Implementation of access to spatial databases in Qgis using ogr library

Qgis is able to connect and work with PostgreSQL databases natively and also has a ogr provider, actually being used to connect to file base datasources. The goal of this work is to update the ogr provider to support ogr database connections, update postgresql specific dialogs to reuse them in ogr connections, update of SPIT plugin to work with other databases than postgresql, create a set of utilities like layer creation and modification, and export beetwen diferent formats.

Originally it was planned to implement all this stuff as a plugin (ogr plugin), Tim Sutton and other members of development team make a suggestions about merging the ogr connection stuff with postgresql existing dialogs and classes, the possibility to work with QgsFileWriter class to implement the export beetween types functionality, and update spit to work with ogr databases.

I decided to divide all work in several parts this is the check list:

· OgrProvider. (Work is done).

· Connection dialogs and base classes (Working in design).

· SPIT update (will remain as plugin).

· QgsFileWriter, export functionality.

· Database utilities, layer creation and modification(will be implemented as plugin).

Changes made in OgrProvider

Modify constructor to check if the uri is file based or database and decode it accordingly.

Dialogs and classes affected

The dialogs that will be affected are:

From app:

QgsDbSourceSelect

Here are needed some changes to add the connection type combo.

QgsNewConnection

Here are needed some changes to add the connection type combo.

QgsNewConnectionOgrGeneric

This dialog does not exist yet. It will be created to support connections where the user provides a ogr uri. This dialog is supposed to provide a way to users to rebuild the ogr libraries according to they needs and load layers into qgis without needing to rebuild qgis.

Files that will be affected

qgisapp.cpp

addDatabaseLayer method will be modified to support loading of ogr layers. (change type: minor)

qgsdbsourceselect.cpp, qgsdbsourceselect.h

several changes including the implementation of the dialog using Qgs*DatabaseConnection classes and QgsDataSourceUri.

qgspgquerybuilder.cpp

rework it to make it generic

From core:

qgsdatasourceuri.cpp

should be changed to support creation of uris for ogr (this class needs to be updated when a new type of connection is added to qgis because there is not a uniform way to create the ogr uris)

From ogrprovider:

qgsogrprovider.cpp

It needs to be changed to work with QgsDatasourceURI in order to be able to load ogr database layers.

Ogr Database Connection Class Design

[image: image1.emf]class System

«struct»

QgsConnection

+ database: QString

+ geometryColumnsOnly: bool

+ host: QString

+ name: QString

+ password: QString

+ port: QString

+ publicOnly: bool

+ save: bool

+ selected: QString

+ type: QString

+ user: QString

«enumeration»

QgsOgrDatabase

 ogrMySQL

 ogrPostgreSQL

 ogrOracle

 ogrFile

 ogrNone

 PostgreSQL

QgsConnectionManager

- mConnection: QgsDatabaseConnectionBase*

- mError: QString

+ connect(QString, QgsConnection) : bool

+ getConnection() : QgsDatabaseConnectionBase*

+ getConnectionDetails(QString, QString) : QgsConnection

+ getConnections(QString) : QStringList

+ getError() : QString

+ getSelected(QString) : QString

+ getSelectedType() : QString

+ modifyConnection(QgsConnection) : bool

+ QgsConnectionManager()

+ ~QgsConnectionManager()

+ removeConnection(QString, QString) : bool

+ saveConnection(QgsConnection) : bool

+ setSelected(QString, QString) : void

+ setSelectedType(QString) : void

«interface»

QgsDatabaseConnectionBase

mConnection: QgsConnection

mError: QString

+ connect() : bool

+ getError() : QString

+ getGeometryTables() : QStringList

+ getTableGeometry(QString) : QString

+ QgsDatabaseConnectionBase(QgsConnection)

+ ~QgsDatabaseConnectionBase()

QgsPostgresDatabaseConnection

- mColumnTypeThread: QgsGeomColumnTypeThread*

+ connect() : bool

- fullDescription(QString, QString, QString) : QString

- getGeometryColumnInfo(PGconn*, geomCol&, bool, bool) : bool

+ getGeometryTables() : QStringList

+ getTableGeometry(QString) : QString

- makeGeomQuery(QString, QString, QString) : QString

+ QgsPostgresDatabaseConnection(QgsConnection)

+ ~QgsPostgresDatabaseConnection()

std::list<geomPair >

«typedef»

QgsPostgresDatabaseConnection::

geomCol

std::pair<QString, QString>

«typedef»

QgsPostgresDatabaseConnection::

geomPair

QgsOgrDatabaseConnection

+ connect() : bool

+ getGeometryTables() : QStringList

+ getTableGeometry(QString) : QString

+ QgsOgrDatabaseConnection(QgsConnection)

+ ~QgsOgrDatabaseConnection()

«implements»

«implements»

#mConnection

Original Design

Comments by Martin Dobias:

On Nov 8, 2007 4:14 PM, godofredo contreras <frdcn@hotmail.com> wrote:

>

> The idea to keep qgsdatabaseconnectionbase and

> qgsconnectionmanager is to reuse

> this classes in the refactoring of spit and for the ogr plugin(layer cretion

> and utilities), If we move them to app

> how could we call that classes?

Ah, I thought that you would implement that loading of layers directly

in application and not as a plugin. Right if they're moved out of core

lib they're not accessible for providers/plugins.

Anyway, I still do not understand completely your design... and I fail

to find any information about it, how it will be bound to the rest of

QGIS and what will be changed.

QgsConnectionManager does some managing of connections. This class is

not well designed as it depends on all supported types of connections.

Imagine that we want to add native oracle connection - in that case we

would need to modify also this class - that's not very nice. My

suggestion is to make it more generic: all provider-specific stuff can

be propagated to the Qgs*DatabaseConnection classes.

E.g. QgsConnectionManager::connect() would get just one parameter:

pointer to QgsDatabaseConnectionBase and will do the connection. Or

QgsConnectionManager::saveConnection() won't have hardcoded 'baseKey'

for every type of connection but will ask for it using 'mConnection'

instance. Does this make sense for you?

> Also I was thinking in using a similar aproach to

> QgsVectorLayerin QgsDatabaseConnectionBase but

> checking the code I saw that QgsProviderRegistry::instance() gives access

> just to provider class not to other

> classes compiled in provider(assuming that we move

> qgspostgresdatabaseconnection and qgsogrdatabaseconnection to their

> respective

> provider), do you know if there are a form to access other classes in the

> provider in runtime?

I don't understand exactly the relation between Qgs*DatabaseConnection

and according provider so I don't know.

I hope you don't take my complains as a bad critism of your work - I

just try to keep core library in a good shape.

Martin

Changes made to classes according to Martin suggestions:

getBaseKey():QString method was added to QgsDatabaseConnectionBase.

Qgs*DatabaseConnection must report its base key.

QgsConnection structure name was changed to QgsConnectionParams to not being confused with database connections and being recognized as a storage of connection params.

BaseKey changed to: /databases/connectiontype so it could be managed in a generic form, in the case of adding a new type of connection, the name assigned to it must be the same that Qgs*DatabaseConnection will report in its getBaseKey method.

QgsConnectionManager name will be changed to QgsConnectionRegistry. This class will be used to save, modify and delete connection params from qgisregistry, as connection params I mean all the params needed to establish a connection (host, database , port, etc).

Note: The uml diagram with the new classes design is attached as a jpeg.

