.net>

Original development of the Shape file loader/dumper.

Dave Blasby <dblasby@gmail.com>

The original developer of PostGIS. Dave wrote the server side objects, index bindings,
and many of the server side analytical functions.

Other contributors

In alphabetical order: Alex Bodnaru, Alex Mayrhofer, Bruce Rindahl, Bernhard Reiter,
Bruno Wolff III, Carl Anderson, Charlie Savage, David Skea, David Techer, IIDA Tetsushi,
Geographic Data BC, Gerald Fenoy, Gino Lucrezi, Klaus Foerster, Kris Jurka, Mark Cave-
Ayland, Mark Sondheim, Markus Schaber, Michael Fuhr, Nikita Shulga, Norman Vine,
Olivier Courtin, Ralph Mason, Steffen Macke.

Important Support Libraries

The GEOS geometry operations library, and the algorithmic work of Martin Davis
<mbdavis@vividsolutions.com> of Vivid Solutions in making it all work.

The Proj4 cartographic projection library, and the work of Gerald Evenden and Frank
Warmerdam in creating and maintaining it.

http://geos.refractions.net/
http://proj4.maptools.org/

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 5 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

1.2. More Information
The latest software, documentation and news items are available at the PostGIS web site,
http://postgis.refractions.net.

More information about the GEOS geometry operations library is available at
http://geos.refractions.net.

More information about the Proj4 reprojection library is available at
http://www.remotesensing.org/proj.

More information about the PostgreSQL database server is available at the PostgreSQL
main site http://www.postgresql.org.

More information about GiST indexing is available at the PostgreSQL GiST development
site, http://www.sai.msu.su/~megera/postgres/gist.

More information about Mapserver internet map server is available at
http://mapserver.gis.umn.edu.

The "Simple Features for Specification for SQL" is available at the OpenGIS Consortium
web site: http://www.opengis.org.

Chapter 2. Installation
Table of Contents

2.1. Requirements
2.2. PostGIS

2.2.1. Creating PostGIS spatially-enabled databases from an in-built template
2.2.2. Upgrading
2.2.3. Common Problems

2.3. JDBC
2.4. Loader/Dumper

2.1. Requirements
PostGIS has the following requirements for building and usage:

A complete installation of PostgreSQL (including server headers). PostgreSQL is available
from http://www.postgresql.org. Version 7.2 or higher is required.

GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS,
but we find far fewer problems when compiling with gcc .

GNU Make (gmake or make). For many systems, GNU make is the default version of

http://postgis.refractions.net/
http://geos.refractions.net/
http://www.remotesensing.org/proj
http://www.postgresql.org/
http://www.sai.msu.su/~megera/postgres/gist
http://mapserver.gis.umn.edu/
http://www.opengis.org/
http://www.opengis.org/docs/99-049.pdf
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id415429
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#PGInstall
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#templatepostgis
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416085
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416205
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416280
http://www.postgresql.org/

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 6 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

GNU Make (gmake or make). For many systems, GNU make is the default version of
make. Check the version by invoking make -v . Other versions of make may not
process the PostGIS Makefile properly.

(Recommended) Proj4 reprojection library. The Proj4 library is used to provide
coordinate reprojection support within PostGIS. Proj4 is available for download from
http://www.remotesensing.org/proj.

(Recommended) GEOS geometry library. The GEOS library is used to provide geometry
tests (ST_Touches(), ST_Contains(), ST_Intersects()) and operations (ST_Buffer(),
ST_Union(), ST_Difference()) within PostGIS. GEOS is available for download from
http://geos.refractions.net.

2.2. PostGIS
The PostGIS module is a extension to the PostgreSQL backend server. As such, PostGIS 1.3.4
requires full PostgreSQL server headers access in order to compile. The PostgreSQL source
code is available at http://www.postgresql.org.

PostGIS 1.3.4 can be built against PostgreSQL versions 7.2.0 or higher. Earlier versions of
PostgreSQL are not supported.

1. Before you can compile the PostGIS server modules, you must compile and install the
PostgreSQL package.

2. Retrieve the PostGIS source archive from http://postgis.refractions.net/postgis-
1.3.4.tar.gz. Uncompress and untar the archive.

3. Enter the postgis-1.3.4 directory, and run:

Note

If you plan to use GEOS functionality you might need to explicitly link
PostgreSQL against the standard C++ library:

This is a workaround for bogus C++ exceptions interaction with older
development tools. If you experience weird problems (backend
unexpectedly closed or similar things) try this trick. This will require
recompiling your PostgreSQL from scratch, of course.

LDFLAGS=-lstdc++ ./configure [YOUR OPTIONS HERE]

gzip -d -c postgis-1.3.4.tar.gz | tar xvf -

./configure

http://www.remotesensing.org/proj
http://geos.refractions.net/
http://www.postgresql.org/
http://postgis.refractions.net/postgis-1.3.4.tar.gz

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 7 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

If you want support for coordinate reprojection, you must have the Proj4 library
installed. If ./configure didn't find it, try using --with-proj=PATH switch specify
a specific Proj4 installation directory.

If you want to use GEOS functionality, you must have the GEOS library installed. If
./configure didn't find it, try using --with-geos=PATH to specify the full path to
the geos-config program full path.

4. Run the compile and install commands.

All files are installed using information provided by pg_config

Libraries are installed [pkglibdir]/lib/contrib .

Important support files such as lwpostgis.sql are installed in
[prefix]/share/contrib .

Loader and dumper binaries are installed in [bindir]/ .

5. PostGIS requires the PL/pgSQL procedural language extension. Before loading the
lwpostgis.sql file, you must first enable PL/pgSQL. You should use the createlang
command. The PostgreSQL Programmer's Guide has the details if you want to this
manually for some reason.

6. Now load the PostGIS object and function definitions into your database by loading the
lwpostgis.sql definitions file.

The PostGIS server extensions are now loaded and ready to use.

7. For a complete set of EPSG coordinate system definition identifiers, you can also load
the spatial_ref_sys.sql definitions file and populate the SPATIAL_REF_SYS table.

2.2.1. Creating PostGIS spatially-enabled databases from an in-built
template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >=
1.1.5) load the PostGIS functions into a template database called template_postgis . If the
template_postgis database exists in your PostgreSQL installation then it is possible for
users and/or applications to create spatially-enabled databases using a single command. Note

make # make install

createlang plpgsql [yourdatabase]

psql -d [yourdatabase] -f lwpostgis.sql

psql -d [yourdatabase] -f spatial_ref_sys.sql

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 8 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

that in both cases, the database user must have been granted the privilege to create new
databases.

From the shell:

From SQL:

2.2.2. Upgrading

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of
new PostGIS object definitions.

Unfortunately not all definitions can be easily replaced in a live database, so sometimes your
best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and an HARD
UPGRADE procedure for major releases.

Before attempting to upgrade postgis, it is always worth to backup your data. If you use the -
Fc flag to pg_dump you will always be able to restore the dump with an HARD UPGRADE.

2.2.2.1. Soft upgrade

Soft upgrade consists of sourcing the lwpostgis_upgrade.sql script in your spatial database:

If a soft upgrade is not possible the script will abort and you will be warned about HARD
UPGRADE being required, so do not hesitate to try a soft upgrade first.

2.2.2.2. Hard upgrade

createdb -T template_postgis my_spatial_db

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

$ psql -f lwpostgis_upgrade.sql -d your_spatial_database

Note

If you can't find the lwpostgis_upgrade.sql file you are probably using
a version prior to 1.1 and must generate that file by yourself. This is done
with the following command:

$ utils/postgis_proc_upgrade.pl lwpostgis.sql > lwpostgis_upgrade.sql

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 9 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

By HARD UPGRADE we intend full dump/reload of postgis-enabled databases. You need an
HARD UPGRADE when postgis objects' internal storage changes or when SOFT UPGRADE is not
possible. The Release Notes appendix reports for each version whether you need a
dump/reload (HARD UPGRADE) to upgrade.

PostGIS provides an utility script to restore a dump produced with the pg_dump -Fc command.
It is experimental so redirecting its output to a file will help in case of problems. The
procedure is as follow:

Create a "custom-format" dump of the database you want to upgrade (let's call it "olddb")

Restore the dump contextually upgrading postgis into a new database. The new database
doesn't have to exist. postgis_restore accepts createdb parameters after the dump file name,
and that can for instance be used if you are using a non-default character encoding for your
database. Let's call it "newdb", with UNICODE as the character encoding:

Check that all restored dump objects really had to be restored from dump and do not conflict
with the ones defined in lwpostgis.sql

If upgrading from PostgreSQL < 8.0 to >= 8.0 you might want to drop the attrelid, varattnum
and stats columns in the geometry_columns table, which are no-more needed. Keeping them
won't hurt. DROPPING THEM WHEN REALLY NEEDED WILL DO HURT !

spatial_ref_sys table is restore from the dump, to ensure your custom additions are kept, but
the distributed one might contain modification so you should backup your entries, drop the
table and source the new one. If you did make additions we assume you know how to backup
them before upgrading the table. Replace of it with the new one is done like this:

2.2.3. Common Problems

$ pg_dump -Fc olddb > olddb.dump

$ sh utils/postgis_restore.pl lwpostgis.sql newdb olddb.dump -E=UNICODE > restore.log

$ grep ^KEEPING restore.log | less

$ psql newdb -c "ALTER TABLE geometry_columns DROP attrelid"
$ psql newdb -c "ALTER TABLE geometry_columns DROP varattnum"
$ psql newdb -c "ALTER TABLE geometry_columns DROP stats"

$ psql newdb
newdb=> drop spatial_ref_sys;
DROP
newdb=> \i spatial_ref_sys.sql

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#release_notes

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 10 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

There are several things to check when your installation or upgrade doesn't go as you
expected.

1. It is easiest if you untar the PostGIS distribution into the contrib directory under the
PostgreSQL source tree. However, if this is not possible for some reason, you can set the
PGSQL_SRC environment variable to the path to the PostgreSQL source directory. This
will allow you to compile PostGIS, but the make install may not work, so be prepared to
copy the PostGIS library and executable files to the appropriate locations yourself.

2. Check that you you have installed PostgreSQL 7.2 or newer, and that you are compiling
against the same version of the PostgreSQL source as the version of PostgreSQL that is
running. Mix-ups can occur when your (Linux) distribution has already installed
PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it.
PostGIS will only work with PostgreSQL 7.2 or newer, and strange, unexpected error
messages will result if you use an older version. To check the version of PostgreSQL
which is running, connect to the database using psql and run this query:

If you are running an RPM based distribution, you can check for the existence of pre-
installed packages using the rpm command as follows: rpm -qa | grep postgresql

Also check that you have made any necessary changes to the top of the Makefile.config. This
includes:

1. If you want to be able to do coordinate reprojections, you must install the Proj4 library
on your system, set the USE_PROJ variable to 1 and the PROJ_DIR to your installation
prefix in the Makefile.config.

2. If you want to be able to use GEOS functions you must install the GEOS library on your
system, and set the USE_GEOS to 1 and the GEOS_DIR to your installation prefix in the
Makefile.config

2.3. JDBC
The JDBC extensions provide Java objects corresponding to the internal PostGIS types. These
objects can be used to write Java clients which query the PostGIS database and draw or do
calculations on the GIS data in PostGIS.

1. Enter the jdbc sub-directory of the PostGIS distribution.

2. Edit the Makefile to provide the correct paths of your java compiler (JAVAC) and
interpreter (JAVA).

3. Run the make command. Copy the postgis.jar file to wherever you keep your java
libraries.

SELECT version();

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 11 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

2.4. Loader/Dumper
The data loader and dumper are built and installed automatically as part of the PostGIS build.
To build and install them manually:

The loader is called shp2pgsql and converts ESRI Shape files into SQL suitable for loading in
PostGIS/PostgreSQL. The dumper is called pgsql2shp and converts PostGIS tables (or queries)
into ESRI Shape files. For more verbose documentation, see the online help, and the manual
pages.

Chapter 3. Frequently Asked Questions
3.1. What kind of geometric objects can I store?
3.2. How do I insert a GIS object into the database?
3.3. How do I construct a spatial query?
3.4. How do I speed up spatial queries on large tables?
3.5. Why aren't PostgreSQL R-Tree indexes supported?
3.6. Why should I use the AddGeometryColumn() function and all the other OpenGIS stuff?
3.7. What is the best way to find all objects within a radius of another object?
3.8. How do I perform a coordinate reprojection as part of a query?

3.1. What kind of geometric objects can I store?
You can store point, line, polygon, multipoint, multiline, multipolygon, and
geometrycollections. These are specified in the Open GIS Well Known Text Format (with
XYZ,XYM,XYZM extentions).

3.2. How do I insert a GIS object into the database?
First, you need to create a table with a column of type "geometry" to hold your GIS data.
Connect to your database with psql and try the following SQL:

If the geometry column addition fails, you probably have not loaded the PostGIS functions
and objects into this database. See the installation instructions.

Then, you can insert a geometry into the table using a SQL insert statement. The GIS
object itself is formatted using the OpenGIS Consortium "well-known text" format:

cd postgis-1.3.4/loader
make
make install

CREATE TABLE gtest (ID int4, NAME varchar(20));
SELECT AddGeometryColumn('', 'gtest','geom',-1,'LINESTRING',2);

INSERT INTO gtest (ID, NAME, GEOM)
VALUES (
 1,
 'First Geometry',

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416327
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416348
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416449
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416510
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416598
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416654
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416701
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416747
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#PGInstall

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 12 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

For more information about other GIS objects, see the object reference.

To view your GIS data in the table:

The return value should look something like this:

3.3. How do I construct a spatial query?
The same way you construct any other database query, as an SQL combination of return
values, functions, and boolean tests.

For spatial queries, there are two issues that are important to keep in mind while
constructing your query: is there a spatial index you can make use of; and, are you doing
expensive calculations on a large number of geometries.

In general, you will want to use the "intersects operator" (&&) which tests whether the
bounding boxes of features intersect. The reason the && operator is useful is because if
a spatial index is available to speed up the test, the && operator will make use of this.
This can make queries much much faster.

You will also make use of spatial functions, such as Distance(), ST_Intersects(),
ST_Contains() and ST_Within(), among others, to narrow down the results of your search.
Most spatial queries include both an indexed test and a spatial function test. The index
test serves to limit the number of return tuples to only tuples that might meet the
condition of interest. The spatial functions are then use to test the condition exactly.

3.4. How do I speed up spatial queries on large tables?
Fast queries on large tables is the raison d'etre of spatial databases (along with
transaction support) so having a good index is important.

To build a spatial index on a table with a geometry column, use the "CREATE INDEX"
function as follows:

 'First Geometry',
 GeomFromText('LINESTRING(2 3,4 5,6 5,7 8)', -1)
);

SELECT id, name, AsText(geom) AS geom FROM gtest;

 id | name | geom
----+----------------+-----------------------------
 1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

SELECT id, the_geom
FROM thetable
WHERE
 the_geom && 'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))'
AND
 _ST_Contains(the_geom,'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))');

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#RefObject

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 13 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

You should also ensure that the PostgreSQL query planner has enough information about
your index to make rational decisions about when to use it. To do this, you have to
"gather statistics" on your geometry tables.

For PostgreSQL 8.0.x and greater, just run the VACUUM ANALYZE command.

For PostgreSQL 7.4.x and below, run the SELECT UPDATE_GEOMETRY_STATS()
command.

3.5. Why aren't PostgreSQL R-Tree indexes supported?
Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-
Trees have been completely discarded since version 0.6, and spatial indexing is provided
with an R-Tree-over-GiST scheme.

Our tests have shown search speed for native R-Tree and GiST to be comparable. Native
PostgreSQL R-Trees have two limitations which make them undesirable for use with GIS
features (note that these limitations are due to the current PostgreSQL native R-Tree
implementation, not the R-Tree concept in general):

R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in
size. GiST indexes can, using the "lossy" trick of substituting the bounding box for
the feature itself.

R-Tree indexes in PostgreSQL are not "null safe", so building an index on a
geometry column which contains null geometries will fail.

3.6. Why should I use the AddGeometryColumn() function and all the other OpenGIS
stuff?
If you do not want to use the OpenGIS support functions, you do not have to. Simply
create tables as in older versions, defining your geometry columns in the CREATE
statement. All your geometries will have SRIDs of -1, and the OpenGIS meta-data tables
will not be filled in properly. However, this will cause most applications based on PostGIS
to fail, and it is generally suggested that you do use AddGeometryColumn() to create
geometry tables.

Mapserver is one application which makes use of the geometry_columns meta-data.
Specifically, Mapserver can use the SRID of the geometry column to do on-the-fly
reprojection of features into the correct map projection.

3.7. What is the best way to find all objects within a radius of another object?
To use the database most efficiently, it is best to do radius queries which combine the

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

Note

GiST indexes are assumed to be lossy. Lossy indexes uses a proxy
object (in the spatial case, a bounding box) for building the index.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 14 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

radius test with a bounding box test: the bounding box test uses the spatial index,
giving fast access to a subset of data which the radius test is then applied to.

