<div dir="ltr"><br clear="all"><div><div dir="ltr" style="color:rgb(0,0,0)">Dear Colleagues,<br></div><div dir="ltr" style="color:rgb(0,0,0)"><div class="gmail_quote"><div dir="ltr"><div><br>In view of enhancing computation skills in the geographic domain, <a href="http://spatial-ecology.net/" target="_blank">Spatial Ecology</a> is organising a two-month training course: <a href="http://spatial-ecology.net/course-geocomputation-machine-learning-for-environmental-applications-intermediate-level-2023/" target="_blank"><span class="gmail-il">Geocomputation</span> and <span class="gmail-il">Machine</span> <span class="gmail-il">Learning</span> for <span class="gmail-il">Environmental</span> <span class="gmail-il">Applications</span></a>.<br><br>The course will be offered on-line with a supplementary 5-day (or 10-day) in-person segment at the University of Basilicata, in the magnificent town of <a href="https://www.google.com/maps/place/75100+Matera,+Province+of+Matera,+Italy/@40.6646012,16.5651092,13z/data=!3m1!4b1!4m5!3m4!1s0x13477ee2482b152b:0x8f6a4ae10da9360!8m2!3d40.666379!4d16.6043199" target="_blank" style="font-size:12.8px">Matera</a>, Italy. This is a wonderful opportunity for PhD students, Post-Docs and professionals to acquire advanced computational skills with a Linux computer.<br><br>Please forward to announce this opportunity within your network.<br><br>Sincerely, Giuseppe Amatulli & <span style="font-size:12.8px">Spatial Ecology – Team</span><span style="font-size:12.8px"><br></span></div><div><br></div><div><p><b><a href="http://spatial-ecology.net/course-geocomputation-machine-learning-for-environmental-applications-intermediate-level-2023/" target="_blank"><span class="gmail-il">Geocomputation</span> and <span class="gmail-il">Machine</span> <span class="gmail-il">Learning</span> for <span class="gmail-il">Environmental</span> <span class="gmail-il">Applications</span></a><span style="color:rgb(34,34,34)">.</span></b><b style="font-size:12.8px"> (April, May, June, 2023)</b><br></p><p style="font-size:12.8px">In this course, students will be introduced to an array of powerful open-source <span class="gmail-il">geocomputation</span> tools and <span class="gmail-il">machine</span> <span class="gmail-il">learning</span> methodologies under Linux environment. Students who have never been exposed to programming under Linux are expected to reach the stage where they feel confident in using very advanced open source data processing routines. Students with a precedent programming background will find the course beneficial in enhancing their programming skills for better modelling and coding proficiency. Our dual teaching aim is to equip attendees with powerful tools as well as rendering their abilities of continuing independent development afterwards. The acquired skills will be beneficial, not only for GIS related <span class="gmail-il">applications</span>, but also for general data processing and applied statistical computing in a number of fields. These essentially lay the foundation for career development as a data scientist in the geographic domain.<br></p><div style="font-size:12.8px"><p><br></p><p>More information and registration:<br></p><p><a href="http://www.spatial-ecology.net/" target="_blank">www.spatial-ecology.net</a> (Apply before Saturday 28 January 2023 for an early bird discount)<br>twitter: @BigDataEcology</p></div></div></div></div></div></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div>Giuseppe Amatulli, Ph.D.<br><br></div><div><font color="#000000">Twitter</font><span style="color:rgb(0,0,0)">: @BigDataEcology</span><br><div>
Teaching: <a href="http://spatial-ecology.net" target="_blank">http://spatial-ecology.net</a></div>
Work: <a href="https://environment.yale.edu/profile/giuseppe-amatulli/" target="_blank">https://environment.yale.edu/profile/giuseppe-amatulli/<br></a> <br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>