<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 10">
<meta name=Originator content="Microsoft Word 10">
<link rel=File-List href="cid:filelist.xml@01C398CE.8F272CA0">
<!--[if gte mso 9]><xml>
<o:OfficeDocumentSettings>
<o:DoNotRelyOnCSS/>
</o:OfficeDocumentSettings>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:WordDocument>
<w:SpellingState>Clean</w:SpellingState>
<w:GrammarState>Clean</w:GrammarState>
<w:DocumentKind>DocumentEmail</w:DocumentKind>
<w:EnvelopeVis/>
<w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
</w:WordDocument>
</xml><![endif]-->
<style>
<!--
/* Font Definitions */
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;
mso-font-charset:0;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:1627421319 -2147483648 8 0 66047 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0in;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:purple;
text-decoration:underline;
text-underline:single;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
{margin:0in;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Courier New";
mso-fareast-font-family:"Times New Roman";}
span.EmailStyle17
{mso-style-type:personal-reply;
mso-style-noshow:yes;
mso-ansi-font-size:10.0pt;
mso-bidi-font-size:10.0pt;
font-family:Arial;
mso-ascii-font-family:Arial;
mso-hansi-font-family:Arial;
mso-bidi-font-family:Arial;
color:navy;}
@page Section1
{size:8.5in 11.0in;
margin:1.0in 1.25in 1.0in 1.25in;
mso-header-margin:.5in;
mso-footer-margin:.5in;
mso-paper-source:0;}
div.Section1
{page:Section1;}
-->
</style>
<!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Times New Roman";}
</style>
<![endif]-->
</head>
<body lang=EN-US link=blue vlink=purple style='tab-interval:.5in'>
<div class=Section1>
<p class=MsoNormal><font size=2 color=navy face=Arial FAMILY=SANSSERIF><span
style='font-size:10.0pt;font-family:Arial;color:navy'>Chris –<o:p></o:p></span></font></p>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'><o:p> </o:p></span></font></p>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'>This is a good idea, especially if you’re
in central/western Mass – the length of a degree of longitude differs by
less than 0.5% or so from the central parallel, since the state’s less
than three-quarters of a degree north-south (except for the eastern portion).<o:p></o:p></span></font></p>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'><o:p> </o:p></span></font></p>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'><span style='mso-tab-count:1'> </span>-
Ed<o:p></o:p></span></font></p>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'><o:p> </o:p></span></font></p>
<div>
<p class=MsoPlainText><font size=2 color=navy face="Courier New"><span
style='font-size:10.0pt;color:navy;mso-no-proof:yes'><o:p> </o:p></span></font></p>
<p class=MsoPlainText><font size=2 color=navy face="Courier New"><span
style='font-size:10.0pt;color:navy;mso-no-proof:yes'>Ed McNierney<o:p></o:p></span></font></p>
<p class=MsoPlainText><font size=2 color=navy face="Courier New"><span
style='font-size:10.0pt;color:navy;mso-no-proof:yes'>President and Chief
Mapmaker<o:p></o:p></span></font></p>
<p class=MsoPlainText><font size=2 color=navy face="Courier New"><span
style='font-size:10.0pt;color:navy;mso-no-proof:yes'>TopoZone.com<o:p></o:p></span></font></p>
<p class=MsoPlainText><font size=2 color=navy face="Courier New"><span
style='font-size:10.0pt;color:navy;mso-no-proof:yes'>ed@topozone.com<o:p></o:p></span></font></p>
</div>
<p class=MsoNormal><font size=2 color=navy face=Arial><span style='font-size:
10.0pt;font-family:Arial;color:navy'><o:p> </o:p></span></font></p>
<p class=MsoNormal style='margin-left:.5in'><font size=2 face=Tahoma><span
style='font-size:10.0pt;font-family:Tahoma'>-----Original Message-----<br>
<b><span style='font-weight:bold'>From:</span></b> Strebe@aol.com
[mailto:Strebe@aol.com] <br>
<b><span style='font-weight:bold'>Sent:</span></b> Wednesday, October 22, 2003
4:20 PM<br>
<b><span style='font-weight:bold'>To:</span></b> osrs-proj@remotesensing.org;
cj8n@virginia.edu<br>
<b><span style='font-weight:bold'>Subject:</span></b> [OSRS-PROJ] Re:
projection formula?</span></font></p>
<p class=MsoNormal style='margin-left:.5in'><font size=3 face="Times New Roman"><span
style='font-size:12.0pt'><o:p> </o:p></span></font></p>