The ST_DWithin(geometry, geometry, distance) function is a handy way of
performing an indexed distance search. It works by creating a search rectangle large
enough to enclose the distance radius, then performing an exact distance search on the
indexed subset of results.

For example, to find all objects with 100 meters of POINT(1000 1000) the following query
would work well:

3.8. How do I perform a coordinate reprojection as part of a query?
To perform a reprojection, both the source and destination coordinate systems must be
defined in the SPATIAL_REF_SYS table, and the geometries being reprojected must already
have an SRID set on them. Once that is done, a reprojection is as simple as referring to
the desired destination SRID.

Chapter 4. Using PostGIS
Table of Contents

4.1. GIS Objects

4.1.1. OpenGIS WKB and WKT
4.1.2. PostGIS EWKB, EWKT and Canonical Forms
4.1.3. SQL-MM Part 3

4.2. Using OpenGIS Standards

4.2.1. The SPATIAL_REF_SYS Table
4.2.2. The GEOMETRY_COLUMNS Table
4.2.3. Creating a Spatial Table
4.2.4. Ensuring OpenGIS compliancy of geometries

4.3. Loading GIS Data

4.3.1. Using SQL
4.3.2. Using the Loader

4.4. Retrieving GIS Data

4.4.1. Using SQL

SELECT * FROM geotable
 WHERE ST_DWithin(geocolumn, 'POINT(1000 1000)', 100.0);

SELECT ST_Transform(the_geom,4269) FROM geotable;

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#RefObject
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416802
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id416909
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417056
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417140
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417169
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417370
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417493
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417597
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417666
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417680
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417718
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417950
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id417963

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 15 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.4.2. Using the Dumper

4.5. Building Indexes

4.5.1. GiST Indexes
4.5.2. Using Indexes

4.6. Complex Queries

4.6.1. Taking Advantage of Indexes
4.6.2. Examples of Spatial SQL

4.7. Using Mapserver

4.7.1. Basic Usage
4.7.2. Frequently Asked Questions
4.7.3. Advanced Usage
4.7.4. Examples

4.8. Java Clients (JDBC)
4.9. C Clients (libpq)

4.9.1. Text Cursors
4.9.2. Binary Cursors

4.1. GIS Objects
The GIS objects supported by PostGIS are a superset of the "Simple Features" defined by the
OpenGIS Consortium (OGC). As of version 0.9, PostGIS supports all the objects and functions
specified in the OGC "Simple Features for SQL" specification.

PostGIS extends the standard with support for 3DZ,3DM and 4D coordinates.

4.1.1. OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-
Known Text (WKT) form and the Well-Known Binary (WKB) form. Both WKT and WKB include
information about the type of the object and the coordinates which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

POINT(0 0)

LINESTRING(0 0,1 1,1 2)

POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

MULTIPOINT(0 0,1 2)

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418116
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418292
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418342
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418395
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418510
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418528
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418611
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418862
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418904
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419129
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419561
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419718
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419807
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419842
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419851
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419860

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 16 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -
1,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING((2 3,3 4)))

The OpenGIS specification also requires that the internal storage format of spatial objects
include a spatial referencing system identifier (SRID). The SRID is required when creating
spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

For example, a valid insert statement to create and insert an OGC spatial object would be:

4.1.2. PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is *never* embedded in the
input/output representations.

PostGIS extended formats are currently superset of OGC one (every valid WKB/WKT is a valid
EWKB/EWKT) but this might vary in the future, specifically if OGC comes out with a new format
conflicting with our extensions. Thus you SHOULD NOT rely on this feature!

PostGIS EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded SRID information.

Examples of the text representations (EWKT) of the extended spatial objects of the features are
as follows:

POINT(0 0 0) -- XYZ

SRID=32632;POINT(0 0) -- XY with SRID

POINTM(0 0 0) -- XYM

POINT(0 0 0 0) -- XYZM

SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))

POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))

MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),((-1 -1
0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

bytea WKB = asBinary(geometry);
text WKT = asText(geometry);
geometry = GeomFromWKB(bytea WKB, SRID);
geometry = GeometryFromText(text WKT, SRID);

INSERT INTO geotable (the_geom, the_name)
 VALUES (GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 17 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5))

Input/Output of these formats are available using the following interfaces:

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

The "canonical forms" of a PostgreSQL type are the representations you get with a simple
query (without any function call) and the one which is guaranteed to be accepted with a simple
insert, update or copy. For the postgis 'geometry' type these are:

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii
input/output:

4.1.3. SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec
by defining a number of circularly interpolated curves.

The SQL-MM definitions include 3dm, 3dz and 4d coordinates, but do not allow the
embedding of SRID information.

The well-known text extensions are not yet fully supported. Examples of some simple curved
geometries are shown below:

CIRCULARSTRING(0 0, 1 1, 1 0)

bytea EWKB = asEWKB(geometry);
text EWKT = asEWKT(geometry);
geometry = GeomFromEWKB(bytea EWKB);
geometry = GeomFromEWKT(text EWKT);

INSERT INTO geotable (the_geom, the_name)
 VALUES (GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place')

- Output
 - binary: EWKB
 ascii: HEXEWKB (EWKB in hex form)
- Input
 - binary: EWKB
 ascii: HEXEWKB|EWKT

=# SELECT 'SRID=4;POINT(0 0)'::geometry;

geometry
--
01010000200400000000000000000000000000000000000000
(1 row)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 18 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1))

MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1,
1 1)),((10 10, 14 12, 11 10, 10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

4.2. Using OpenGIS Standards
The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the
functions required to manipulate them, and a set of meta-data tables. In order to ensure that
meta-data remain consistent, operations such as creating and removing a spatial column are
carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and GEOMETRY_COLUMNS . The
SPATIAL_REF_SYS table holds the numeric IDs and textual descriptions of coordinate
systems used in the spatial database.

4.2.1. The SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table definition is as follows:

Note

Currently, PostGIS cannot support the use of Compound Curves in a Curve
Polygon.

Note

All floating point comparisons within the SQL-MM implementation are
performed to a specified tolerance, currently 1E-8.

CREATE TABLE spatial_ref_sys (
 srid INTEGER NOT NULL PRIMARY KEY,
 auth_name VARCHAR(256),
 auth_srid INTEGER,
 srtext VARCHAR(2048),
 proj4text VARCHAR(2048)
)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 19 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The SPATIAL_REF_SYS columns are as follows:

SRID

An integer value that uniquely identifies the Spatial Referencing System (SRS) within the
database.

AUTH_NAME

The name of the standard or standards body that is being cited for this reference
system. For example, "EPSG" would be a valid AUTH_NAME .

AUTH_SRID

The ID of the Spatial Reference System as defined by the Authority cited in the
AUTH_NAME . In the case of EPSG, this is where the EPSG projection code would go.

SRTEXT

The Well-Known Text representation of the Spatial Reference System. An example of a
WKT SRS representation is:

For a listing of EPSG projection codes and their corresponding WKT representations, see
http://www.opengis.org/techno/interop/EPSG2WKT.TXT. For a discussion of WKT in
general, see the OpenGIS "Coordinate Transformation Services Implementation
Specification" at http://www.opengis.org/techno/specs.htm. For information on the
European Petroleum Survey Group (EPSG) and their database of spatial reference
systems, see http://epsg.org.

PROJ4TEXT

PostGIS uses the Proj4 library to provide coordinate transformation capabilities. The
PROJ4TEXT column contains the Proj4 coordinate definition string for a particular SRID.
For example:

PROJCS["NAD83 / UTM Zone 10N",
 GEOGCS["NAD83",
 DATUM["North_American_Datum_1983",
 SPHEROID["GRS 1980",6378137,298.257222101]
],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433]
],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",-123],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1]
]

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

http://www.opengis.org/techno/specs.htm
http://www.opengis.org/techno/interop/EPSG2WKT.TXT
http://epsg.org/

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 20 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

For more information about, see the Proj4 web site at
http://www.remotesensing.org/proj. The spatial_ref_sys.sql file contains both
SRTEXT and PROJ4TEXT definitions for all EPSG projections.

4.2.2. The GEOMETRY_COLUMNS Table

The GEOMETRY_COLUMNS table definition is as follows:

The columns are as follows:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME

The fully qualified name of the feature table containing the geometry column. Note that
the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is
used (public is the default).

F_GEOMETRY_COLUMN

The name of the geometry column in the feature table.

COORD_DIMENSION

The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID

The ID of the spatial reference system used for the coordinate geometry in this table. It
is a foreign key reference to the SPATIAL_REF_SYS .

TYPE

The type of the spatial object. To restrict the spatial column to a single type, use one of:
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON,
GEOMETRYCOLLECTION or corresponding XYM versions POINTM, LINESTRINGM,
POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use
"GEOMETRY" as the type.

CREATE TABLE geometry_columns (
 f_table_catalog VARRCHAR(256) NOT NULL,
 f_table_schema VARCHAR(256) NOT NULL,
 f_table_nam VARCHAR(256) NOT NULL,
 f_geometry_column VARCHAR(256) NOT NULL,
 coord_dimension INTEGER NOT NULL,
 srid INTEGER NOT NULL,
 type VARCHAR(30) NOT NULL
)

http://www.remotesensing.org/proj

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 21 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.2.3. Creating a Spatial Table

Creating a table with spatial data is done in two stages:

Create a normal non-spatial table.

For example: CREATE TABLE ROADS_GEOM (ID int4, NAME varchar(25))

Add a spatial column to the table using the OpenGIS "AddGeometryColumn" function.

The syntax is:

Or, using current schema:

Example1: SELECT AddGeometryColumn('public', 'roads_geom', 'geom', 423,
'LINESTRING', 2)

Example2: SELECT AddGeometryColumn('roads_geom', 'geom', 423, 'LINESTRING', 2)

Here is an example of SQL used to create a table and add a spatial column (assuming that an
SRID of 128 exists already):

Note

This attribute is (probably) not part of the OpenGIS specification, but is
required for ensuring type homogeneity.

AddGeometryColumn(
 <schema_name>,
 <table_name>,
 <column_name>,
 <srid>,
 <type>,
 <dimension>
)

AddGeometryColumn(
 <table_name>,
 <column_name>,
 <srid>,
 <type>,
 <dimension>
)

CREATE TABLE parks (
 park_id INTEGER,
 park_name VARCHAR,
 park_date DATE,
 park_type VARCHAR

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 22 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Here is another example, using the generic "geometry" type and the undefined SRID value of -
1:

4.2.4. Ensuring OpenGIS compliancy of geometries

Most of the functions implemented by the GEOS library rely on the assumption that your
geometries are valid as specified by the OpenGIS Simple Feature Specification. To check
validity of geometries you can use the IsValid() function:

By default, PostGIS does not apply this validity check on geometry input, because testing for
validity needs lots of CPU time for complex geometries, especially polygons. If you do not trust
your data sources, you can manually enforce such a check to your tables by adding a check
constraint:

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" or
"JTS Intersection() threw an error!" when calling PostGIS functions with valid input geometries,
you likely found an error in either PostGIS or one of the libraries it uses, and you should
contact the PostGIS developers. The same is true if a PostGIS function returns an invalid
geometry for valid input.

 park_type VARCHAR
);
SELECT AddGeometryColumn('parks', 'park_geom', 128, 'MULTIPOLYGON', 2);

CREATE TABLE roads (
 road_id INTEGER,
 road_name VARCHAR
);
SELECT AddGeometryColumn('roads', 'roads_geom', -1, 'GEOMETRY', 3);

 gisdb=# select isvalid('LINESTRING(0 0, 1 1)'),
 isvalid('LINESTRING(0 0,0 0)');

 isvalid | isvalid
---------+---------
 t | f

ALTER TABLE mytable
 ADD CONSTRAINT geometry_valid_check
 CHECK (isvalid(the_geom));

Note

Strictly compliant OGC geometries cannot have Z or M values. The IsValid()
function won't consider higher dimensioned geometries invalid! Invocations
of AddGeometryColumn() will add a constraint checking geometry

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#IsValid
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#AddGeometryColumn
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#IsValid

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 23 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.3. Loading GIS Data
Once you have created a spatial table, you are ready to upload GIS data to the database.
Currently, there are two ways to get data into a PostGIS/PostgreSQL database: using formatted
SQL statements or using the Shape file loader/dumper.

4.3.1. Using SQL

If you can convert your data to a text representation, then using formatted SQL might be the
easiest way to get your data into PostGIS. As with Oracle and other SQL databases, data can be
bulk loaded by piping a large text file full of SQL "INSERT" statements into the SQL terminal
monitor.

A data upload file (roads.sql for example) might look like this:

The data file can be piped into PostgreSQL very easily using the "psql" SQL terminal monitor:

4.3.2. Using the Loader

The shp2pgsql data loader converts ESRI Shape files into SQL suitable for insertion into a
PostGIS/PostgreSQL database. The loader has several operating modes distinguished by
command line flags:

-d

dimensions, so it is enough to specify 2 there.

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (1,GeomFromText('LINESTRING(191232 243118,191108 243242)',-1),'Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (2,GeomFromText('LINESTRING(189141 244158,189265 244817)',-1),'Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (3,GeomFromText('LINESTRING(192783 228138,192612 229814)',-1),'Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (4,GeomFromText('LINESTRING(189412 252431,189631 259122)',-1),'Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (5,GeomFromText('LINESTRING(190131 224148,190871 228134)',-1),'Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (6,GeomFromText('LINESTRING(198231 263418,198213 268322)',-1),'Dave Cres');
COMMIT;

psql -d [database] -f roads.sql

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 24 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Drops the database table before creating a new table with the data in the Shape file.

-a

Appends data from the Shape file into the database table. Note that to use this option to
load multiple files, the files must have the same attributes and same data types.

-c

Creates a new table and populates it from the Shape file. This is the default mode.

-p

Only produces the table creation SQL code, without adding any actual data. This can be
used if you need to completely separate the table creation and data loading steps.

-D

Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -
c and -d. It is much faster to load than the default "insert" SQL format. Use this for very
large data sets.

-s <SRID>

Creates and populates the geometry tables with the specified SRID.

-k

Keep identifiers' case (column, schema and attributes). Note that attributes in Shapefile
are all UPPERCASE.

-i

Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the
DBF header signature appears to warrant it.

-I

Create a GiST index on the geometry column.

-w

Output WKT format, for use with older (0.x) versions of PostGIS. Note that this will
introduce coordinate drifts and will drop M values from shapefiles.

-W <encoding>

Specify encoding of the input data (dbf file). When used, all attributes of the dbf are
converted from the specified encoding to UTF8. The resulting SQL output will contain a
SET CLIENT_ENCODING to UTF8 command, so that the backend will be able to
reconvert from UTF8 to whatever encoding the database is configured to use internally.

Note that -a, -c, -d and -p are mutually exclusive.

An example session using the loader to create an input file and uploading it might look like
this:

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 25 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A conversion and upload can be done all in one step using UNIX pipes:

4.4. Retrieving GIS Data
Data can be extracted from the database using either SQL or the Shape file loader/dumper. In
the section on SQL we will discuss some of the operators available to do comparisons and
queries on spatial tables.

4.4.1. Using SQL

The most straightforward means of pulling data out of the database is to use a SQL select
query and dump the resulting columns into a parsable text file:

However, there will be times when some kind of restriction is necessary to cut down the
number of fields returned. In the case of attribute-based restrictions, just use the same SQL
syntax as normal with a non-spatial table. In the case of spatial restrictions, the following
operators are available/useful:

&&

This operator tells whether the bounding box of one geometry intersects the bounding
box of another.

~=

This operators tests whether two geometries are geometrically identical. For example, if
'POLYGON((0 0,1 1,1 0,0 0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).

shp2pgsql shaperoads myschema.roadstable > roads.sql
psql -d roadsdb -f roads.sql

shp2pgsql shaperoads myschema.roadstable | psql -d roadsdb

db=# SELECT road_id, AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
--------+---+-----------
 1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
 2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
 3 | LINESTRING(192783 228138,192612 229814) | Paul St
 4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
 5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
 6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
 7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 26 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

=

This operator is a little more naive, it only tests whether the bounding boxes of to
geometries are the same.

Next, you can use these operators in queries. Note that when specifying geometries and boxes
on the SQL command line, you must explicitly turn the string representations into geometries
by using the "GeomFromText()" function. So, for example:

The above query would return the single record from the "ROADS_GEOM" table in which the
geometry was equal to that value.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a
GEOMETRY. When you specify a GEOMETRY, however, its bounding box will be used for the
comparison.

The above query will use the bounding box of the polygon for comparison purposes.

The most common spatial query will probably be a "frame-based" query, used by client
software, like data browsers and web mappers, to grab a "map frame" worth of data for
display. Using a "BOX3D" object for the frame, such a query looks like this:

Note the use of the SRID, to specify the projection of the BOX3D. The value -1 is used to
indicate no specified SRID.

