Topology and Spatial Predicates Geog 516 Presentation \#1

Rueben Schulz Feb 2004

Overview

- Background on topology
- Current data format implementations
- New abstractions
- Interior, Boundary and Exterior
- 4 Intersection Method
- 9 Intersection Method
- Dimensionally Extended
- Spatial Predicates
- Importance
- Examples
- Problems

Background

- Definitions of topology
- Spatial relationship between geographic features
- Connectivity
- Contiguity
- Topological data structure, allows features to share geometry
- TIGER, DIME, ESRI Coverage
- Set of tools to validate topology
- Nodes at line intersections, polygons closed, etc.

Current Implementations

- Arc/Info Coverage data model

Left-right list

Left-right list		
Arc\#	LPoly	RPoly
1	1	5
2	1	4
3	1	3
4	1	2
5	5	4
6	2	5
7	2	4
8	2	6
9	4	3
10	3	2

Arc coordinate list

LINE \#	X, Y Pairs
1	5,3
	$5,5 \quad 8,5$
2	8,5
3	$20,5 \ldots$
4	18,1
4	$5,1 \quad \ldots$
5	7,4
5,5	
6	7,4
7	
8	
9	
10	

Motivation for a new, more complex system

- Abstraction away from implementation details
- Currently ask for:
- polygons left/right of an arc to get neighbours
- node to/from a line to get connections
- Want to work with natural languages for geographic queries
- Current model is not flexible for certain queries
- Cannot easily query topological relationships between different datasets
- Cannot easily query containment

Interior, Boundary and Exterior

- Points only have an interior

Image after Rob Hewlet, BCIT

Ways to quantify spatial relationships

- Examine the interactions of the interiors, boundaries and exteriors of geometries
- 4 different methods
- 4 Intersection Method
- 9 Intersection Method
- Dimensionally Extended
- Spatial Predicates (Calculus Based Method)

4 Intersection Method (4IM)

- Looks at the interaction between the geometries interior and boundary; $2^{4}=16$ combinations
- 6 groups of relationships
- area / area
- line / area
- point/area
- line / line
- point / line
- point / point
- 43 possible relationships, 37 real relationships (converse relationships only counted once).

4 IM Example

- An Area / Area example
- Notation, a matrix of values with:
- True = interaction
- False = no interaction

Geometry B

9 Intersection Method (9IM)

- Looks at the interaction between the geometries interior, boundary and exterior; $2^{9}=512$ combinations
- 68 possible cases, 56 real

Geometry B

Dimension Extended (DE)

- Also look at the dimension of the intersection:

0,1, 2 or -1 (no interaction)

- Can be applied to 4IM or 9IM
- 61 possible cases, 52 real for DE-4IM
- 87 possible case, 81 real for DE-9IM

Geometry B

Spatial Predicates: Calculus Based Method (CBM)

- Human brain does not deal well with 81 relations
- 9 predicates, return true/false
- Equals
- Disjoint
- Touch
- Overlaps
- Cross
- Within
- Contains - opposite of within
- Intersects - tests if there is any interaction at all (not disjoint)
- Relate - test a specific DE-9IM relationship
- The first 7 predicates are are mutually

CBM Example

Geometry A Relation

Overlap

Touch

Cross

Importance

- OpenGIS Consortium (OGC) specification
- Implemented in:
- ESRI ArcGIS and ArcSDE
- Oracle Spatial
- IBM DB2 Spatial Extender
- Java Topology Suite (JTS)
- PostGIS with GEOS support
- Predicates used to extend SQL to create a spatial query language

Examples

Examples Con't

- Oracle Spatial SQL

SELECT Roads.Name
FROM Provinces, Roads
WHERE Provinces.Name = 'British Columbia'
AND SDO_RELATE(Provinces.Geometry,
Roads.Geometry,
'mask=ANYINTERACT querytype = WINDOW') = 'TRUE';

- ArcObjects IRelationalOperator Interface
IRelationalOperator : IUnknown

Problems

- Data Uncertainty
- A lake digitized twice will not be Equal, though logically it should be
- Ad Hoc solution is to buffer geometries and then test the buffers
- Ex. Test if boundary of geometry A is Within a 10 m buffer of geometry B's boundary
- More rigorous solution is the concept of broad boundary
- Boundary represented as a wide line/area
- Not currently implemented