<p class=MsoNormal style='margin-left:.5in'><font size=2 face=Arial><span
style='font-size:10.0pt;font-family:Arial'><br>
Chris Jessee <jessee@virginia.edu> writes:<br>
<br style='mso-special-character:line-break'>
<![if !supportLineBreakNewLine]><br style='mso-special-character:line-break'>
<![endif]><o:p></o:p></span></font></p>
<p class=MsoNormal style='margin-left:.5in'><font size=2 face=Arial><span
style='font-size:10.0pt;font-family:Arial'>Yes, perhaps too elaborate. I'm
experimenting with different <br>
projections in hopes of finding one that offers limited visual <br>
difference from Lambert conformal Conic but allows point plotting in <br>
cartesian coordinates without much compute overhead.<o:p></o:p></span></font></p>
<p class=MsoNormal style='mso-margin-top-alt:0in;margin-right:0in;margin-bottom:
12.0pt;margin-left:.5in'><font size=2 face=Arial><span style='font-size:10.0pt;
font-family:Arial'><br>
<br>
If you really are limiting your subject area to New England, then I suggest
forgetting about ellipsoids and even the Lambert conformal conic. You can get
low distortion for such a limited area from a simple equirectangular projection
with the standard parallel set to the central parallel of your map:<br>
<br>
x = R * (longitude - central meridian) * cos (standard parallel)<br>
y = R * (latitude - standard parallel)<br>
<br>
The parallels will not be curved like the Lambert conformal conic, but the
amount of curvature across a region that small is quite minimal anyway.
Obviously the inverse projection is just as simple. This projection is not
accurate enough for geodetic work but it should be imminently suitable for your
project.<br>
<br>
Regards,<br>
<br>
daan Strebe<br>
Geocart author<br>
http://www.mapthematics.com<br>
<br>
Original:<br>
_____<br>
On Wednesday, October 22, 2003, at 01:59 PM, Strebe@aol.com wrote:<br>
<br>
><br>
> Chris Jessee <jessee@virginia.edu> writes:<br>
><br>
> >User mouse movement gives realtime lat lon readout.<br>
> >A measure tool provides distance and angle measure between two points.<br>
><br>
> I'm curious what you want the "angle" for. If you intend to
measure <br>
> direction with it then you will fail. There is no projection on which <br>
> you can measure correct directions between any two points. If it is <br>
> direction you want, then you need to calculate the azimuth from the <br>
> first point to the second. Gerald Evenden mentioned Snyder's "Map <br>
> Projections - A Working Manual". That reference includes azimuth <br>
> calculation formulae.<br>
<br>
You are correct, we need the azimuth.<br>
<br>
><br>
> >The trouble begins when we try to use a base map in a<br>
> >Lambert_Conformal_Conic projection. The specifics of the projection <br>
> are<br>
> >at the end of this email. To implement the functionality noted above I<br>
> >have 2 choices: re-project the map into a Geographic Coordinate system<br>
> >or dynamically calculate the difference between rectilinear screen<br>
> >space and the conic projection. On the first option I'm also<br>
><br>
> What you really want is the inverse projection. Inverse projections <br>
> compute latitude and longitude given the cartesian coordinates x and <br>
> y. The same Snyder reference provides inverse formulae for the Lambert <br>
> conformal.<br>
<br>
Yes, correct again.<br>
<br>
><br>
> Since Snyder's volume may be hard to find in a hurry, you may also <br>
> look at:<br>
><br>
> http://mathworld.wolfram.com/LambertConformalConicProjection.html<br>
> http://www.codeguru.com/algorithms/GeoCalc.html<br>
<br>
Thank you, these links are very helpful. Fortunately I work in the <br>
university library and Snyder's volume was available just down the hall!<br>
<br>
> This all seems very elaborate for your project! It looks very good, <br>
> though.<br>
<br>
Yes, perhaps too elaborate. I'm experimenting with different <br>
projections in hopes of finding one that offers limited visual <br>
difference from Lambert conformal Conic but allows point plotting in <br>
cartesian coordinates without much compute overhead.<br>
<br>
Thank you,<br>
<br>
Chris Jessee<br>
jessee@virginia.edu<br style='mso-special-character:line-break'>
<![if !supportLineBreakNewLine]><br style='mso-special-character:line-break'>
<![endif]></span></font><o:p></o:p></p>
</div>
</body>
</html>