4.4.2. Using the Dumper

The pgsql2shp table dumper connects directly to the database and converts a table (possibly
defined by a query) into a shape file. The basic syntax is:

SELECT road_id, road_name
 FROM roads
 WHERE roads_geom ~= GeomFromText('LINESTRING(191232 243118,191108 243242)',-1);

SELECT road_id, road_name
FROM roads
WHERE roads_geom && GeomFromText('POLYGON((...))',-1);

SELECT AsText(roads_geom) AS geom
FROM roads
WHERE
 roads_geom && SetSRID('BOX3D(191232 243117,191232 243119)'::box3d,-1);

pgsql2shp [<options>] <database> [<schema>.]<table>

pgsql2shp [<options>] <database> <query>

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 27 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The commandline options are:

-f <filename>

Write the output to a particular filename.

-h <host>

The database host to connect to.

-p <port>

The port to connect to on the database host.

-P <password>

The password to use when connecting to the database.

-u <user>

The username to use when connecting to the database.

-g <geometry column>

In the case of tables with multiple geometry columns, the geometry column to use when
writing the shape file.

-b

Use a binary cursor. This will make the operation faster, but will not work if any NON-
geometry attribute in the table lacks a cast to text.

-r

Raw mode. Do not drop the gid field, or escape column names.

-d

For backward compatibility: write a 3-dimensional shape file when dumping from old
(pre-1.0.0) postgis databases (the default is to write a 2-dimensional shape file in that
case). Starting from postgis-1.0.0+, dimensions are fully encoded.

4.5. Building Indexes
Indexes are what make using a spatial database for large data sets possible. Without indexing,
any search for a feature would require a "sequential scan" of every record in the database.
Indexing speeds up searching by organizing the data into a search tree which can be quickly
traversed to find a particular record. PostgreSQL supports three kinds of indexes by default: B-
Tree indexes, R-Tree indexes, and GiST indexes.

B-Trees are used for data which can be sorted along one axis; for example, numbers,
letters, dates. GIS data cannot be rationally sorted along one axis (which is greater, (0,0)
or (0,1) or (1,0)?) so B-Tree indexing is of no use for us.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 28 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

R-Trees break up data into rectangles, and sub-rectangles, and sub-sub rectangles, etc.
R-Trees are used by some spatial databases to index GIS data, but the PostgreSQL R-
Tree implementation is not as robust as the GiST implementation.

GiST (Generalized Search Trees) indexes break up data into "things to one side", "things
which overlap", "things which are inside" and can be used on a wide range of data-
types, including GIS data. PostGIS uses an R-Tree index implemented on top of GiST to
index GIS data.

4.5.1. GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS
indexing, GiST is used to speed up searches on all kinds of irregular data structures (integer
arrays, spectral data, etc) which are not amenable to normal B-Tree indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed
up spatial searches of the data (unless all your searches are based on attributes, in which case
you'll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

Building a spatial index is a computationally intensive exercise: on tables of around 1 million
rows, on a 300MHz Solaris machine, we have found building a GiST index takes about 1 hour.
After building an index, it is important to force PostgreSQL to collect table statistics, which are
used to optimize query plans:

GiST indexes have two advantages over R-Tree indexes in PostgreSQL. Firstly, GiST indexes
are "null safe", meaning they can index columns which include null values. Secondly, GiST
indexes support the concept of "lossiness" which is important when dealing with GIS objects
larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL to store only the
"important" part of an object in an index -- in the case of GIS objects, just the bounding box.
GIS objects larger than 8K will cause R-Tree indexes to fail in the process of being built.

4.5.2. Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the query planner
transparently decides when to use index information to speed up a query plan. Unfortunately,
the PostgreSQL query planner does not optimize the use of GiST indexes well, so sometimes
searches which should use a spatial index instead default to a sequence scan of the whole
table.

If you find your spatial indexes are not being used (or your attribute indexes, for that matter)

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

VACUUM ANALYZE [table_name] [column_name];
-- This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS([table_name], [column_name]);

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 29 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

there are a couple things you can do:

Firstly, make sure statistics are gathered about the number and distributions of values
in a table, to provide the query planner with better information to make decisions
around index usage. For PostgreSQL 7.4 installations and below this is done by running
update_geometry_stats([table_name, column_name]) (compute distribution) and
VACUUM ANALYZE [table_name] [column_name] (compute number of values). Starting
with PostgreSQL 8.0 running VACUUM ANALYZE will do both operations. You should
regularly vacuum your databases anyways -- many PostgreSQL DBAs have VACUUM run
as an off-peak cron job on a regular basis.

If vacuuming does not work, you can force the planner to use the index information by
using the SET ENABLE_SEQSCAN=OFF command. You should only use this command
sparingly, and only on spatially indexed queries: generally speaking, the planner knows
better than you do about when to use normal B-Tree indexes. Once you have run your
query, you should consider setting ENABLE_SEQSCAN back on, so that other queries will
utilize the planner as normal.

If you find the planner wrong about the cost of sequential vs index scans try reducing
the value of random_page_cost in postgresql.conf or using SET random_page_cost=#.
Default value for the parameter is 4, try setting it to 1 or 2. Decrementing the value
makes the planner more inclined of using Index scans.

4.6. Complex Queries
The raison d'etre of spatial database functionality is performing queries inside the database
which would ordinarily require desktop GIS functionality. Using PostGIS effectively requires
knowing what spatial functions are available, and ensuring that appropriate indexes are in
place to provide good performance.

4.6.1. Taking Advantage of Indexes

When constructing a query it is important to remember that only the bounding-box-based
operators such as && can take advantage of the GiST spatial index. Functions such as
distance() cannot use the index to optimize their operation. For example, the following
query would be quite slow on a large table:

Note

As of version 0.6, it should not be necessary to force the planner to
use the index with ENABLE_SEQSCAN .

SELECT the_geom
FROM geom_table
WHERE ST_Distance(the_geom, GeomFromText('POINT(100000 200000)', -1)) < 100

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 30 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

This query is selecting all the geometries in geom_table which are within 100 units of the point
(100000, 200000). It will be slow because it is calculating the distance between each point in
the table and our specified point, ie. one ST_Distance() calculation for each row in the
table. We can avoid this by using the && operator to reduce the number of distance
calculations required:

This query selects the same geometries, but it does it in a more efficient way. Assuming there
is a GiST index on the_geom, the query planner will recognize that it can use the index to
reduce the number of rows before calculating the result of the distance() function. Notice
that the BOX3D geometry which is used in the && operation is a 200 unit square box centered
on the original point - this is our "query box". The && operator uses the index to quickly
reduce the result set down to only those geometries which have bounding boxes that overlap
the "query box". Assuming that our query box is much smaller than the extents of the entire
geometry table, this will drastically reduce the number of distance calculations that need to be
done.

4.6.2. Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of
polygonal municipality boundaries. The table definitions for the bc_roads table is:

The table definition for the bc_municipality table is:

SELECT the_geom
FROM geom_table
WHERE the_geom && 'BOX3D(90900 190900, 100100 200100)'::box3d
 AND
ST_Distance(the_geom, GeomFromText('POINT(100000 200000)', -1)) < 100

Change in Behavior

As of PostGIS 1.3.0, most of the Geometry Relationship Functions, with the
notable exceptions of ST_Disjoint and ST_Relate, include implicit bounding
box overlap operators.

Column | Type | Description
------------+-------------------+-------------------
gid | integer | Unique ID
name | character varying | Road Name
the_geom | geometry | Location Geometry (Linestring)

Column | Type | Description
-----------+-------------------+-------------------
gid | integer | Unique ID
code | integer | Unique ID

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 31 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.6.2.1. What is the total length of all roads, expressed in kilometers?
4.6.2.2. How large is the city of Prince George, in hectares?
4.6.2.3. What is the largest municipality in the province, by area?
4.6.2.4. What is the length of roads fully contained within each municipality?
4.6.2.5. Create a new table with all the roads within the city of Prince George.
4.6.2.6. What is the length in kilometers of "Douglas St" in Victoria?
4.6.2.7. What is the largest municipality polygon that has a hole?

4.6.2.1. What is the total length of all roads, expressed in kilometers?
You can answer this question with a very simple piece of SQL:

4.6.2.2. How large is the city of Prince George, in hectares?
This query combines an attribute condition (on the municipality name) with a spatial
calculation (of the area):

4.6.2.3. What is the largest municipality in the province, by area?
This query brings a spatial measurement into the query condition. There are several
ways of approaching this problem, but the most efficient is below:

code | integer | Unique ID
name | character varying | City / Town Name
the_geom | geometry | Location Geometry (Polygon)

SELECT sum(ST_Length(the_geom))/1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643
(1 row)

SELECT
 ST_Area(the_geom)/10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927
(1 row)

SELECT
 name,
 ST_Area(the_geom)/10000 AS hectares
FROM
 bc_municipality
ORDER BY hectares DESC
LIMIT 1;

name | hectares
---------------+-----------------

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418656
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418682
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418709
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418742
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418778
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418813
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id418837

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 32 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Note that in order to answer this query we have to calculate the area of every
polygon. If we were doing this a lot it would make sense to add an area column to the
table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily
pick off the largest value without using an aggregate function like max().

4.6.2.4. What is the length of roads fully contained within each municipality?
This is an example of a "spatial join", because we are bringing together data from two
tables (doing a join) but using a spatial interaction condition ("contained") as the join
condition rather than the usual relational approach of joining on a common key:

This query takes a while, because every road in the table is summarized into the final
result (about 250K roads for our particular example table). For smaller overlays
(several thousand records on several hundred) the response can be very fast.

4.6.2.5. Create a new table with all the roads within the city of Prince George.
This is an example of an "overlay", which takes in two tables and outputs a new table
that consists of spatially clipped or cut resultants. Unlike the "spatial join"
demonstrated above, this query actually creates new geometries. An overlay is like a
turbo-charged spatial join, and is useful for more exact analysis work:

---------------+-----------------
TUMBLER RIDGE | 155020.02556131
(1 row)

SELECT
 m.name,
 sum(ST_Length(r.the_geom))/1000 as roads_km
FROM
 bc_roads AS r,
 bc_municipality AS m
WHERE
 ST_Contains(m.the_geom,r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km
----------------------------+------------------
SURREY | 1539.47553551242
VANCOUVER | 1450.33093486576
LANGLEY DISTRICT | 833.793392535662
BURNABY | 773.769091404338
PRINCE GEORGE | 694.37554369147
...

CREATE TABLE pg_roads as
SELECT
 ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
 ST_Length(r.the_geom) AS rd_orig_length,
 r.*
FROM
 bc_roads AS r,
 bc_municipality AS m

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 33 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.6.2.6. What is the length in kilometers of "Douglas St" in Victoria?

4.6.2.7. What is the largest municipality polygon that has a hole?

4.7. Using Mapserver
The Minnesota Mapserver is an internet web-mapping server which conforms to the OpenGIS
Web Mapping Server specification.

The Mapserver homepage is at http://mapserver.gis.umn.edu.

The OpenGIS Web Map Specification is at http://www.opengis.org/techno/specs/01-
047r2.pdf.

4.7.1. Basic Usage

To use PostGIS with Mapserver, you will need to know about how to configure Mapserver,

 bc_municipality AS m
WHERE ST_Intersects(r.the_geom, m.the_geom)
 AND m.name = 'PRINCE GEORGE';

SELECT
 sum(ST_Length(r.the_geom))/1000 AS kilometers
FROM
 bc_roads r,
 bc_municipality m
WHERE ST_Contains(m.the_geom, r.the_geom)
 AND r.name = 'Douglas St'
 AND m.name = 'VICTORIA';

kilometers

4.89151904172838
(1 row)

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality
WHERE ST_NRings(the_geom) > 1
ORDER BY area DESC LIMIT 1;

gid | name | area
-----+--------------+------------------
12 | SPALLUMCHEEN | 257374619.430216
(1 row)

http://mapserver.gis.umn.edu/
http://www.opengis.org/techno/specs/01-047r2.pdf

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 34 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

which is beyond the scope of this documentation. This section will cover specific PostGIS
issues and configuration details.

To use PostGIS with Mapserver, you will need:

Version 0.6 or newer of PostGIS.

Version 3.5 or newer of Mapserver.

Mapserver accesses PostGIS/PostgreSQL data like any other PostgreSQL client -- using libpq .
This means that Mapserver can be installed on any machine with network access to the PostGIS
server, as long as the system has the libpq PostgreSQL client libraries.

1. Compile and install Mapserver, with whatever options you desire, including the "--with-
postgis" configuration option.

2. In your Mapserver map file, add a PostGIS layer. For example:

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE

For PostGIS layers, this is always "postgis".

CONNECTION

The database connection is governed by the a 'connection string' which is a
standard set of keys and values like this (with the default values in <>):

LAYER
 CONNECTIONTYPE postgis
 NAME "widehighways"
 # Connect to a remote spatial database
 CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
 # Get the lines from the 'geom' column of the 'roads' table
 DATA "geom from roads"
 STATUS ON
 TYPE LINE
 # Of the lines in the extents, only render the wide highways
 FILTER "type = 'highway' and numlanes >= 4"
 CLASS
 # Make the superhighways brighter and 2 pixels wide
 EXPRESSION ([numlanes] >= 6)
 COLOR 255 22 22
 SYMBOL "solid"
 SIZE 2
 END
 CLASS
 # All the rest are darker and only 1 pixel wide
 EXPRESSION ([numlanes] < 6)
 COLOR 205 92 82
 END
END

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 35 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

user=<username> password=<password> dbname=<username>
hostname=<server> port=<5432>

An empty connection string is still valid, and any of the key/value pairs can be
omitted. At a minimum you will generally supply the database name and
username to connect with.

DATA

The form of this parameter is "<column> from <tablename>" where the column
is the spatial column to be rendered to the map.

FILTER

The filter must be a valid SQL string corresponding to the logic normally following
the "WHERE" keyword in a SQL query. So, for example, to render only roads with 6
or more lanes, use a filter of "num_lanes >= 6".

3. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers
you will be drawing.

4. If you will be querying your layers using Mapserver you will also need an "oid index".

Mapserver requires unique identifiers for each spatial record when doing queries, and
the PostGIS module of Mapserver uses the PostgreSQL oid value to provide these
unique identifiers. A side-effect of this is that in order to do fast random access of
records during queries, an index on the oid is needed.

To build an "oid index", use the following SQL:

4.7.2. Frequently Asked Questions

4.7.2.1. When I use an EXPRESSION in my map file, the condition never returns as true, even
though I know the values exist in my table.
4.7.2.2. The FILTER I use for my Shape files is not working for my PostGIS table of the same
data.
4.7.2.3. My PostGIS layer draws much slower than my Shape file layer, is this normal?
4.7.2.4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

4.7.2.1. When I use an EXPRESSION in my map file, the condition never returns as true,
even though I know the values exist in my table.
Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using
lower case.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

CREATE INDEX [indexname] ON [tablename] (oid);

EXPRESSION ([numlanes] >= 6)

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419136
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419441
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419469
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419509

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 36 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.7.2.2. The FILTER I use for my Shape files is not working for my PostGIS table of the
same data.
Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the
SQL statement the PostGIS connector generates for drawing layers in Mapserver).

4.7.2.3. My PostGIS layer draws much slower than my Shape file layer, is this normal?
In general, expect PostGIS layers to be 10% slower than equivalent Shape files layers,
due to the extra overhead involved in database connections, data transformations and
data transit between the database and Mapserver.

If you are finding substantial draw performance problems, it is likely that you have
not build a spatial index on your table.

4.7.2.4. My PostGIS layer draws fine, but queries are really slow. What is wrong?
For queries to be fast, you must have a unique key for your spatial table and you
must have an index on that unique key.

You can specify what unique key for mapserver to use with the USING UNIQUE
clause in your DATA line:

If your table does not have an explicit unique column, you can "fake" a unique
column by using the PostgreSQL row "oid" for your unique column. "oid" is the default
unique column if you do not declare one, so enhancing your query speed is a matter
of building an index on your spatial table oid value.

4.7.3. Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand
the results of more complex queries. More specifically, when either a view or a subselect is
used as the source table (the thing to the right of "FROM" in a DATA definition) it is more
difficult for mapserver to automatically determine a unique identifier for each row and also the
SRID for the table. The USING clause can provide mapserver with these two pieces of
information as follows:

FILTER "type = 'highway' and numlanes >= 4"

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# SELECT update_geometry_stats(); -- For PGSQL < 8.0
postgis# VACUUM ANALYZE; -- For PGSQL >= 8.0

DATA "the_geom FROM geotable USING UNIQUE gid"

postgis# CREATE INDEX geotable_oid_idx ON geotable (oid);

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 37 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

USING UNIQUE <uniqueid>

Mapserver requires a unique id for each row in order to identify the row when doing
map queries. Normally, it would use the oid as the unique identifier, but views and
subselects don't automatically have an oid column. If you want to use Mapserver's query
functionality, you need to add a unique column to your view or subselect, and declare it
with USING UNIQUE . For example, you could explicitly select one of the table's oid
values for this purpose, or any other column which is guaranteed to be unique for the
result set.

