<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><meta content="text/html;charset=UTF-8" http-equiv="Content-Type"></head><body ><div style="font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 10pt;"><div>You can also see the lecture notes on geodetic positions computations at <a target="_blank" href="https://gge.ext.unb.ca/Pubs/LN39.pdf">https://gge.ext.unb.ca/Pubs/LN39.pdf</a><br></div><div><br></div><div id="Zm-_Id_-Sgn" data-sigid="5934168000004827002" data-zbluepencil-ignore="true"><div>-- <br></div><div><br></div><div>Mircea Neacsu <br></div></div><div class="zmail_extra" data-zbluepencil-ignore="true"><div><br></div><div id="Zm-_Id_-Sgn1">---- On Tue, 27 Aug 2024 19:06:00 -0400 <b>Nyall Dawson via PROJ <proj@lists.osgeo.org></b> wrote ---<br></div><div><br></div><blockquote style="margin: 0px;" id="blockquote_zmail"><div>Hi list, <br> <br>Let's say I have two points on an ellipsoid, with each point having a <br>different height above the ellipsoid. I want to calculate a kind of <br>"geodesic" between these points, where there's an assumption that the <br>gradient of the height-above-ellipsoid for the "geodesic" is constant. <br> <br>Is this mathematically solvable? Or, more to the point, is it possible <br>to calculate this using any of the methods exposed via geodesic.h? <br> <br>Nyall <br>_______________________________________________ <br>PROJ mailing list <br><a target="_blank" href="mailto:PROJ@lists.osgeo.org">PROJ@lists.osgeo.org</a> <br><a target="_blank" href="https://lists.osgeo.org/mailman/listinfo/proj">https://lists.osgeo.org/mailman/listinfo/proj</a> <br></div></blockquote></div><div><br></div></div><br></body></html>