
4.3 Index Construction 
Even though the cells of TSI and LSI serve almost the same 
purpose as those of a Voronoi diagram on 2-D Euclidean space, 
their construction is much more challenging. In this section, we 
discuss our proposed process to construct the cells of TSI and LSI.  
We will mainly focus on the construction of tight cells as the 
loose cells construction follows a similar process. We start by 
describing a naïve approach and then we explain our fast index 
construction algorithm. 

4.3.1 Naïve Index Construction  

4.3.2 Fast Index Construction   
We can significantly reduce the complexity of the naïve algorithm, 
if we could successfully identify the triangles that overlap with 
the edges of the tight cells. Then there would be no need to 
examine the vertices of any other triangle. Unfortunately, there is 
no way to know these edge triangles in advance. However, we 
can start with a rough prediction of those triangles by first 
drawing the Voronoi diagram1 of the sites in the Euclidean space. 
Those triangles that overlap with the edges of this Voronoi 
diagram, termed candidate triangles, are potential edge triangles. 
The intuition of using Voronoi diagram is based on the following 
observation on the relationship between one site’s tight cell and 
its Voronoi cell. 

A naïve approach to generate the tight cells is as follows. First, 
for each surface triangle of the TIN mesh, we need to make a 
decision to identify the tight cell to which it belongs. Property 5: Given any site p1, its tight cell TC(p1) is inside its 

Voronoi cell VC(p1). The simple case is when all the three vertices of the triangle 
belong to the same site p1. In this case, we immediately consider 
the triangle to be a member of the p1’s cell (e.g., Triangle 1 in 
Figure 7). In contrast, if none of the vertices belongs to p1, the 
triangle is excluded (e.g., Triangle 2 in Figure 7). A more 
complicated case is that only one or two vertices of the triangle 
belong to site p1 (e.g., Triangle 3, 5 in Figure 7). Then we need to 
compute the exact location of the two or three transition points on 
the edges of such triangle. A transition point is defined as a point 
on an edge whose network distance to its nearest site pN is equal 
to the minimal of its Euclidean distances to all the other sites (e.g., 
pt in Figure 7 that DN(pt, p1)  = DE(pt, p2)). We could term this 
transition point as pN’s transition point. Therefore, a transition 
point breaks an edge into two pieces, one belonging to a certain 
tight cell and the other one belonging to the unclassified area. 
Connecting all the transition points across surface triangles would 
eventually generate the border of the tight cells. For each vertex 
of the triangle, we need to compute both the Euclidean and the 
network distance to all of the m sites in order to decide to which 
site’s cell the vertex belongs. Since network distance computation 
costs O(NlogN) time, the total time complexity to this naïve 
approach is O(mN2logN), where m is the total number of sites and 
N is the size of the surface model. Hence, in the following section 
we introduce a novel approach that would result in a much lower 
time complexity for most practical scenarios. 

Proof: To prove the above property, we only need to prove that 
all p1’s transition points are inside VC(p1).  

By the definition of transition point, for any of p1’s transition 
points pt, DN(pt, p1)  İ DE(pt, pi) (�pi �P, pi � p1). Meanwhile, 
DE(pt, p1)  İ DN(pt, p1). Therefore, DE(pt, p1) İ DE(pt, pi) (�pi 
�P, pi � p1). By the definition of Voronoi diagram, pt must be 
inside VC(p1). Ƒ 

The final step is to investigate each of the candidate triangles, 
using the same process we discussed for the naïve approach, to 
decide whether this triangle is in fact an edge triangle or not. 
Towards this end, we need to compute the Euclidean and network 
distance between each of the vertices of the candidate edge 
triangle to all the m sites in order to decide the tight cell each 
vertex belongs to. There are two possible cases: 1) only one or 
two vertices of the triangle belong to site p1 (e.g., Triangle 3 in 
Figure 7), then it is an edge triangle, the transition points are 
computed and the TSI edge is generated. 2) None of the vertices 
belong to site p1 (Triangle 4 in Figure 7); therefore, this triangle is 
not an edge triangle and we need to find another candidate 
triangle.  Fortunately the area of tight cell is tighter than Voronoi 
cell, we only need to examine whether the candidate triangle’s 
closer neighbors are edge triangles or not (e.g., Triangle 5 in 
Figure 7). Once an edge triangle is determined, the transition 
point on the corresponding edge can be computed by solving 
quadratic equations. In the worst case, for each generator, we only 
need to investigate the triangles inside the corresponding Voronoi 
cell as a result of Property 5. Hence, the total time to generate TSI 
is brought down to O(N2logN).  

  

Algorithm 1 depicts the algorithm of TSI construction approach. 
A stack is maintained to filter and refine the candidate triangles. 
First we compute the Voronoi diagram and push the triangles that 
overlap with the Voronoi edges into the candidate stack (Line 2-
5); then examine each triangle in the stack to identify the edge 
triangles. The algorithms have to search the triangle’s neighbors 
if the one is not an edge triangle (Line 7-10); else we can generate 
the TSI edges on the triangles (Line 11-15).  

                                                                 
1 Note that this Voronoi diagram is built in 3-D Euclidean space. 

A simpler but rougher alternative is the Voronoi diagram on the 
projected 2-D Euclidean space. However, the following 
Property 5 may not hold for 2-D Voronoi diagram resulting in 
more candidate triangles. 

Figure 7. Tight Surface Index Construction 

 