The USING statement can also be useful even for simple DATA statements, if you are
doing map queries. It was previously recommended to add an index on the oid column
of tables used in query-able layers, in order to speed up the performance of map
queries. However, with the USING clause, it is possible to tell mapserver to use your
table's primary key as the identifier for map queries, and then it is no longer necessary
to have an additional index.

USING SRID=<srid>

PostGIS needs to know which spatial referencing system is being used by the geometries
in order to return the correct data back to mapserver. Normally it is possible to find this
information in the "geometry_columns" table in the PostGIS database, however, this is
not possible for tables which are created on the fly such as subselects and views. So the
USING SRID= option allows the correct SRID to be specified in the DATA definition.

Warning

The parser for Mapserver PostGIS layers is fairly primitive, and is case sensitive
in a few areas. Be careful to ensure that all SQL keywords and all your USING
clauses are in upper case, and that your USING UNIQUE clause precedes your
USING SRID clause.

DATA "the_geom FROM (
 SELECT
 table1.the_geom AS the_geom,
 table1.oid AS oid,
 table2.data AS data
 FROM table1
 LEFT JOIN table2
 ON table1.id = table2.id
) AS new_table USING UNIQUE oid USING SRID=-1"

Note

"Querying a Map" is the action of clicking on a map to ask for
information about the map features in that location. Don't confuse
"map queries" with the SQL query in a DATA definition.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 38 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

4.7.4. Examples

Lets start with a simple example and work our way up. Consider the following Mapserver layer
definition:

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000
scale - the next two layers will achieve this effect:

The first layer is used when the scale is greater than 1:100000, and displays only the roads of

LAYER
 CONNECTIONTYPE postgis
 NAME "roads"
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "the_geom FROM roads"
 STATUS ON
 TYPE LINE
 CLASS
 COLOR 0 0 0
 END
END

LAYER
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "the_geom FROM roads"
 MINSCALE 100000
 STATUS ON
 TYPE LINE
 FILTER "road_type = 'highway'"
 CLASS
 COLOR 0 0 0
 END
END
LAYER
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "the_geom FROM roads"
 MAXSCALE 100000
 STATUS ON
 TYPE LINE
 CLASSITEM road_type
 CLASS
 EXPRESSION "highway"
 SIZE 2
 COLOR 255 0 0
 END
 CLASS
 COLOR 0 0 0
 END
END

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 39 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

type "highway" as black lines. The FILTER option causes only roads of type "highway" to be
displayed.

The second layer is used when the scale is less than 1:100000, and will display highways as
double-thick red lines, and other roads as regular black lines.

So, we have done a couple of interesting things using only mapserver functionality, but our
DATA SQL statement has remained simple. Suppose that the name of the road is stored in
another table (for whatever reason) and we need to do a join to get it and label our roads.

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000
or less. It also demonstrates how to use an SQL join in a DATA definition.

4.8. Java Clients (JDBC)
Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as
text representations or using the JDBC extension objects bundled with PostGIS. In order to use
the extension objects, the "postgis.jar" file must be in your CLASSPATH along with the
"postgresql.jar" JDBC driver package.

LAYER
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "the_geom FROM (SELECT roads.oid AS oid, roads.the_geom AS the_geom,
 road_names.name as name FROM roads LEFT JOIN road_names ON
 roads.road_name_id = road_names.road_name_id)
 AS named_roads USING UNIQUE oid USING SRID=-1"
 MAXSCALE 20000
 STATUS ON
 TYPE ANNOTATION
 LABELITEM name
 CLASS
 LABEL
 ANGLE auto
 SIZE 8
 COLOR 0 192 0
 TYPE truetype
 FONT arial
 ENDl
 END
END

import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {

public static void main(String[] args) {

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 40 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The "PGgeometry" object is a wrapper object which contains a specific topological geometry
object (subclasses of the abstract class "Geometry") depending on the type: Point, LineString,
Polygon, MultiPoint, MultiLineString, MultiPolygon.

 java.sql.Connection conn;

 try {
 /*
 * Load the JDBC driver and establish a connection.
 */
 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://localhost:5432/database";
 conn = DriverManager.getConnection(url, "postgres", "");
 /*
 * Add the geometry types to the connection. Note that you
 * must cast the connection to the pgsql-specific connection
 * implementation before calling the addDataType() method.
 */
 ((org.postgresql.Connection)conn).addDataType("geometry","org.postgis.PGgeometry")
;
 ((org.postgresql.Connection)conn).addDataType("box3d","org.postgis.PGbox3d");
 /*
 * Create a statement and execute a select query.
 */
 Statement s = conn.createStatement();
 ResultSet r = s.executeQuery("select AsText(geom) as geom,id from geomtable");
 while(r.next()) {
 /*
 * Retrieve the geometry as an object then cast it to the geometry type.
 * Print things out.
 */
 PGgeometry geom = (PGgeometry)r.getObject(1);
 int id = r.getInt(2);
 System.out.println("Row " + id + ":");
 System.out.println(geom.toString());
 }
 s.close();
 conn.close();
 }
catch(Exception e) {
 e.printStackTrace();
 }
}
}

PGgeometry geom = (PGgeometry)r.getObject(1);
if(geom.getType() = Geometry.POLYGON) {
 Polygon pl = (Polygon)geom.getGeometry();
 for(int r = 0; r < pl.numRings(); r++) {
 LinearRing rng = pl.getRing(r);
 System.out.println("Ring: " + r);
 for(int p = 0; p < rng.numPoints(); p++) {

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 41 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The JavaDoc for the extension objects provides a reference for the various data accessor
functions in the geometric objects.

4.9. C Clients (libpq)
...

4.9.1. Text Cursors

...

4.9.2. Binary Cursors

...

Chapter 5. Performance tips
Table of Contents

5.1. Small tables of large geometries

5.1.1. Problem description
5.1.2. Workarounds

5.2. CLUSTERing on geometry indices
5.3. Avoiding dimension conversion

5.1. Small tables of large geometries

5.1.1. Problem description

 for(int p = 0; p < rng.numPoints(); p++) {
 Point pt = rng.getPoint(p);
 System.out.println("Point: " + p);
 System.out.println(pt.toString());
 }
 }
}

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419878
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419884
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419912
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id419964
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420014

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 42 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Current PostgreSQL versions (including 8.0) suffer from a query optimizer weakness regarding
TOAST tables. TOAST tables are a kind of "extension room" used to store large (in the sense of
data size) values that do not fit into normal data pages (like long texts, images or complex
geometries with lots of vertices), see http://www.postgresql.org/docs/8.0/static/storage-
toast.html for more information).

The problem appears if you happen to have a table with rather large geometries, but not too
much rows of them (like a table containing the boundaries of all European countries in high
resolution). Then the table itself is small, but it uses lots of TOAST space. In our example case,
the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225
pages.

Now issue a query where you use the geometry operator && to search for a bounding box that
matches only very few of those rows. Now the query optimizer sees that the table has only 3
pages and 80 rows. He estimates that a sequential scan on such a small table is much faster
than using an index. And so he decides to ignore the GIST index. Usually, this estimation is
correct. But in our case, the && operator has to fetch every geometry from disk to compare the
bounding boxes, thus reading all TOAST pages, too.

To see whether your suffer from this bug, use the "EXPLAIN ANALYZE" postgresql command.
For more information and the technical details, you can read the thread on the postgres
performance mailing list: http://archives.postgresql.org/pgsql-performance/2005-
02/msg00030.php

5.1.2. Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-
aware. For now, here are two workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan
TO off;" to the server before issuing the query. This basically forces the query planner to avoid
sequential scans whenever possible. So it uses the GIST index as usual. But this flag has to be
set on every connection, and it causes the query planner to make misestimations in other
cases, so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks.
This can be achieved by creating an additional column that "caches" the bbox, and matching
against this. In our example, the commands are like:

Now change your query to use the && operator against bbox instead of geom_column, like:

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The
most transparent way to do this would be triggers, but you also can modify your application to

SELECT addGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable set bbox = Envelope(Force_2d(the_geom));

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 43 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

keep the bbox column current or run the UPDATE query above after every modification.

5.2. CLUSTERing on geometry indices
For tables that are mostly read-only, and where a single index is used for the majority of
queries, PostgreSQL offers the CLUSTER command. This command physically reorders all the
data rows in the same order as the index criteria, yielding two performance advantages: First,
for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient
caching because the data rows are spread along fewer data pages. (Feel invited to read the
CLUSTER command documentation from the PostgreSQL manual at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST
indices simply ignores NULL values, you get an error message like:

As the HINT message tells you, one can work around this deficiency by adding a "not null"
constraint to the table:

Of course, this will not work if you in fact need NULL values in your geometry column.
Additionally, you must use the above method to add the constraint, using a CHECK constraint
like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will not work.

5.3. Avoiding dimension conversion
Sometimes, you happen to have 3D or 4D data in your table, but always access it using
OpenGIS compliant asText() or asBinary() functions that only output 2D geometries. They do
this by internally calling the force_2d() function, which introduces a significant overhead for
large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

Note that if you added your geometry column using AddGeometryColumn() there'll be a
constraint on geometry dimension. To bypass it you will need to drop the constraint.
Remember to update the entry in the geometry_columns table and recreate the constraint
afterwards.

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

UPDATE mytable SET the_geom = force_2d(the_geom);
VACUUM FULL ANALYZE mytable;

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 44 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

In case of large tables, it may be wise to divide this UPDATE into smaller portions by
constraining the UPDATE to a part of the table via a WHERE clause and your primary key or
another feasible criteria, and running a simple "VACUUM;" between your UPDATEs. This
drastically reduces the need for temporary disk space. Additionally, if you have mixed
dimension geometries, restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-
writing of geometries that already are in 2D.

Chapter 6. PostGIS Reference
Table of Contents

6.1. OpenGIS Functions

6.1.1. Management Functions
6.1.2. Geometry Relationship Functions
6.1.3. Geometry Processing Functions
6.1.4. Geometry Accessors
6.1.5. Geometry Constructors

6.2. PostGIS Extensions

6.2.1. Management Functions
6.2.2. Operators
6.2.3. Measurement Functions
6.2.4. Geometry Outputs
6.2.5. Geometry Constructors
6.2.6. Geometry Editors
6.2.7. Linear Referencing
6.2.8. Misc
6.2.9. Long Transactions support

6.3. SQL-MM Functions
6.4. ArcSDE Functions

The functions given below are the ones which a user of PostGIS is likely to need. There are
other functions which are required support functions to the PostGIS objects which are not of
use to a general user.

Note

PostGIS has begun a transition from the existing naming convention to an
SQL-MM-centric convention. As a result, most of the functions that you
know and love have been renamed using the standard spatial type (ST)
prefix. Previous functions are still available, though are not listed in this
document where updated functions are equivalent. These will be deprecated
in a future release.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420076
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420082
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420159
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id420654
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id421019
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id421536
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422141
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422147
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422474
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422695
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id422985
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id423183
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id423521
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424122
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424348
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id424696
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id425042
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426314

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 45 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.1. OpenGIS Functions

6.1.1. Management Functions

AddGeometryColumn(varchar, varchar, varchar, integer, varchar, integer)

Syntax: AddGeometryColumn(<schema_name>, <table_name>, <column_name>,
<srid>, <type>, <dimension>). Adds a geometry column to an existing table of
attributes. The schema_name is the name of the table schema (unused for pre-schema
PostgreSQL installations). The srid must be an integer value reference to an entry in
the SPATIAL_REF_SYS table. The type must be an uppercase string corresponding to the
geometry type, eg, 'POLYGON' or 'MULTILINESTRING'.

DropGeometryColumn(varchar, varchar, varchar)

Syntax: DropGeometryColumn(<schema_name>, <table_name>, <column_name>).
Remove a geometry column from a spatial table. Note that schema_name will need to
match the f_schema_name field of the table's row in the geometry_columns table.

ST_SetSRID(geometry, integer)

Set the SRID on a geometry to a particular integer value. Useful in constructing
bounding boxes for queries.

6.1.2. Geometry Relationship Functions

ST_Distance(geometry, geometry)

Return the cartesian distance between two geometries in projected units. Does not use
indexes.

ST_DWithin(geometry, geometry, float)

Returns true if geometries are within the specified distance of one another. Uses indexes
if available.

ST_Equals(geometry, geometry)

Returns 1 (TRUE) if the given Geometries are "spatially equal". Use this for a 'better'
answer than '='. equals('LINESTRING(0 0, 10 10)','LINESTRING(0 0, 5 5, 10 10)') is true.

Performed by the GEOS module

OGC SPEC s2.1.1.2

ST_Disjoint(geometry, geometry)

Returns 1 (TRUE) if the Geometries are "spatially disjoint".

Performed by the GEOS module

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 46 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - a.Relate(b, 'FF*FF****')

ST_Intersects(geometry, geometry)

Returns 1 (TRUE) if the Geometries "spatially intersect".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Intersects.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - Intersects(g1, g2) --> Not (Disjoint(g1, g2))

ST_Touches(geometry, geometry)

Returns 1 (TRUE) if the Geometries "spatially touch".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Touches.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3- a.Touches(b) -> (I(a) intersection I(b) = {empty set})
and (a intersection b) not empty

ST_Crosses(geometry, geometry)

Returns 1 (TRUE) if the Geometries "spatially cross".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Crosses.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - a.Relate(b, 'T*T******')

ST_Within(geometry A, geometry B)

Returns 1 (TRUE) if Geometry A is "spatially within" Geometry B. A has to be completely

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 47 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

inside B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Within.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - a.Relate(b, 'T*F**F***')

ST_Overlaps(geometry, geometry)

Returns 1 (TRUE) if the Geometries "spatially overlap".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Overlaps.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3

ST_Contains(geometry A, geometry B)

Returns 1 (TRUE) if Geometry A "spatially contains" Geometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Contains.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - same as within(geometry B, geometry A)

ST_Covers(geometry A, geometry B)

Returns 1 (TRUE) if no point in Geometry B is outside Geometry A

Refer to http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-
spatial.html for an explanation of the need of this function.

This function call will automatically include a bounding box comparison that will make
use of any indexes that are available on the geometries. To avoid index use, use the
function _ST_Covers.

ST_CoveredBy(geometry A, geometry B)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 48 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Returns 1 (TRUE) if no point in Geometry A is outside Geometry B

Refer to http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-
spatial.html for an explaination of the need of this function.

ST_Intersects(geometry, geometry)

Returns 1 (TRUE) if the Geometries "spatially intersect".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - NOT disjoint(geometry, geometry)

ST_Relate(geometry, geometry, intersectionPatternMatrix)

Returns 1 (TRUE) if this Geometry is spatially related to anotherGeometry, by testing for
intersections between the Interior, Boundary and Exterior of the two geometries as
specified by the values in the intersectionPatternMatrix.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3

ST_Relate(geometry, geometry)

returns the DE-9IM (dimensionally extended nine-intersection matrix)

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2

6.1.3. Geometry Processing Functions

ST_Centroid(geometry)

Returns the centroid of the geometry as a point.

Computation will be more accurate if performed by the GEOS module (enabled at
compile time).

ST_Area(geometry)

Returns the area of the geometry if it is a polygon or multi-polygon.

ST_Length(geometry)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 49 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

The length of this Curve in its associated spatial reference.

synonym for length2d()

OGC SPEC 2.1.5.1

ST_PointOnSurface(geometry)

Return a Point guaranteed to lie on the surface

Implemented using GEOS

OGC SPEC 3.2.14.2 and 3.2.18.2 -

ST_Boundary(geometry)

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial
boundary is defined as described in section 3.12.3.2 of the OGC SPEC. Because the
result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives as discussed in
the OGC SPEC, section 3.12.2.

Performed by the GEOS module

OGC SPEC s2.1.1.1

ST_Buffer(geometry, double, [integer])

Returns a geometry that represents all points whose distance from this Geometry is less
than or equal to distance. Calculations are in the Spatial Reference System of this
Geometry. The optional third parameter sets the number of segment used to
approximate a quarter circle (defaults to 8).

Performed by the GEOS module.

OGC SPEC s2.1.1.3

ST_ConvexHull(geometry)

The convex hull of a geometry represents the minimum closed geometry that encloses
all geometries within the set.

It is usually used with MULTI and Geometry Collections. Although it is not an aggregate
- you can use it in conjunction with ST_Collect to get the convex hull of a set of points.
ST_ConvexHull(ST_Collect(somepointfield)). It is often used to determine an affected area
based on a set of point observations.

Performed by the GEOS module

OGC SPEC s2.1.1.3

SELECT d.disease_type, ST_ConvexHull(ST_Collect(d.the_geom)) As the_geom
 FROM disease_obs As d
 GROUP BY d.disease_type

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 50 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_Intersection(geometry, geometry)

Returns a geometry that represents the point set intersection of the Geometries.

In other words - that portion of geometry A and geometry B that is shared between the
two geometries.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_Shift_Longitude(geometry)

Reads every point/vertex in every component of every feature in a geometry, and if the
longitude coordinate is <0, adds 360 to it. The result would be a 0-360 version of the
data to be plotted in a 180 centric map

ST_SymDifference(geometry A, geometry B)

Returns a geometry that represents the portions of A and B that do not intersect. It is
called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_Difference(geometry A, geometry B)

Returns a geometry that represents that part of geometry A that does not intersect with
geometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_Union(geometry, geometry)

Returns a geometry that represents the point set union of the Geometries.