References

- Clementini, E., P.D. Felice, and P., van Oostrom, A Small Set of Formal Topological Relationships Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases - Third International Symposium. SSD-93. LNCS 692. Pp. 277-295. Springer-Verlag. Singapore (1993).
- Clementini E. and P.D. Felice, A Comparison of Methods for Representing Topological Relationships, Information Sciences - Applications: An International Journal 3 (3), 149-178, 1995.
- Egenhofer M.J. and J. Herring, Categorizing binary topological relationships between regions, lines and points in geographic databases, Tech. Report., Department of Surveying Engineering, University of Maine, Orono, ME 1991.
- Egenhofer M.J., Topological Reasoning in Geographic Space: http://www.spatial.maine.edu/~max/topReasoning.html
- ArcGIS: Working with Geodatabase Topology, An ESRI White Paper, 2003.
- Understanding GIS: The ArcInfo Method, ESRI Press, 1998.
- IBM DB2 Spatial Extender: Users Guide and Reference, Version 8.
- OpenGIS Specifications 99-049: Simple Feature Specification for SQL (SFS), OpenGIS Consortium, Inc, May 5, 1999.

Appendix

- Details about each spatial predicate
- Partially based on notes from BCIT
- Notation for DE-9IM
- T = interaction
$-F=$ no interaction
- * $=$ interaction does not matter
$-0,1,2=$ dimension of interaction

Appendix

- DE-9IM's given below test geometry A against geometry B .
- Eg. for a Within Relation; testing if A is Within B.

Geometry B

Equals

- Geometries must be identical
- Same dimension
- Same geometry type
- Same number of vertices
- All x, y coordinates must be identical

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	T	${ }^{*}$	F
\mathbf{B}	${ }^{*}$	${ }^{*}$	F
\mathbf{E}	F	F	${ }^{*}$

Geometry A
Geometry B
Overlay

Result0
O
True

False

False

Disjoint

- Overlay of the two geometries is an empty set
- Does not need to be the same geometry type

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	F	F	$*$
\mathbf{B}	F	F	$*$
\mathbf{E}	${ }^{*}$	$*$	$*$

Geometry A
Geometry B
Overlay Result

False

True

Touch

- Boundaries from both geometries intersect, but both interiors cannot.
- A single geometry's interior can intersect with the others boundary
- Ex. A point intersecting with a polygon or line's boundary

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	F	T	${ }^{*}$
\mathbf{B}	${ }^{*}$	${ }^{*}$	${ }^{*}$
\mathbf{E}	${ }^{*}$	${ }^{*}$	${ }^{*}$

or | | \mathbf{I} | \mathbf{B} | \mathbf{E} |
| :--- | :--- | :--- | :--- |
| \mathbf{I} | \mathbf{F} | ${ }^{*}$ | ${ }^{*}$ |
| \mathbf{B} | T | $*$ | $*$ |
| \mathbf{E} | ${ }^{*}$ | $*$ | $*$ |

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	F	${ }^{*}$	${ }^{*}$
\mathbf{B}	${ }^{*}$	${ }^{\top}$	${ }^{*}$
\mathbf{E}	${ }^{*}$	${ }^{*}$	${ }^{*}$

Geometry A
Result

Geometry B
Overlay

False

True

True

Overlaps

- Geometries must be of the same dimension
- Intersection of the geometries must result in a geometry of the same dimension, but not equal to either input geometry.
- Does not work with points (would be equal)

Both geometries Multi-Points or Areas

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	T	${ }^{*}$	T
\mathbf{B}	${ }^{*}$	${ }^{*}$	${ }^{*}$
\mathbf{E}	T	${ }^{*}$	${ }^{*}$

Both geometries Lines

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	1	${ }^{*}$	T
\mathbf{B}	${ }^{*}$	${ }^{*}$	${ }^{*}$
\mathbf{E}	T	${ }^{*}$	${ }^{*}$

Geometry A
Geometry B
Overlay

Result

True

True

False

Cross

- Intersection of two geometries results in a shape that is one less than the maximum dimension of both geometries
- Based on interiors intersecting
- Points cannot cross (would be equal)

First geometry point or line and second area or ${ }_{\text {Both }}$ geometries lines First geometry point and second line

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	T	$*$	T
\mathbf{B}	$*$	$*$	$*$
\mathbf{E}	$*$	$*$	$*$

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	0	$*$	$*$
\mathbf{B}	${ }^{*}$	$*$	$*$
\mathbf{E}	${ }^{*}$	$*$	$*$

Geometry A
Result

Geometry B
Overlay

True

False

False

Within

- One geometry completely within another geometry
- Touching allowed for lines and polygons
- Touching not allowed for points
- must be an interior on interior interaction

	\mathbf{I}	\mathbf{B}	\mathbf{E}
\mathbf{I}	T	${ }^{*}$	F
\mathbf{B}	${ }^{*}$	${ }^{*}$	F
\mathbf{E}	${ }^{*}$	${ }^{*}$	${ }^{*}$

Geometry A
Result

True

False

True

Contains

- The opposite of Within
- If A is within B, then B contains A

