Topology and Spatial Predicates Geog 516 Presentation #1

> Rueben Schulz Feb 2004

Overview

- Background on topology
- Current data format implementations
- New abstractions
 - Interior, Boundary and Exterior
 - 4 Intersection Method
 - 9 Intersection Method
 - Dimensionally Extended
 - Spatial Predicates
- Importance
- Examples
- Problems

Background

- Definitions of topology
 - Spatial relationship between geographic features
 - Connectivity
 - Contiguity
 - Topological data structure, allows features to share geometry
 - TIGER, DIME, ESRI Coverage
 - Set of tools to validate topology
 - Nodes at line intersections, polygons closed, etc.

Current Implementations

Arc/Info Coverage data model

Source "Understanding GIS"

Motivation for a new, more complex system

- Abstraction away from implementation details
 - Currently ask for:
 - polygons left/right of an arc to get neighbours
 - node to/from a line to get connections
 - Want to work with natural languages for geographic queries
- Current model is not flexible for certain queries
 - Cannot easily query topological relationships between different datasets
 - Cannot easily query containment

Interior, Boundary and Exterior

• Points only have an interior

Ways to quantify spatial relationships

- Examine the interactions of the interiors, boundaries and exteriors of geometries
- 4 different methods
 - -4 Intersection Method
 - -9 Intersection Method
 - Dimensionally Extended
 - Spatial Predicates (Calculus Based Method)

4 Intersection Method (4IM)

- Looks at the interaction between the geometries interior and boundary; 2⁴ = 16 combinations
- 6 groups of relationships
 - area / area
 - line / area
 - point / area
 - line / line
 - point / line
 - point / point
- 43 possible relationships, 37 real relationships (converse relationships only counted once).

4 IM Example

- An Area / Area example
- Notation, a matrix of values with:
 - True = interaction
 - False = no interaction

Geometry B

Geometry A

9 Intersection Method (9IM)

- Looks at the interaction between the geometries interior, boundary and exterior; 2⁹ = 512 combinations
- 68 possible cases, 56 real

Dimension Extended (DE)

- Also look at the dimension of the intersection:
 0,1, 2 or -1 (no interaction)
- Can be applied to 4IM or 9IM
 - 61 possible cases, 52 real for DE-4IM
 - 87 possible case, 81 real for DE-9IM

Spatial Predicates: Calculus Based Method (CBM)

- Human brain does not deal well with 81 relations
- 9 predicates, return true/false
 - Equals
 - Disjoint
 - Touch
 - Overlaps
 - Cross
 - Within
 - **Contains** opposite of within
 - Intersects tests if there is any interaction at all (not disjoint)
 - Relate test a specific DE-9IM relationship
- The first 7 predicates are are mutually

CBM Example

Importance

- OpenGIS Consortium (OGC) specification
- Implemented in:
 - ESRI ArcGIS and ArcSDE
 - Oracle Spatial
 - IBM DB2 Spatial Extender
 - Java Topology Suite (JTS)
 - PostGIS with GEOS support
- Predicates used to extend SQL to create a spatial query language

Examples

Examples Con't

Oracle Spatial SQL

SELECT Roads.Name FROM Provinces, Roads WHERE Provinces.Name = 'British Columbia' AND SDO_RELATE(Provinces.Geometry, Roads.Geometry, 'mask=ANYINTERACT querytype = WINDOW') = 'TRUE';

ArcObjects IRelationalOperator Interface

IRelationalOperator : IUnknown

- Contains (in other: IGeometry) : Boolean
- Crosses (in other: IGeometry) : Boolean
- Disjoint (in other: IGeometry) : Boolean
- Equals (in other: IGeometry) : Boolean
- Overlaps (in other: IGeometry) : Boolean
- Relation (in other: IGeometry, in
 - _ relationDescription: String) : Boolean
- Touches (in other: IGeometry) : Boolean
 - Within (in other: IGeometry) : Boolean

Problems

- Data Uncertainty
 - A lake digitized twice will not be Equal, though logically it should be
- Ad Hoc solution is to buffer geometries and then test the buffers
 - Ex. Test if boundary of geometry A is Within a 10m buffer of geometry B's boundary
- More rigorous solution is the concept of broad boundary
 - Boundary represented as a wide line/area
 - Not currently implemented

- Clementini, E., P.D. Felice, and P., van Oostrom, A Small Set of Formal Topological Relationships Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases - Third International Symposium. SSD-93. LNCS 692. Pp. 277-295. Springer-Verlag. Singapore (1993).
- Clementini E. and P.D. Felice, A Comparison of Methods for Representing Topological Relationships, Information Sciences - Applications: An International Journal 3 (3), 149-178, 1995.
- Egenhofer M.J. and J. Herring, Categorizing binary topological relationships between regions, lines and points in geographic databases, Tech. Report., Department of Surveying Engineering, University of Maine, Orono, ME 1991.
- Egenhofer M.J., Topological Reasoning in Geographic Space: http://www.spatial.maine.edu/~max/topReasoning.html
- ArcGIS: Working with Geodatabase Topology, An ESRI White Paper, 2003.
- Understanding GIS: The ArcInfo Method, ESRI Press, 1998.
- IBM DB2 Spatial Extender: Users Guide and Reference, Version 8.
- OpenGIS Specifications 99-049: Simple Feature Specification for SQL (SFS), OpenGIS Consortium, Inc, May 5, 1999.

Appendix

- Details about each spatial predicate
- Partially based on notes from BCIT
- Notation for DE-9IM
 - -T = interaction
 - -F = no interaction
 - * = interaction does not matter
 - -0,1,2 = dimension of interaction

Appendix

- DE-9IM's given below test geometry A against geometry B.
 - Eg. for a Within Relation; testing if A is Within B.

Geometry B

Geometry A

		В	Ε
	*	*	*
В	*	*	*
Ε	*	*	*

Equals

- Geometries must be identical
 - Same dimension
 - Same geometry type
 - Same number of vertices
 - All x,y coordinates must be identical

	I	В	E
I	Т	*	F
В	*	*	F
ш	F	F	*

Disjoint

- Overlay of the two geometries is an empty set
- Does not need to be the same geometry type

	I	В	Е
I	F	F	*
В	F	F	*
Е	*	*	*

Touch

- Boundaries from both geometries intersect, but both interiors cannot.
- A single geometry's interior can intersect with the others boundary
 - Ex. A point intersecting with a polygon or line's boundary

		В	Ε
	Ш	*	*
В	*	Τ	*
Ε	*	*	*

Overlaps

- Geometries must be of the same dimension
- Intersection of the geometries must result in a geometry of the same dimension, but not equal to either input geometry.
- Does not work with points (would be equal)

Both geometries Multi-Points or Areas

Both geometries Lines

Cross

- Intersection of two geometries results in a shape that is one less than the maximum dimension of both geometries
- Based on interiors intersecting
- Points cannot cross (would be equal)

First geometry point or line and second area or Both geometries lines First geometry point and second line

	I	В	Ε
I	Т	*	Т
В	*	*	*
Ε	*	*	*

Within

- One geometry completely within another geometry
- Touching allowed for lines and polygons
- Touching not allowed for points

- must be an interior on interior interaction

		В	Ε
I	Т	*	F
В	*	*	F
Ε	*	*	*

Contains

- The opposite of Within
 - If A is within B, then B contains A