Performed by the GEOS module.

Do not call with a GeometryCollection as an argument.

NOTE: this function was formerly called GeomUnion(), which was renamed from "Union"
because UNION is an SQL reserved word.

OGC SPEC s2.1.1.3

ST_Union(geometry set)

Returns a geometry that represents the point set union of all Geometries in given set.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 51 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Performed by the GEOS module.

Do not call with a GeometryCollection in the argument set.

Not explicitly defined in OGC SPEC.

ST_MemUnion(geometry set)

Same as the above, only memory-friendly (uses less memory and more processor time).

6.1.4. Geometry Accessors

ST_AsText(geometry)

Return the Well-Known Text representation of the geometry. For example: POLYGON(0
0,0 1,1 1,1 0,0 0)

OGC SPEC s2.1.1.1

ST_AsBinary(geometry)

Returns the geometry in the OGC "well-known-binary" format, using the endian
encoding of the server on which the database is running. This is useful in binary cursors
to pull data out of the database without converting it to a string representation.

OGC SPEC s2.1.1.1 - also see asBinary(<geometry>,'XDR') and
asBinary(<geometry>,'NDR')

ST_SRID(geometry)

Returns the integer SRID number of the spatial reference system of the geometry.

OGC SPEC s2.1.1.1

ST_Dimension(geometry)

The inherent dimension of this Geometry object, which must be less than or equal to the
coordinate dimension. OGC SPEC s2.1.1.1 - returns 0 for points, 1 for lines, 2 for
polygons, and the largest dimension of the components of a GEOMETRYCOLLECTION.

ST_Envelope(geometry)

Returns a vald geometry (POINT, LINESTRING or POLYGON) representing the bounding
box of the geometry. Degenerate cases (vertical lines, point) will return a geometry of
lower dimension than POLYGON.

OGC SPEC s2.1.1.1 - The minimum bounding box for this Geometry, returned as a
Geometry. The polygon is defined by the corner points of the bounding box ((MINX,
MINY), (MAXX, MINY), (MAXX, MAXY), (MINX, MAXY), (MINX, MINY)).

select dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0)');
dimension

1

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 52 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

NOTE:PostGIS will add a Zmin/Zmax coordinate as well.

ST_IsEmpty(geometry)

Returns 1 (TRUE) if this Geometry is the empty geometry . If true, then this Geometry
represents the empty point set - i.e. GEOMETRYCOLLECTION(EMPTY).

OGC SPEC s2.1.1.1

ST_IsSimple(geometry)

Returns 1 (TRUE) if this Geometry has no anomalous geometric points, such as self
intersection or self tangency.

Performed by the GEOS module

OGC SPEC s2.1.1.1

ST_IsClosed(geometry)

Returns true of the geometry start and end points are coincident.

ST_IsRing(geometry)

Returns 1 (TRUE) if this Curve is closed (StartPoint () = EndPoint ()) and this Curve is
simple (does not pass through the same point more than once).

performed by GEOS

OGC spec 2.1.5.1

ST_NumGeometries(geometry)

If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries,
otherwise return NULL.

ST_GeometryN(geometry,int)

Return the N'th geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT,
MULTILINESTRING or MULTIPOLYGON. Otherwise, return NULL.

ST_NumPoints(geometry)

Find and return the number of points in the first linestring in the geometry. Return NULL
if there is no linestring in the geometry.

ST_PointN(geometry,integer)

Note

Index is 1-based as for OGC specs since version 0.8.0. Previous
versions implemented this as 0-based instead.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 53 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Return the N'th point in the first linestring in the geometry. Return NULL if there is no
linestring in the geometry.

ST_ExteriorRing(geometry)

Return the exterior ring of the polygon geometry. Return NULL if the geometry is not a
polygon.

ST_NumInteriorRings(geometry)

Return the number of interior rings of the first polygon in the geometry. Return NULL if
there is no polygon in the geometry.

ST_NumInteriorRing(geometry)

Synonym to NumInteriorRings(geometry). The OpenGIS specs are ambiguous about the
exact function naming, so we provide both spellings.

ST_InteriorRingN(geometry,integer)

Return the N'th interior ring of the polygon geometry. Return NULL if the geometry is not
a polygon or the given N is out of range.

ST_EndPoint(geometry)

Returns the last point of the LineString geometry as a point.

ST_StartPoint(geometry)

Returns the first point of the LineString geometry as a point.

GeometryType(geometry)

Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT',
etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which
this Geometry instance is a member. The name of the instantiable subtype of Geometry
is returned as a string.

Note

Index is 1-based as for OGC specs since version 0.8.0. Previous
versions implemented this as 0-based instead.

Note

Index is 1-based as for OGC specs since version 0.8.0. Previous
versions implemented this as 0-based instead.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 54 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_GeometryType(geometry)

Returns the type of the geometry as a string. EG: 'Linestring', 'Polygon', etc. This function
differs from GeometryType(geometry) in the case of the string that is returned, as well as
the fact that it will not indicate whether the geometry is measured.

ST_X(geometry)

Return the X coordinate of the point. Input must be a point.

ST_Y(geometry)

Return the Y coordinate of the point. Input must be a point.

ST_Z(geometry)

Return the Z coordinate of the point, or NULL if not available. Input must be a point.

ST_M(geometry)

Return the M coordinate of the point, or NULL if not available. Input must be a point.

6.1.5. Geometry Constructors

ST_GeomFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

ST_PointFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Point

ST_LineFromText(text,[<srid>])

Note

This function also indicates if the geometry is measured, by returning
a string of the form 'POINTM'.

Note

This is not (yet) part of the OGC spec, but is listed here to complete
the point coordinate extractor function list.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 55 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Line

ST_LinestringFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

from the conformance suite

Throws an error if the WKT is not a Line

ST_PolyFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Polygon

ST_PolygonFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

from the conformance suite

Throws an error if the WKT is not a Polygon

ST_MPointFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTIPOINT

ST_MLineFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTILINESTRING

ST_MPolyFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTIPOLYGON

ST_GeomCollFromText(text,[<srid>])

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 56 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a GEOMETRYCOLLECTION

ST_GeomFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

ST_GeometryFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

ST_PointFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a POINT

ST_LineFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a LINESTRING

ST_LinestringFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

from the conformance suite

throws an error if WKB is not a LINESTRING

ST_PolyFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a POLYGON

ST_PolygonFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

from the conformance suite

throws an error if WKB is not a POLYGON

ST_MPointFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 57 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTIPOINT

ST_MLineFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTILINESTRING

ST_MPolyFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTIPOLYGON

ST_GeomCollFromWKB(bytea,[<srid>])

Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a GEOMETRYCOLLECTION

ST_BdPolyFromText(text WKT, integer SRID)

Construct a Polygon given an arbitrary collection of closed linestrings as a
MultiLineString text representation.

Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a
MULTIPOLYGON; use BdMPolyFromText in that case, or see BuildArea() for a postgis-
specific approach.

OGC SFSQL 1.1 - 3.2.6.2

Availability: 1.1.0 - requires GEOS >= 2.1.0.

ST_BdMPolyFromText(text WKT, integer SRID)

Construct a MultiPolygon given an arbitrary collection of closed linestrings as a
MultiLineString text representation.

Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even
when result is really only composed by a single POLYGON; use BdPolyFromText if you're
sure a single POLYGON will result from operation, or see BuildArea() for a postgis-
specific approach.

OGC SFSQL 1.1 - 3.2.6.2

Availability: 1.1.0 - requires GEOS >= 2.1.0.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BdMPolyFromText
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BuildArea
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BdPolyFromText
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BuildArea

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 58 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.2. PostGIS Extensions

6.2.1. Management Functions

DropGeometryTable([<schema_name>], <table_name>)

Drops a table and all its references in geometry_columns. Note: uses current_schema()
on schema-aware pgsql installations if schema is not provided.

UpdateGeometrySRID([<schema_name>], <table_name>, <column_name>, <srid>)

Update the SRID of all features in a geometry column updating constraints and reference
in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations
if schema is not provided.

update_geometry_stats([<table_name>, <column_name>])

Update statistics about spatial tables for use by the query planner. You will also need to
run "VACUUM ANALYZE [table_name] [column_name]" for the statistics gathering process
to be complete. NOTE: starting with PostgreSQL 8.0 statistics gathering is automatically
performed running "VACUUM ANALYZE".

postgis_version()

Returns PostGIS version number and compile-time options

postgis_lib_version()

Returns the version number of the PostGIS library.

Availability: 0.9.0

postgis_lib_build_date()

Returns build date of the PostGIS library.

Availability: 1.0.0RC1

postgis_script_build_date()

Returns build date of the PostGIS scripts.

Availability: 1.0.0RC1

postgis_scripts_installed()

Note

Prior to version 1.1.0 this was a procedural function, thus possibly
returning inaccurate information (in case of incomplete database
upgrades).

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 59 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Returns version of the postgis scripts installed in this database.

Availability: 0.9.0

postgis_scripts_released()

Returns the version number of the lwpostgis.sql script released with the installed
postgis lib.

Availability: 0.9.0

postgis_geos_version()

Returns the version number of the GEOS library, or NULL if GEOS support is not enabled.

Availability: 0.9.0

postgis_jts_version()

Returns the version number of the JTS library, or NULL if JTS support is not enabled.

Availability: 1.1.0

postgis_proj_version()

Returns the version number of the PROJ4 library, or NULL if PROJ4 support is not
enabled.

Availability: 0.9.0

postgis_uses_stats()

Returns true if STATS usage has been enabled, false otherwise.

Availability: 0.9.0

postgis_full_version()

Reports full postgis version and build configuration infos.

Note

If the output of this function doesn't match the output of
postgis_scripts_released() you probably missed to properly upgrade an
existing database. See the Upgrading section for more info.

Note

Starting with version 1.1.0 this function returns the same value of
postgis_lib_version(). Kept for backward compatibility.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#postgis_scripts_released
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#postgis_lib_version

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 60 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Availability: 0.9.0

6.2.2. Operators

A &< B

The "&<" operator returns true if A's bounding box overlaps or is to the left of B's
bounding box.

A &> B

The "&>" operator returns true if A's bounding box overlaps or is to the right of B's
bounding box.

A << B

The "<<" operator returns true if A's bounding box is strictly to the left of B's bounding
box.

A >> B

The ">>" operator returns true if A's bounding box is strictly to the right of B's
bounding box.

A &<| B

The "&<|" operator returns true if A's bounding box overlaps or is below B's bounding
box.

A |&> B

The "|&>" operator returns true if A's bounding box overlaps or is above B's bounding
box.

A <<| B

The "<<|" operator returns true if A's bounding box is strictly below B's bounding box.

A |>> B

The "|>>" operator returns true if A's bounding box is strictly above B's bounding box.

A ~= B

The "~=" operator is the "same as" operator. It tests actual geometric equality of two
features. So if A and B are the same feature, vertex-by-vertex, the operator returns true.

A @ B

The "@" operator returns true if A's bounding box is completely contained by B's
bounding box.

A ~ B

The "~" operator returns true if A's bounding box completely contains B's bounding box.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 61 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A && B

The "&&" operator is the "overlaps" operator. If A's bounding box overlaps B's bounding
box the operator returns true.

6.2.3. Measurement Functions

ST_area2d(geometry)

Returns the area of the geometry if it is a polygon or multi-polygon.

ST_distance_sphere(point, point)

Returns linear distance in meters between two lat/lon points. Uses a spherical earth and
radius of 6370986 meters. Faster than distance_spheroid(), but less accurate. Only
implemented for points.

ST_distance_spheroid(point, point, spheroid)

Returns linear distance between two lat/lon points given a particular spheroid. See the
explanation of spheroids given for length_spheroid(). Currently only implemented for
points.

ST_length2d(geometry)

Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring.

ST_length3d(geometry)

Returns the 3-dimensional length of the geometry if it is a linestring or multi-linestring.

ST_length_spheroid(geometry,spheroid)

Calculates the length of of a geometry on an ellipsoid. This is useful if the coordinates
of the geometry are in latitude/longitude and a length is desired without reprojection.
The ellipsoid is a separate database type and can be constructed as follows:

Eg:

An example calculation might look like this:

SPHEROID[<NAME>,<SEMI-MAJOR
 AXIS>,<INVERSE FLATTENING>]

SPHEROID["GRS_1980",6378137,298.257222101]

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#distance_spheroid
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#length_spheroid

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 62 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_length3d_spheroid(geometry,spheroid)

Calculates the length of of a geometry on an ellipsoid, taking the elevation into account.
This is just like length_spheroid except vertical coordinates (expressed in the same units
as the spheroid axes) are used to calculate the extra distance vertical displacement
adds.

ST_distance(geometry, geometry)

Returns the smaller distance between two geometries.

ST_max_distance(linestring,linestring)

Returns the largest distance between two line strings.

ST_perimeter(geometry)

Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-
polygon.

ST_perimeter2d(geometry)

Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-
polygon.

ST_perimeter3d(geometry)

Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-
polygon.

ST_azimuth(geometry, geometry)

Returns the azimuth of the segment defined by the given Point geometries, or NULL if
the two points are coincident. Return value is in radians.

Availability: 1.1.0

6.2.4. Geometry Outputs

ST_AsBinary(geometry,{'NDR'|'XDR'})

Returns the geometry in the OGC "well-known-binary" format as a bytea, using little-
endian (NDR) or big-endian (XDR) encoding. This is useful in binary cursors to pull data
out of the database without converting it to a string representation.

ST_AsEWKT(geometry)

Returns a Geometry in EWKT format (as text).

ST_AsEWKB(geometry, {'NDR'|'XDR'})

SELECT length_spheroid(geometry_column,
 'SPHEROID["GRS_1980",6378137,298.257222101]')
 FROM geometry_table;

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 63 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Returns a Geometry in EWKB format (as bytea) using either little-endian (NDR) or big-
endian (XDR) encoding.

ST_AsHEXEWKB(geometry, {'NDR'|'XDR'})

Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-
endian (XDR) encoding.

ST_AsSVG(geometry, [rel], [precision])

Return the geometry as SVG path data. Use 1 as second argument to have the path data
implemented in terms of relative moves, the default (or 0) uses absolute moves. Third
argument may be used to reduce the maximum number of decimal digits used in output
(defaults to 15). Point geometries will be rendered as cx/cy when 'rel' arg is 0, x/y when
'rel' is 1. Multipoint geometries are delimited by commas (","), GeometryCollection
geometries are delimited by semicolons (";").

ST_AsGML([version], geometry, [precision])

Return the geometry as a GML element. The version parameter, if specified, may be
either 2 or 3. If no version parameter is specified then the default is assumed to be 2.
The third argument may be used to reduce the maximum number of significant digits
used in output (defaults to 15).

ST_AsKML(geometry, [precision])

Return the geometry as a KML element. Second argument may be used to reduce the
maximum number of significant digits used in output (defaults to 15).

ST_AsGeoJson([version], geometry, [precision], [options])

Return the geometry as a GeoJson element. (Cf GeoJson specifications 1.0). 2D and 3D
Geometries are both supported. GeoJson only support SFS 1.1 geometry type (no curve
support for example).

The version parameter, if specified, must be 1.

The third argument may be used to reduce the maximum number of significant digits
used in output (defaults to 15).

The last 'options' argument could be used to add Bbox or Crs in GeoJSON output:

0: means no option (default value)

1: GeoJson CRS

2: GeoJson Bbox

3: Both GeoJson Bbox and CRS

GeoJson CRS pattern generated is: auth_name:auth_srid from spatial_ref_sys table
(EPSG:4326 for instance).

6.2.5. Geometry Constructors

http://www.geojson.org/geojson-spec.html

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 64 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_GeomFromEWKT(text)

Makes a Geometry from EWKT.

ST_GeomFromEWKB(bytea)

Makes a Geometry from EWKB.

ST_MakePoint(<x>, <y>, [<z>], [<m>])

Creates a 2d,3dz or 4d point geometry.

ST_MakePointM(<x>, <y>, <m>)

Creates a 3dm point geometry.

ST_MakeBox2D(<LL>, <UR>)

Creates a BOX2D defined by the given point geometries.

ST_MakeBox3D(<LLB>, <URT>)

Creates a BOX3D defined by the given point geometries.

ST_MakeLine(geometry set)

Creates a Linestring from a set of point geometries. You might want to use a subselect
to order points before feeding them to this aggregate.

ST_MakeLine(geometry, geometry)

Creates a Linestring from the two given point geometries.

ST_LineFromMultiPoint(multipoint)

Creates a LineString from a MultiPoint geometry.

ST_MakePolygon(linestring, [linestring[]])

Creates a Polygon formed by the given shell and array of holes. You can construct a
geometry array using Accum. Input geometries must be closed LINESTRINGS (see
IsClosed and GeometryType).

