<div dir="ltr">I've got a case where I would like to identify the domain of a projection programmatically. Take the geos projection for example:<br><div><br><br><div style="margin-left:40px"><span style="font-family:courier new,monospace">$> invproj +proj=geos +h=35785831 +units=m<br>
5.3e6 0<br>68d48'11.267"E 0dN<br><br>5.4e6 0<br>74d56'57.772"E 0dN<br><br>5.5e6 0<br>* *<br><br><br>$> invproj +proj=geos +h=50000000 +units=m<br>5.5e6 0<br>69d42'46.646"E 0dN<br>
<br>5.6e6<br>74d40'19.703"E 0dN<br><br>5.7e6<br>* *<br><br><br></span></div>Are the mathematical limits of Proj4 projections generally available (the C interface is fine), or is using a numerical method the only way to calculate the domain?<br>
<br></div><div><br></div><div>Notes: <br> * There are some domains/bounds available on <a href="http://spatialreference.org">spatialreference.org</a> (e.g., <a href="http://spatialreference.org/ref/epsg/4277/">http://spatialreference.org/ref/epsg/4277/</a>) but they are not exhaustive, are transformed to WGS84 and have presumably been calculated manually.</div>
<div> * I've had a quick look at PJ_geos to see if this particular example has a simple solution (and indeed grepped for "limits", "bounds", and "range" in the whole proj.4 source) without much luck.<br>
</div><div> * I've already got a programmatic solution to this, I'm really looking to find out if there is a more elegant mathematical answer to my problem.<br></div><div><br></div><div>Many thanks in advance,<br>
<br></div><div>Phil<br></div><div><br></div><div><br><br></div><div><span style="font-family:courier new,monospace"></span></div></div>