ST_BuildArea(geometry)

Creates an areal geometry formed by the constituent linework of given geometry. The
return type can be a Polygon or MultiPolygon, depending on input. If the input lineworks
do not form polygons NULL is returned.

See also BdPolyFromText and BdMPolyFromText - wrappers to this function with
standard OGC interface.

Availability: 1.1.0 - requires GEOS >= 2.1.0.

ST_Polygonize(geometry set)

Aggregate. Creates a GeometryCollection containing possible polygons formed from the

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#IsClosed
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#GeometryType
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#Accum
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BdMPolyFromText
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#BdPolyFromText

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 65 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

constituent linework of a set of geometries.

Availability: 1.0.0RC1 - requires GEOS >= 2.1.0.

ST_Collect(geometry set)

This function returns a GEOMETRYCOLLECTION or a MULTI object from a set of
geometries. The collect() function is an "aggregate" function in the terminology of
PostgreSQL. That means that it operates on rows of data, in the same way the sum() and
mean() functions do. For example, "SELECT COLLECT(GEOM) FROM GEOMTABLE GROUP
BY ATTRCOLUMN" will return a separate GEOMETRYCOLLECTION for each distinct value
of ATTRCOLUMN.

ST_Collect and ST_Union are often interchangeable. ST_Collect is in general orders of
magnitude faster than ST_Union because it does not try to dissolve boundaries. It merely
rolls up single geometries into MULTI and MULTI or mixed geometry types into
Geometry Collections. Unfortunately geometry collections are not well-supported by GIS
tools. To prevent ST_Collect from returning a Geometry Collection when collecting MULTI
geometries, one can use the below trick that utilizes ST_Dump to expand the MULTIs out
to singles and then regroup them.

ST_Collect(geometry, geometry)

This function returns a geometry being a collection of two input geometries. Output type
can be a MULTI* or a GEOMETRYCOLLECTION.

ST_Dump(geometry)

This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed
by a geometry (geom) and an array of integers (path). When the input geometry is a
simple type (POINT,LINESTRING,POLYGON) a single record will be returned with an empty
path array and the input geometry as geom. When the input geometry is a collection or
multi it will return a record for each of the collection components, and the path will
express the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the reverse of a GROUP BY in that it
creates new rows. For example it can be use to expand MULTIPOLYGONS into
POLYGONS.

Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

Thread ref: http://postgis.refractions.net/pipermail/postgis-users/2008-June/020331.html
SELECT stusps,
 ST_Multi(ST_Collect(f.the_geom)) as singlegeom
 FROM (SELECT stusps, (ST_Dump(the_geom)).geom As the_geom
 FROM
 somestatetable) As f
GROUP BY stusps

SELECT sometable.*, (ST_Dump(the_geom)).geom As the_geom
 FROM somestatetable

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 66 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_DumpRings(geometry)

This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed
by a geometry (geom) and an array of integers (path). The 'path' field holds the polygon
ring index, contains a single element: 0 for the shell, hole number for holes. The 'geom'
field contains the corresponding ring as a polygon.

Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

6.2.6. Geometry Editors

ST_AddBBOX(geometry)

Add bounding box to the geometry. This would make bounding box based queries
faster, but will increase the size of the geometry.

ST_DropBBOX(geometry)

Drop the bounding box cache from the geometry. This reduces geometry size, but
makes bounding-box based queries slower.

ST_AddPoint(linestring, point, [<position>])

Adds a point to a LineString before point <pos> (0-based index). Third parameter can
be omitted or set to -1 for appending.

ST_RemovePoint(linestring, offset)

Removes point from a linestring. Offset is 0-based.

Availability: 1.1.0

ST_SetPoint(linestring, N, point)

Replace point N of linestring with given point. Index is 0-based.

Availability: 1.1.0

ST_Force_collection(geometry)

Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the
WKB representation.

ST_Force_2d(geometry)

Forces the geometries into a "2-dimensional mode" so that all output representations
will only have the X and Y coordinates. This is useful for force OGC-compliant output
(since OGC only specifies 2-D geometries).

ST_Force_3dz(geometry), ST_Force_3d(geometry)

Forces the geometries into XYZ mode.

ST_Force_3dm(geometry)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 67 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Forces the geometries into XYM mode.

ST_Force_4d(geometry)

Forces the geometries into XYZM mode.

ST_Multi(geometry)

Returns the geometry as a MULTI* geometry. If the geometry is already a MULTI*, it is
returned unchanged.

ST_Transform(geometry,integer)

Returns a new geometry with its coordinates transformed to the SRID referenced by the
integer parameter. The destination SRID must exist in the SPATIAL_REF_SYS table.

ST_Affine(geometry, float8, float8, float8, float8, float8, float8, float8, float8, float8, float8,
float8, float8)

Applies an 3d affine transformation to the geometry. The call

represents the transformation matrix

and the vertices are transformed as follows:

All of the translate / scale functions below are expressed via such an affine
transformation.

Availability: 1.1.2.

ST_Affine(geometry, float8, float8, float8, float8, float8, float8)

Applies an 2d affine transformation to the geometry. The call

represents the transformation matrix

Affine(geom, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff)

/ a b c xoff \
| d e f yoff |
| g h i zoff |
\ 0 0 0 1 /

x' = a*x + b*y + c*z + xoff
y' = d*x + e*y + f*z + yoff
z' = g*x + h*y + i*z + zoff

Affine(geom, a, b, d, e, xoff, yoff)

/ a b 0 xoff \ / a b xoff \
| d e 0 yoff | rsp. | d e yoff |

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 68 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

and the vertices are transformed as follows:

This method is a subcase of the 3D method above.

Availability: 1.1.2.

ST_Translate(geometry, float8, float8, float8)

Translates the geometry to a new location using the numeric parameters as offsets. Ie:
translate(geom, X, Y, Z).

ST_Scale(geometry, float8, float8, float8)

scales the geometry to a new size by multiplying the ordinates with the parameters. Ie:
scale(geom, Xfactor, Yfactor, Zfactor).

Availability: 1.1.0

ST_RotateZ(geometry, float8), ST_RotateX(geometry, float8), ST_RotateY(geometry, float8)

Rotate the geometry around the Z, X or Y axis by the given angle given in radians.
Follows the right-hand rule.

Availability: 1.1.2.

ST_TransScale(geometry, float8, float8, float8, float8)

First, translates the geometry using the first two floats, then scales it using the second
two floats, working in 2D only. Using transscale(geom, X, Y, XFactor, YFactor)
internally calls affine(geom, XFactor, 0, 0, 0, YFactor, 0, 0, 0, 1,
X*XFactor, Y*YFactor, 0) .

Availability: 1.1.0.

ST_Reverse(geometry)

Returns the geometry with vertex order reversed.

ST_ForceRHR(geometry)

Force polygons of the collection to obey Right-Hand-Rule.

ST_Simplify(geometry, tolerance)

Returns a "simplified" version of the given geometry using the Douglas-Peuker
algorithm. Will actually do something only with (multi)lines and (multi)polygons but you
can safely call it with any kind of geometry. Since simplification occurs on a object-by-

| d e 0 yoff | rsp. | d e yoff |
| 0 0 1 0 | \ 0 0 1 /
\ 0 0 0 1 /

x' = a*x + b*y + xoff
y' = d*x + e*y + yoff
z' = z

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 69 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

object basis you can also feed a GeometryCollection to this function. Note that returned
geometry might loose its simplicity (see IsSimple)

ST_SimplifyPreserveTopology(geometry, tolerance)

Returns a "simplified" version of the given geometry using the Douglas-Peuker
algorithm. Will avoid creating derived geometries (polygons in particular) that are invalid.

ST_SnapToGrid(geometry, originX, originY, sizeX, sizeY), ST_SnapToGrid(geometry, sizeX,
sizeY), ST_SnapToGrid(geometry, size)

Snap all points of the input geometry to the grid defined by its origin and cell size.
Remove consecutive points falling on the same cell, eventually returning NULL if output
points are not enough to define a geometry of the given type. Collapsed geometries in a
collection are stripped from it.

Availability: 1.0.0RC1

ST_SnapToGrid(geometry, geometry, sizeX, sizeY, sizeZ, sizeM)

Snap all points of the input geometry to the grid defined by its origin (the second
argument, must be a point) and cell sizes. Specify 0 as size for any dimension you don't
want to snap to a grid.

Availability: 1.1.0

ST_Segmentize(geometry, maxlength)

Return a modified geometry having no segment longer then the given distance.
Interpolated points will have Z and M values (if needed) set to 0. Distance computation is
performed in 2d only.

ST_LineMerge(geometry)

Returns a (set of) LineString(s) formed by sewing together constituent linework of input.

Availability: 1.1.0 - requires GEOS >= 2.1.0

Note

The returned geometry might loose its simplicity (see IsSimple).

Note

Before release 1.1.0 this function always returned a 2d geometry.
Starting at 1.1.0 the returned geometry will have same dimensionality
as the input one with higher dimension values untouched. Use the
version taking a second geometry argument to define all grid
dimensions.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#IsSimple
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#IsSimple

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 70 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.2.7. Linear Referencing

ST_line_interpolate_point(linestring, location)

Returns a point interpolated along a line. First argument must be a LINESTRING. Second
argument is a float8 between 0 and 1 representing fraction of total 2d length the point
has to be located.

See line_locate_point() for computing the line location nearest to a Point.

Availability: 0.8.2

ST_line_substring(linestring, start, end)

Return a linestring being a substring of the input one starting and ending at the given
fractions of total 2d length. Second and third arguments are float8 values between 0 and
1.

If 'start' and 'end' have the same value this is equivalent to line_interpolate_point().

See line_locate_point() for computing the line location nearest to a Point.

Availability: 1.1.0

ST_line_locate_point(LineString, Point)

Returns a float between 0 and 1 representing the location of the closest point on
LineString to the given Point, as a fraction of total 2d line length.

You can use the returned location to extract a Point (line_interpolate_point) or a
substring (line_substring).

Availability: 1.1.0

ST_locate_along_measure(geometry, float8)

Return a derived geometry collection value with elements that match the specified

Note

Since release 1.1.1 this function also interpolates M and Z values
(when present), while prior releases set them to 0.0.

Note

Since release 1.1.1 this function also interpolates M and Z values
(when present), while prior releases set them to unspecified values.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#length2d
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#line_locate_point
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#line_interpolate_point
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#line_locate_point
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#length2d
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#line_substring
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#line_interpolate_point

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 71 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

measure. Polygonal elements are not supported.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD
Editing Meeting

Availability: 1.1.0

ST_locate_between_measures(geometry, float8, float8)

Return a derived geometry collection value with elements that match the specified range
of measures inclusively. Polygonal elements are not supported.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD
Editing Meeting

Availability: 1.1.0

6.2.8. Misc

ST_Summary(geometry)

Returns a text summary of the contents of the geometry.

ST_box2d(geometry)

Returns a BOX2D representing the maximum extents of the geometry.

ST_box3d(geometry)

Returns a BOX3D representing the maximum extents of the geometry.

ST_extent(geometry set)

The extent() function is an "aggregate" function in the terminology of PostgreSQL. That
means that it operators on lists of data, in the same way the sum() and mean() functions
do. For example, "SELECT EXTENT(GEOM) FROM GEOMTABLE" will return a BOX3D giving
the maximum extend of all features in the table. Similarly, "SELECT EXTENT(GEOM) FROM
GEOMTABLE GROUP BY CATEGORY" will return one extent result for each category.

ST_zmflag(geometry)

Returns ZM (dimension semantic) flag of the geometries as a small int. Values are:
0=2d, 1=3dm, 2=3dz, 3=4d.

ST_HasBBOX(geometry)

Returns TRUE if the bbox of this geometry is cached, FALSE otherwise. Use addBBOX()
and dropBBOX() to control caching.

ST_ndims(geometry)

Returns number of dimensions of the geometry as a small int. Values are: 2,3 or 4.

ST_nrings(geometry)

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#dropbbox
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#addbbox

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 72 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

If the geometry is a polygon or multi-polygon returns the number of rings.

ST_npoints(geometry)

Returns the number of points in the geometry.

ST_isvalid(geometry)

returns true if this geometry is valid.

ST_expand(geometry, float)

This function returns a bounding box expanded in all directions from the bounding box
of the input geometry, by an amount specified in the second argument. Very useful for
distance() queries, to add an index filter to the query.

ST_estimated_extent([schema], table, geocolumn)

Return the 'estimated' extent of the given spatial table. The estimated is taken from the
geometry column's statistics. The current schema will be used if not specified.

For PostgreSQL>=8.0.0 statistics are gathered by VACUUM ANALYZE and resulting
extent will be about 95% of the real one.

For PostgreSQL<8.0.0 statistics are gathered by update_geometry_stats() and resulting
extent will be exact.

ST_find_srid(varchar,varchar,varchar)

The syntax is find_srid(<db/schema>, <table>, <column>) and the function returns the
integer SRID of the specified column by searching through the GEOMETRY_COLUMNS
table. If the geometry column has not been properly added with the
AddGeometryColumns() function, this function will not work either.

ST_mem_size(geometry)

Returns the amount of space (in bytes) the geometry takes.

ST_point_inside_circle(geometry, float, float, float)

The syntax for this functions is
point_inside_circle(<geometry>,<circle_center_x>,<circle_center_y>,<radius>). Returns
the true if the geometry is a point and is inside the circle. Returns false otherwise.

ST_XMin(box3d) ST_YMin(box3d) ST_ZMin(box3d)

Returns the requested minima of a bounding box.

ST_XMax(box3d) ST_YMax(box3d) ST_ZMax(box3d)

Returns the requested maxima of a bounding box.

ST_Accum(geometry set)

Aggregate. Constructs an array of geometries.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 73 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.2.9. Long Transactions support

This module and associated pl/pgsql functions have been implemented to provide long locking
support required by Web Feature Service specification.

EnableLongTransactions()

Enable long transaction support. This function creates the required metadata tables,
needs to be called once before using the other functions in this section. Calling it twice
is harmless.

Availability: 1.1.3

DisableLongTransactions()

Disable long transaction support. This function removes the long transaction support
metadata tables, and drops all triggers attached to lock-checked tables.

Availability: 1.1.3

CheckAuth([<schema>], <table>, <rowid_col>)

Check updates and deletes of rows in given table for being authorized. Identify rows
using <rowid_col> column.

Availability: 1.1.3

LockRow([<schema>], <table>, <rowid>, <authid>, [<expires>])

Set lock/authorization for specific row in table <authid> is a text value, <expires> is a
timestamp defaulting to now()+1hour. Returns 1 if lock has been assigned, 0 otherwise
(already locked by other auth)

Availability: 1.1.3

UnlockRows(<authid>)

Remove all locks held by specified authorization id. Returns the number of locks
released.

Availability: 1.1.3

AddAuth(<authid>)

Add an authorization token to be used in current transaction.

Availability: 1.1.3

Note

Users must use serializable transaction level otherwise locking mechanism
would break.

https://portal.opengeospatial.org/files/?artifact_id=7176
http://www.postgresql.org/docs/7.4/static/transaction-iso.html

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 74 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

6.3. SQL-MM Functions
This is a listing of the SQL-MM defined functions that PostGIS currently supports. The
implementations of these functions follow the ArcSDE implementation, and thus deviate
somewhat from the spec. These deviations will be noted.

As of version 1.2.0, these functions have been implemented by wrapping existing PostGIS
functions. As a result, full support for curved geometries may not be in place for many
functions.

ST_Area

Return the area measurement of an ST_Surface or ST_MultiSurface value.

SQL-MM 3: 8.1.2, 9.5.3

ST_AsBinary

Return the well-known binary representation of an ST_Geometry value.

SQL-MM 3: 5.1.37

ST_AsText

Return the well-known text representation of an ST_Geometry value.

SQL-MM 3: 5.1.25

ST_Boundary

Return the boundary of the ST_Geometry value.

SQL-MM 3: 5.1.14

ST_Buffer

Return a buffer around the ST_Geometry value.

SQL-MM 3: 5.1.17

ST_Centroid

Return mathematical centroid of the ST_Surface or ST_MultiSurface value.

SQL-MM 3: 8.1.4, 9.5.5

Note

SQL-MM defines the default SRID of all geometry constructors as 0. PostGIS
uses a default SRID of -1.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 75 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_Contains

Test if an ST_Geometry value spatially contains another ST_Geometry value.

SQL-MM 3: 5.1.31

ST_ConvexHull

The convex hull of a geometry represents the minimum geometry that encloses all
geometries within the set.

It is usually used with MULTI and Geometry Collections. Although it is not an aggregate
- you can use it in conjunction with ST_Collect to get the convex hull of a set of points.
ST_ConvexHull(ST_Collect(somepointfield)). It is often used to determine an affected area
based on a set of point observations.

SQL-MM 3: 5.1.16

ST_CoordDim

Return the coordinate dimension of the ST_Geometry value.

SQL-MM 3: 5.1.3

ST_Crosses

Test if an ST_Geometry value spatially crosses another ST_Geometry value.

SQL-MM 3: 5.1.29

ST_Difference

Return an ST_Geometry value that represents the point set difference of two
ST_Geometry values.

SQL-MM 3: 5.1.20

ST_Dimension

Return the dimension of the ST_Geometry value.

SQL-MM 3: 5.1.2

ST_Disjoint

Test if an ST_Geometry value is spatially disjoint from another ST_Geometry value.

SQL-MM 3: 5.1.26

ST_Distance

Return the distance between two geometries.

SQL-MM 3: 5.1.23

ST_EndPoint

Return an ST_Point value that is the end point of an ST_Curve value.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 76 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

SQL-MM 3: 7.1.4

ST_Envelope

Return the bounding rectangle for the ST_Geometry value.

SQL-MM 3: 5.1.15

ST_Equals

Test if an ST_Geometry value as spatially equal to another ST_Geometry value.

SQL-MM 3: 5.1.24

ST_ExteriorRing

Return the exterior ring of an ST_Surface

SQL-MM 3: 8.2.3, 8.3.3

ST_GeometryN

Return the indicated ST_Geometry value from an ST_GeomCollection.

SQL-MM 3: 9.1.5

ST_GeometryType

Return the geometry type of the ST_Geometry value.

SQL-MM 3: 5.1.4

ST_GeomFromText

Return a specified ST_Geometry value.

SQL-MM 3: 5.1.40

ST_GeomFromWKB

Return a specified ST_Geometry value.

SQL-MM 3: 5.1.41

ST_InteriorRingN

Return the specified interior ring of an ST_Surface value.

SQL-MM 3: 8.2.6, 8.3.5

ST_Intersection

Return an ST_Geometry value that represents the point set intersection of two
ST_Geometry values.

In other words - that portion of geometry A and geometry B that is shared between the
two geometries.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 77 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

SQL-MM 3: 5.1.18

ST_Intersects

Test if an ST_Geometry value spatially intersects another ST_Geometry value.

SQL-MM 3: 5.1.27

ST_IsClosed

Test if an ST_Curve or ST_MultiCurve value is closed.

SQL-MM 3: 7.1.5, 9.3.3

ST_IsEmpty

Test if an ST_Geometry value corresponds to the empty set.

SQL-MM 3: 5.1.7

ST_IsRing

Test if an ST_Curve value is a ring.

SQL-MM 3: 7.1.6

ST_IsSimple

Test if an ST_Geometry value has no anomalous geometric points, such as self
intersection or self tangency.

Note

SQL-MM defines the result of ST_IsClosed(NULL) to be 0, while PostGIS
returns NULL.

Note

SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS
returns NULL.

Note

SQL-MM defines the result of ST_IsRing(NULL) to be 0, while PostGIS
returns NULL.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 78 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

SQL-MM 3: 5.1.8

ST_IsValid

Test if an ST_Geometry value is well formed.

SQL-MM defines the result of ST_IsValid(NULL) to be 1

SQL-MM 3: 5.1.9

ST_Length

Return the length measurement of an ST_Curve or ST_MultiCurve value.

SQL-MM 3: 7.1.2, 9.3.4

ST_LineFromText

Return a specified ST_LineString value.

SQL-MM 3: 7.2.8

ST_LineFromWKB

Return a specified ST_LineString value.

SQL-MM 3: 7.2.9

ST_MLineFromText

Return a specified ST_MultiLineString value.

SQL-MM 3: 9.4.4

ST_MLineFromWKB

Return a specified ST_MultiLineString value.

SQL-MM 3: 9.4.5

ST_MPointFromText

Note

SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS
returns NULL.

Note

SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS
returns NULL.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 79 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Return a specified ST_MultiPoint value.

SQL-MM 3: 9.2.4

ST_MPointFromWKB

Return a specified ST_MultiPoint value.

SQL-MM 3: 9.2.5

ST_MPolyFromText

Return a specified ST_MultiPolygon value.

SQL-MM 3: 9.6.4

ST_MPolyFromWKB

Return a specified ST_MultiPolygon value.

SQL-MM 3: 9.6.5

ST_NumGeometries

Return the number of geometries in an ST_GeomCollection.

SQL-MM 3: 9.1.4

ST_NumInteriorRing

Return the number of interior rings in an ST_Surface.

SQL-MM 3: 8.2.5

ST_NumPoints

Return the number of points in an ST_LineString or ST_CircularString value.

SQL-MM 3: 7.2.4

ST_OrderingEquals

ST_OrderingEquals compares two geometries and t (TRUE) if the geometries are equal
and the coordinates are in the same order; otherwise it returns f (FALSE).

SQL-MM 3: 5.1.43

Note

This function is implemented as per the ArcSDE SQL specification
rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 80 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

ST_Overlaps

Test if an ST_Geometry value spatially overlays another ST_Geometry value.

SQL-MM 3: 5.1.32

ST_Perimeter

Return the length measurement of the boundary of an ST_Surface or ST_MultiRSurface
value.

SQL-MM 3: 8.1.3, 9.5.4

ST_Point

Returns an ST_Point with the given coordinate values.

SQL-MM 3: 6.1.2

ST_PointFromText

Return a specified ST_Point value.

SQL-MM 3: 6.1.8

ST_PointFromWKB

Return a specified ST_Point value.

SQL-MM 3: 6.1.9

ST_PointN

Return the specified ST_Point value in an ST_LineString or ST_CircularString

SQL-MM 3: 7.2.5, 7.3.5

ST_PointOnSurface

Return an ST_Point value guaranteed to spatially intersect the ST_Surface or
ST_MultiSurface value.

SQL-MM 3: 8.1.5, 9.5.6

ST_PolyFromText

Return a specified ST_Polygon value.

SQL-MM 3: 8.3.6

ST_PolyFromWKB

Return a specified ST_Polygon value.

SQL-MM 3: 8.3.7

ST_Polygon

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 81 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Return a polygon build from the specified linestring and SRID.

SQL-MM 3: 8.3.2

ST_Relate

Test if an ST_Geometry value is spatially related to another ST_Geometry value.

SQL-MM 3: 5.1.25

ST_SRID

Return the spatial reference system identifier of the ST_Geometry value.

SQL-MM 3: 5.1.5

ST_StartPoint

Return an ST_Point value that is the start point of an ST_Curve value.

SQL-MM 3: 7.1.3

ST_SymDifference

Return an ST_Geometry value that represents the point set symmetric difference of two
ST_Geometry values.

SQL-MM 3: 5.1.21

ST_Touches

Test if an ST_Geometry value spatially touches another ST_Geometry value.

SQL-MM 3: 5.1.28

ST_Transform

Return an ST_Geometry value transformed to the specified spatial reference system.

SQL-MM 3: 5.1.6

ST_Union

Return an ST_Geometry value that represents the point set union of two ST_Geometry
values.

SQL-MM 3: 5.1.19

ST_Within

Test if an ST_Geometry value is spatially within another ST_Geometry value.

SQL-MM 3: 5.1.30

ST_WKBToSQL

Return an ST_Geometry value for a given well-known binary representation.

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 82 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

SQL-MM 3: 5.1.36

ST_WKTToSQL

Return an ST_Geometry value for a given well-known text representation.

SQL-MM 3: 5.1.34

ST_X

Returns the x coordinate value of an ST_Point value.

SQL-MM 3: 6.1.3

ST_Y

Returns the y coordinate value of an ST_Point value.

SQL-MM 3: 6.1.4

6.4. ArcSDE Functions
Additional functions have been added to improve support for an ArcSDE style interface.

SE_EnvelopesIntersect

Returns t (TRUE) if the envelopes of two geometries intersect; otherwise, it returns f
(FALSE).

SE_Is3d

Test if a geometry value has z coordinate values.

SE_IsMeasured

Test if a geometry value has m coordinate values.

SE_LocateAlong

Return a derived geometry collection value with elements that match the specified
measur.

SE_LocateBetween

Return a derived geometry collection value with elements that match the specified range
of measures inclusively.

SE_M

Returns the m coordinate value of an ST_Point value.

SE_Z

Returns the z coordinate value of an ST_Point value

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 83 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Chapter 7. Reporting Problems
Table of Contents

7.1. Reporting Software Bugs
7.2. Reporting Documentation Issues

7.1. Reporting Software Bugs
Reporting bugs effectively is a fundamental way to help PostGIS development. The most
effective bug report is that enabling PostGIS developers to reproduce it, so it would ideally
contain a script triggering it and every information regarding the environment in which it was
detected. Good enough info can be extracted running SELECT postgis_full_version()
[for postgis] and SELECT version() [for postgresql].

If you aren't using the latest release, it's worth taking a look at its release changelog first, to
find out if your bug has already been fixed.

Using the PostGIS bug tracker will ensure your reports are not discarded, and will keep you
informed on its handling process. Before reporting a new bug please query the database to
see if it is a known one, and if it is please add any new information you have about it.

You might want to read Simon Tatham's paper about How to Report Bugs Effectively before
filing a new report.

7.2. Reporting Documentation Issues
The documentation should accurately reflect the features and behavior of the software. If it
doesn't, it could be because of a software bug or because the documentation is in error or
deficient.

Documentation issues can also be reported to the PostGIS bug tracker.

If your revision is trivial, just describe it in a new bug tracker issue, being specific about its
location in the documentation.

If your changes are more extensive, a Subversion patch is definitely preferred. This is a four
step process on Unix (assuming you already have Subversion installed):

1. Check out a copy of PostGIS' Subversion trunk. On Unix, type:

svn checkout http://svn.refractions.net/postgis/trunk/

This will be stored in the directory ./trunk

2. Make your changes to the documentation with your favorite text editor. On Unix, type

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426438
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426501
http://postgis.refractions.net/CHANGES.txt
http://code.google.com/p/postgis/issues/list
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://code.google.com/p/postgis/issues/list
http://subversion.tigris.org/

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 84 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

(for example):

vi trunk/doc/postgis.xml

Note that the documentation is written in SGML rather than HTML, so if you are not
familiar with it please follow the example of the rest of the documentation.

3. Make a patch file containing the differences from the master copy of the documentation.
On Unix, type:

svn diff trunk/doc/postgis.xml > doc.patch

4. Attach the patch to a new issue in bug tracker.

Appendix A. Appendix
Table of Contents

A.1. Release Notes

A.1.1. Release 1.3.3
A.1.2. Release 1.3.2
A.1.3. Release 1.3.1
A.1.4. Release 1.3.0
A.1.5. Release 1.2.1
A.1.6. Release 1.2.0
A.1.7. Release 1.1.6
A.1.8. Release 1.1.5
A.1.9. Release 1.1.4
A.1.10. Release 1.1.3
A.1.11. Release 1.1.2
A.1.12. Release 1.1.1
A.1.13. Release 1.1.0
A.1.14. Release 1.0.6
A.1.15. Release 1.0.5
A.1.16. Release 1.0.4
A.1.17. Release 1.0.3
A.1.18. Release 1.0.2
A.1.19. Release 1.0.1
A.1.20. Release 1.0.0
A.1.21. Release 1.0.0RC6
A.1.22. Release 1.0.0RC5
A.1.23. Release 1.0.0RC4
A.1.24. Release 1.0.0RC3
A.1.25. Release 1.0.0RC2
A.1.26. Release 1.0.0RC1

A.1. Release Notes

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426624
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426629
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426648
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426665
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426680
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426759
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426806
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426839
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id426956
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427070
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427193
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427356
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427489
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427617
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id427934
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428041
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428174
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428413
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428491
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428592
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428692
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428766
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428838
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id428964
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id429137
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#id429236

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 85 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.1. Release 1.3.3

Release date: 2008/04/12

This release fixes bugs shp2pgsql, adds enhancements to SVG and KML support, adds a
ST_SimplifyPreserveTopology function, makes the build more sensitive to GEOS versions, and
fixes a handful of severe but rare failure cases.

A.1.2. Release 1.3.2

Release date: 2007/12/01

This release fixes bugs in ST_EndPoint() and ST_Envelope, improves support for JDBC building
and OS/X, and adds better support for GML output with ST_AsGML(), including GML3 output.

A.1.3. Release 1.3.1

Release date: 2007/08/13

This release fixes some oversights in the previous release around version numbering,
documentation, and tagging.

A.1.4. Release 1.3.0

Release date: 2007/08/09

This release provides performance enhancements to the relational functions, adds new
relational functions and begins the migration of our function names to the SQL-MM
convension, using the spatial type (SP) prefix.

A.1.4.1. Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)

Added ST_Covers and ST_CoveredBy relational functions. Description and justification of these
functions can be found at http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-
covers-spatial.html

Added ST_DWithin relational function.

A.1.4.2. Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the functions ST_Contains,
ST_Intersects, ST_Within and ST_Disjoint

Added inline index support for relational functions (except ST_Disjoint)

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 86 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.4.3. Other Changes

Extended curved geometry support into the geometry accessor and some processing functions

Began migration of functions to the SQL-MM naming convension; using a spatial type (ST)
prefix.

Added initial support for PostgreSQL 8.3

A.1.5. Release 1.2.1

Release date: 2007/01/11

This release provides bug fixes in PostgreSQL 8.2 support and some small performance
enhancements.

A.1.5.1. Changes

Fixed point-in-polygon shortcut bug in Within().

Fixed PostgreSQL 8.2 NULL handling for indexes.

Updated RPM spec files.

Added short-circuit for Transform() in no-op case.

JDBC: Fixed JTS handling for multi-dimensional geometries (thanks to Thomas Marti for hint
and partial patch). Additionally, now JavaDoc is compiled and packaged. Fixed classpath
problems with GCJ. Fixed pgjdbc 8.2 compatibility, losing support for jdk 1.3 and older.

A.1.6. Release 1.2.0

Release date: 2006/12/08

This release provides type definitions along with serialization/deserialization capabilities for
SQL-MM defined curved geometries, as well as performance enhancements.

A.1.6.1. Changes

Added curved geometry type support for serialization/deserialization

Added point-in-polygon shortcircuit to the Contains and Within functions to improve
performance for these cases.

A.1.7. Release 1.1.6

Release date: 2006/11/02

This is a bugfix release, in particular fixing a critical error with GEOS interface in 64bit

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 87 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

systems. Includes an updated of the SRS parameters and an improvement in reprojections
(take Z in consideration). Upgrade is encouraged.

A.1.7.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.7.2. Bug fixes

fixed CAPI change that broke 64-bit platforms

loader/dumper: fixed regression tests and usage output

Fixed setSRID() bug in JDBC, thanks to Thomas Marti

A.1.7.3. Other changes

use Z ordinate in reprojections

spatial_ref_sys.sql updated to EPSG 6.11.1

Simplified Version.config infrastructure to use a single pack of version variables for everything.

Include the Version.config in loader/dumper USAGE messages

Replace hand-made, fragile JDBC version parser with Properties

A.1.8. Release 1.1.5

Release date: 2006/10/13

This is an bugfix release, including a critical segfault on win32. Upgrade is encouraged.

A.1.8.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.8.2. Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on Win32 when compiled for

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 88 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

PostgreSQL 8.2

fixed nullpointer Exception in Geometry.equals() method in Java

Added EJB3Spatial.odt to fulfill the GPL requirement of distributing the "preferred form of
modification"

Removed obsolete synchronization from JDBC Jts code.

Updated heavily outdated README files for shp2pgsql/pgsql2shp by merging them with the
manpages.

Fixed version tag in jdbc code that still said "1.1.3" in the "1.1.4" release.

A.1.8.3. New Features

Added -S option for non-multi geometries to shp2pgsql

A.1.9. Release 1.1.4

Release date: 2006/09/27

This is an bugfix release including some improvements in the Java interface. Upgrade is
encouraged.

A.1.9.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.9.2. Bug fixes

Fixed support for PostgreSQL 8.2

Fixed bug in collect() function discarding SRID of input

Added SRID match check in MakeBox2d and MakeBox3d

Fixed regress tests to pass with GEOS-3.0.0

Improved pgsql2shp run concurrency.

A.1.9.3. Java changes

reworked JTS support to reflect new upstream JTS developers' attitude to SRID handling.
Simplifies code and drops build depend on GNU trove.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 89 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Added EJB2 support generously donated by the "Geodetix s.r.l. Company"
http://www.geodetix.it/

Added EJB3 tutorial / examples donated by Norman Barker <nbarker@ittvis.com>

Reorganized java directory layout a little.

A.1.10. Release 1.1.3

Release date: 2006/06/30

This is an bugfix release including also some new functionalities (most notably long
transaction support) and portability enhancements. Upgrade is encouraged.

A.1.10.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.10.2. Bug fixes / correctness

BUGFIX in distance(poly,poly) giving wrong results.

BUGFIX in pgsql2shp successful return code.

BUGFIX in shp2pgsql handling of MultiLine WKT.

BUGFIX in affine() failing to update bounding box.

WKT parser: forbidden construction of multigeometries with EMPTY elements (still supported
for GEOMETRYCOLLECTION).

A.1.10.3. New functionalities

NEW Long Transactions support.

NEW DumpRings() function.

NEW AsHEXEWKB(geom, XDR|NDR) function.

A.1.10.4. JDBC changes

Improved regression tests: MultiPoint and scientific ordinates

Fixed some minor bugs in jdbc code

Added proper accessor functions for all fields in preparation of making those fields private

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 90 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

later

A.1.10.5. Other changes

NEW regress test support for loader/dumper.

Added --with-proj-libdir and --with-geos-libdir configure switches.

Support for build Tru64 build.

Use Jade for generating documentation.

Don't link pgsql2shp to more libs then required.

Initial support for PostgreSQL 8.2.

A.1.11. Release 1.1.2

Release date: 2006/03/30

This is an bugfix release including some new functions and portability enhancements. Upgrade
is encouraged.

A.1.11.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.11.2. Bug fixes

BUGFIX in SnapToGrid() computation of output bounding box

BUGFIX in EnforceRHR()

jdbc2 SRID handling fixes in JTS code

Fixed support for 64bit archs

A.1.11.3. New functionalities

Regress tests can now be run *before* postgis installation

New affine() matrix transformation functions

New rotate{,X,Y,Z}() function

Old translating and scaling functions now use affine() internally

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 91 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Embedded access control in estimated_extent() for builds against pgsql >= 8.0.0

A.1.11.4. Other changes

More portable ./configure script

Changed ./run_test script to have more sane default behaviour

A.1.12. Release 1.1.1

Release date: 2006/01/23

This is an important Bugfix release, upgrade is highly recommended. Previous version
contained a bug in postgis_restore.pl preventing hard upgrade procedure to complete and a
bug in GEOS-2.2+ connector preventing GeometryCollection objects to be used in topological
operations.

A.1.12.1. Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.12.2. Bug fixes

Fixed a premature exit in postgis_restore.pl

BUGFIX in geometrycollection handling of GEOS-CAPI connector

Solaris 2.7 and MingW support improvements

BUGFIX in line_locate_point()

Fixed handling of postgresql paths

BUGFIX in line_substring()

Added support for localized cluster in regress tester

A.1.12.3. New functionalities

New Z and M interpolation in line_substring()

New Z and M interpolation in line_interpolate_point()

added NumInteriorRing() alias due to OpenGIS ambiguity

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 92 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.13. Release 1.1.0

Release date: 2005/12/21

This is a Minor release, containing many improvements and new things. Most notably: build
procedure greatly simplified; transform() performance drastically improved; more stable GEOS
connectivity (CAPI support); lots of new functions; draft topology support.

It is highly recommended that you upgrade to GEOS-2.2.x before installing PostGIS, this will
ensure future GEOS upgrades won't require a rebuild of the PostGIS library.

A.1.13.1. Credits

This release includes code from Mark Cave Ayland for caching of proj4 objects. Markus
Schaber added many improvements in his JDBC2 code. Alex Bodnaru helped with PostgreSQL
source dependency relief and provided Debian specfiles. Michael Fuhr tested new things on
Solaris arch. David Techer and Gerald Fenoy helped testing GEOS C-API connector. Hartmut
Tschauner provided code for the azimuth() function. Devrim GUNDUZ provided RPM specfiles.
Carl Anderson helped with the new area building functions. See the credits section for more
names.

A.1.13.2. Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload. Simply
sourcing the new lwpostgis_upgrade.sql script in all your existing databases will work. See the
soft upgrade chapter for more information.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.13.3. New functions

scale() and transscale() companion methods to translate()

line_substring()

line_locate_point()

M(point)

LineMerge(geometry)

shift_longitude(geometry)

azimuth(geometry)

locate_along_measure(geometry, float8)

locate_between_measures(geometry, float8, float8)

SnapToGrid by point offset (up to 4d support)

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#credits
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 93 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

BuildArea(any_geometry)

OGC BdPolyFromText(linestring_wkt, srid)

OGC BdMPolyFromText(linestring_wkt, srid)

RemovePoint(linestring, offset)

ReplacePoint(linestring, offset, point)

A.1.13.4. Bug fixes

Fixed memory leak in polygonize()

Fixed bug in lwgeom_as_anytype cast functions

Fixed USE_GEOS, USE_PROJ and USE_STATS elements of postgis_version() output to always
reflect library state.

A.1.13.5. Function semantic changes

SnapToGrid doesn't discard higher dimensions

Changed Z() function to return NULL if requested dimension is not available

A.1.13.6. Performance improvements

Much faster transform() function, caching proj4 objects

Removed automatic call to fix_geometry_columns() in AddGeometryColumns() and
update_geometry_stats()

A.1.13.7. JDBC2 works

Makefile improvements

JTS support improvements

Improved regression test system

Basic consistency check method for geometry collections

Support for (Hex)(E)wkb

Autoprobing DriverWrapper for HexWKB / EWKT switching

fix compile problems in ValueSetter for ancient jdk releases.

fix EWKT constructors to accept SRID=4711; representation

added preliminary read-only support for java2d geometries

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 94 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.13.8. Other new things

Full autoconf-based configuration, with PostgreSQL source dependency relief

GEOS C-API support (2.2.0 and higher)

Initial support for topology modelling

Debian and RPM specfiles

New lwpostgis_upgrade.sql script

A.1.13.9. Other changes

JTS support improvements

Stricter mapping between DBF and SQL integer and string attributes

Wider and cleaner regression test suite

old jdbc code removed from release

obsoleted direct use of postgis_proc_upgrade.pl

scripts version unified with release version

A.1.14. Release 1.0.6

Release date: 2005/12/06

Contains a few bug fixes and improvements.

A.1.14.1. Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.14.2. Bug fixes

Fixed palloc(0) call in collection deserializer (only gives problem with --enable-cassert)

Fixed bbox cache handling bugs

Fixed geom_accum(NULL, NULL) segfault

Fixed segfault in addPoint()

Fixed short-allocation in lwcollection_clone()

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 95 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Fixed bug in segmentize()

Fixed bbox computation of SnapToGrid output

A.1.14.3. Improvements

Initial support for postgresql 8.2

Added missing SRID mismatch checks in GEOS ops

A.1.15. Release 1.0.5

Release date: 2005/11/25

Contains memory-alignment fixes in the library, a segfault fix in loader's handling of UTF8
attributes and a few improvements and cleanups.

A.1.15.1. Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.15.2. Library changes

Fixed memory alignment problems

Fixed computation of null values fraction in analyzer

Fixed a small bug in the getPoint4d_p() low-level function

Speedup of serializer functions

Fixed a bug in force_3dm(), force_3dz() and force_4d()

A.1.15.3. Loader changes

Fixed return code of shp2pgsql

Note

Return code of shp2pgsql changed from previous releases to conform to
unix standards (return 0 on success).

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 96 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Fixed back-compatibility issue in loader (load of null shapefiles)

Fixed handling of trailing dots in dbf numerical attributes

Segfault fix in shp2pgsql (utf8 encoding)

A.1.15.4. Other changes

Schema aware postgis_proc_upgrade.pl, support for pgsql 7.2+

New "Reporting Bugs" chapter in manual

A.1.16. Release 1.0.4

Release date: 2005/09/09

Contains important bug fixes and a few improvements. In particular, it fixes a memory leak
preventing successful build of GiST indexes for large spatial tables.

A.1.16.1. Upgrading

If you are upgrading from release 1.0.3 you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a
live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.1.16.2. Bug fixes

Memory leak plugged in GiST indexing

Segfault fix in transform() handling of proj4 errors

Fixed some proj4 texts in spatial_ref_sys (missing +proj)

Loader: fixed string functions usage, reworked NULL objects check, fixed segfault on
MULTILINESTRING input.

Fixed bug in MakeLine dimension handling

Fixed bug in translate() corrupting output bounding box

A.1.16.3. Improvements

Documentation improvements

More robust selectivity estimator

Minor speedup in distance()

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#rel_1.0.3_upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 97 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Minor cleanups

GiST indexing cleanup

Looser syntax acceptance in box3d parser

A.1.17. Release 1.0.3

Release date: 2005/08/08

Contains some bug fixes - including a severe one affecting correctness of stored geometries -
and a few improvements.

A.1.17.1. Upgrading

Due to a bug in a bounding box computation routine, the upgrade procedure requires special
attention, as bounding boxes cached in the database could be incorrect.

An hard upgrade procedure (dump/reload) will force recomputation of all bounding boxes (not
included in dumps). This is required if upgrading from releases prior to 1.0.0RC6.

If you are upgrading from versions 1.0.0RC6 or up, this release includes a perl script
(utils/rebuild_bbox_caches.pl) to force recomputation of geometries' bounding boxes and
invoke all operations required to propagate eventual changes in them (geometry statistics
update, reindexing). Invoke the script after a make install (run with no args for syntax help).
Optionally run utils/postgis_proc_upgrade.pl to refresh postgis procedures and functions
signatures (see Soft upgrade).

A.1.17.2. Bug fixes

Severe bugfix in lwgeom's 2d bounding box computation

Bugfix in WKT (-w) POINT handling in loader

Bugfix in dumper on 64bit machines

Bugfix in dumper handling of user-defined queries

Bugfix in create_undef.pl script

A.1.17.3. Improvements

Small performance improvement in canonical input function

Minor cleanups in loader

Support for multibyte field names in loader

Improvement in the postgis_restore.pl script

New rebuild_bbox_caches.pl util script

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#hard_upgrade
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#soft_upgrade

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 98 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.18. Release 1.0.2

Release date: 2005/07/04

Contains a few bug fixes and improvements.

A.1.18.1. Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.

Upgrading from older releases requires a dump/reload. See the upgrading chapter for more
informations.

A.1.18.2. Bug fixes

Fault tolerant btree ops

Memory leak plugged in pg_error

Rtree index fix

Cleaner build scripts (avoided mix of CFLAGS and CXXFLAGS)

A.1.18.3. Improvements

New index creation capabilities in loader (-I switch)

Initial support for postgresql 8.1dev

A.1.19. Release 1.0.1

Release date: 2005/05/24

Contains a few bug fixes and some improvements.

A.1.19.1. Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.

Upgrading from older releases requires a dump/reload. See the upgrading chapter for more
informations.

A.1.19.2. Library changes

BUGFIX in 3d computation of length_spheroid()

BUGFIX in join selectivity estimator

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 99 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.19.3. Other changes/additions

BUGFIX in shp2pgsql escape functions

better support for concurrent postgis in multiple schemas

documentation fixes

jdbc2: compile with "-target 1.2 -source 1.2" by default

NEW -k switch for pgsql2shp

NEW support for custom createdb options in postgis_restore.pl

BUGFIX in pgsql2shp attribute names unicity enforcement

BUGFIX in Paris projections definitions

postgis_restore.pl cleanups

A.1.20. Release 1.0.0

Release date: 2005/04/19

Final 1.0.0 release. Contains a few bug fixes, some improvements in the loader (most notably
support for older postgis versions), and more docs.

A.1.20.1. Upgrading

If you are upgrading from release 1.0.0RC6 you DO NOT need a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See the upgrading
chapter for more informations.

A.1.20.2. Library changes

BUGFIX in transform() releasing random memory address

BUGFIX in force_3dm() allocating less memory then required

BUGFIX in join selectivity estimator (defaults, leaks, tuplecount, sd)

A.1.20.3. Other changes/additions

BUGFIX in shp2pgsql escape of values starting with tab or single-quote

NEW manual pages for loader/dumper

NEW shp2pgsql support for old (HWGEOM) postgis versions

NEW -p (prepare) flag for shp2pgsql

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 100 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

NEW manual chapter about OGC compliancy enforcement

NEW autoconf support for JTS lib

BUGFIX in estimator testers (support for LWGEOM and schema parsing)

A.1.21. Release 1.0.0RC6

Release date: 2005/03/30

Sixth release candidate for 1.0.0. Contains a few bug fixes and cleanups.

A.1.21.1. Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for
more informations.

A.1.21.2. Library changes

BUGFIX in multi()

early return [when noop] from multi()

A.1.21.3. Scripts changes

dropped {x,y}{min,max}(box2d) functions

A.1.21.4. Other changes

BUGFIX in postgis_restore.pl scrip

BUGFIX in dumper's 64bit support

A.1.22. Release 1.0.0RC5

Release date: 2005/03/25

Fifth release candidate for 1.0.0. Contains a few bug fixes and a improvements.

A.1.22.1. Upgrading

If you are upgrading from release 1.0.0RC4 you DO NOT need a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See the upgrading
chapter for more informations.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading
file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 101 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

A.1.22.2. Library changes

BUGFIX (segfaulting) in box3d computation (yes, another!).

BUGFIX (segfaulting) in estimated_extent().

A.1.22.3. Other changes

Small build scripts and utilities refinements.

Additional performance tips documented.

A.1.23. Release 1.0.0RC4

Release date: 2005/03/18

Fourth release candidate for 1.0.0. Contains bug fixes and a few improvements.

A.1.23.1. Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for
more informations.

A.1.23.2. Library changes

BUGFIX (segfaulting) in geom_accum().

BUGFIX in 64bit architectures support.

BUGFIX in box3d computation function with collections.

NEW subselects support in selectivity estimator.

Early return from force_collection.

Consistency check fix in SnapToGrid().

Box2d output changed back to 15 significant digits.

A.1.23.3. Scripts changes

NEW distance_sphere() function.

Changed get_proj4_from_srid implementation to use PL/PGSQL instead of SQL.

A.1.23.4. Other changes

BUGFIX in loader and dumper handling of MultiLine shapes

BUGFIX in loader, skipping all but first hole of polygons.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 102 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

jdbc2: code cleanups, Makefile improvements

FLEX and YACC variables set *after* pgsql Makefile.global is included and only if the pgsql
stripped version evaluates to the empty string

Added already generated parser in release

Build scripts refinements

improved version handling, central Version.config

improvements in postgis_restore.pl

A.1.24. Release 1.0.0RC3

Release date: 2005/02/24

Third release candidate for 1.0.0. Contains many bug fixes and improvements.

A.1.24.1. Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for
more informations.

A.1.24.2. Library changes

BUGFIX in transform(): missing SRID, better error handling.

BUGFIX in memory alignment handling

BUGFIX in force_collection() causing mapserver connector failures on simple (single) geometry
types.

BUGFIX in GeometryFromText() missing to add a bbox cache.

reduced precision of box2d output.

prefixed DEBUG macros with PGIS_ to avoid clash with pgsql one

plugged a leak in GEOS2POSTGIS converter

Reduced memory usage by early releasing query-context palloced one.

A.1.24.3. Scripts changes

BUGFIX in 72 index bindings.

BUGFIX in probe_geometry_columns() to work with PG72 and support multiple geometry
columns in a single table

NEW bool::text cast

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 103 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

Some functions made IMMUTABLE from STABLE, for performance improvement.

A.1.24.4. JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and license.

jdbc2: bug fix and testcase in for pgjdbc 8.0 type autoregistration

jdbc2: Removed use of jdk1.4 only features to enable build with older jdk releases.

jdbc2: Added support for building against pg72jdbc2.jar

jdbc2: updated and cleaned makefile

jdbc2: added BETA support for jts geometry classes

jdbc2: Skip known-to-fail tests against older PostGIS servers.

jdbc2: Fixed handling of measured geometries in EWKT.

A.1.24.5. Other changes

new performance tips chapter in manual

documentation updates: pgsql72 requirement, lwpostgis.sql

few changes in autoconf

BUILDDATE extraction made more portable

fixed spatial_ref_sys.sql to avoid vacuuming the whole database.

spatial_ref_sys: changed Paris entries to match the ones distributed with 0.x.

A.1.25. Release 1.0.0RC2

Release date: 2005/01/26

Second release candidate for 1.0.0 containing bug fixes and a few improvements.

A.1.25.1. Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for
more informations.

A.1.25.2. Library changes

BUGFIX in pointarray box3d computation

BUGFIX in distance_spheroid definition

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 104 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

BUGFIX in transform() missing to update bbox cache

NEW jdbc driver (jdbc2)

GEOMETRYCOLLECTION(EMPTY) syntax support for backward compatibility

Faster binary outputs

Stricter OGC WKB/WKT constructors

A.1.25.3. Scripts changes

More correct STABLE, IMMUTABLE, STRICT uses in lwpostgis.sql

stricter OGC WKB/WKT constructors

A.1.25.4. Other changes

Faster and more robust loader (both i18n and not)

Initial autoconf script

A.1.26. Release 1.0.0RC1

Release date: 2005/01/13

This is the first candidate of a major postgis release, with internal storage of postgis types
redesigned to be smaller and faster on indexed queries.

A.1.26.1. Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for
more informations.

A.1.26.2. Changes

Faster canonical input parsing.

Lossless canonical output.

EWKB Canonical binary IO with PG>73.

Support for up to 4d coordinates, providing lossless shapefile->postgis->shapefile
conversion.

New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(),
accum().

Vertical positioning indexed operators.

JOIN selectivity function.

file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html#upgrading

7/14/08 1:45 PMPostGIS 1.3.4 Manual

Page 105 of 105file:///Users/pramsey/Code/postgis-1.3-svn/doc/html/postgis.html

More geometry constructors / editors.

PostGIS extension API.

UTF8 support in loader.

