FDO 3.3 Metadata Tables in SQL Server 2008
October 20, 2008
1 FDO Metadata
There are a number of metadata tables that FDO creates within an FDO enabled database. The ones described here are the main ones that deal with information about FDO class definitions.
The information is this document refers to the FDO metadata used by FDO 3.3, which ships with Map3D 2009.

1.1 FDO Data Store, Users, and Schema

Through FDO, the Data Store is the concept that represents the repository of data that is accessed through the FDO API. Map uses a concept called a Feature Source which is its wrapper around an FDO Data Store.

For the FDO SQL Server Spatial Provider, here is the mapping between the FDO Data Store and user concepts and the corresponding SQL Server concepts.

	FDO Concept
	Implementation
	Description

	Data Store
	SQL Server Database
	The FDO Data Store is implemented as SQL Server database of the same name as the FDO Data Store. E.g. “CityCore”. The FDO metadata tables for this data store are created within this database. When new class definitions are created through FDO, the corresponding tables are created within this database.

	User
	SQL Server Login
	To access a data store, an end user must have a SQL Server userid and password assigned. FDO connects as this user and works within the privileges of that user. E.g. “Joe”. FDO gives this user xxx roles. A user can login either using Windows Authentication or using SQL Server login by providing their user id and password.

	Foreign table
	SQL Server table within a separate SQL Server database
	FDO has the ability to access existing tables that are in arbitrary SQL Server databases. For example, a class called Parcel in the CityCore data store may be represented by an existing table CityParcels within the database CityData, e.g. “[CityData].[dbo].[CityParcels]”.

	FDO Schema
	SQL Server Schema
	The FDO Schema concept is a namespace for FDO classes to categorize them. Examples of FDO schema are “LandUse”, “Water”, “Sewer”, etc. Classes could be “LandUse:Parcel”, “LandUse:Park”, “Water:Pipe”, “Water:Valve”, “Sewer:Pipe”.

1.2 FDO-Enabled and Native Data Stores

The FDO SQL Server Spatial provider can create new data stores as either FDO-enabled or not. If FDO-enabled, then FDO metadata tables are included in the database. If not FDO-enabled, these tables are not included.

1.3 Feature Tables

First, here is a description of a typical feature table and the columns that the FDO SQL Server Spatial provider includes when the table is created by FDO.

The easiest way to describe it is to look at an example.

CREATE TABLE [dbo].[parcels](

[classid] [bigint] NOT NULL,

[revisionnumber] [float] NOT NULL,

[geometry] [geometry] NULL,

[net_value] [int] NULL,

[imp_value] [int] NULL,

[land_value] [int] NULL,

[area] [float] NULL,

[acres] [float] NULL,

[apn] [nvarchar](255) NULL,

[stname] [nvarchar](255) NULL,

[address] [int] NULL,

[featid] [bigint] IDENTITY(1,1) NOT NULL,

 CONSTRAINT [pk_dbo_parcels] PRIMARY KEY CLUSTERED

(

[featid] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

This table contains all objects for parcel data. When creating parcel objects, this is the only place where you need to insert.

FDO creates one table for every feature class defined. Properties are mapped to columns. FDO tries to keep the same name, class name (table name and property name (column name. In cases where this isn’t possible, e.g. due to invalid SQL Server names, FDO mangles the name.
FDO supports inheritance of classes and the provider has a couple of ways to map that to physical schema. Currently, options include each concrete class gets its own table (the default) and parent and child classes put into the same table.
The FDO SQL Server provider adds the first two columns in the above table.

FEATID: This is the primary key of the record. The FDO provider auto-generates unique id values for this table, which is why it is tagged as an Identity column. You get this column by default for any class table created through Map/FDO/SQL Server.
CLASSID: This is the class id number for the object. It’s mostly important when a table includes objects from more than one class. The class id number for a class can be looked up in the F_CLASSDEFINITION table.

REVISIONNUMBER: This is a change sequence number, used for optimistic concurrency control. For inserting new records, set it to 0. If updating, increment by one.

Net_value, etc.: Regular properties.
GEOMETRY: Regular SQL Server Geometry. FDO creates a default spatial index for this column.
FDO can map classes onto existing tables. In those cases, columns CLASSID and REVISIONNUMBER are optional. If CLASSID is not included then all records in the table will apply to one class.

1.4 F_SchemaInfo

Some of our metadata tables are described next.

CREATE TABLE [dbo].[f_schemainfo](

[schemaname] [nvarchar](200) NOT NULL,

[description] [nvarchar](255) NULL,

[owner] [nvarchar](200) NOT NULL,

[creationdate] [datetime] NULL,

[schemaversionid] [decimal](5, 3) NOT NULL,

[tableowner] [nvarchar](128) NULL,

[tablelinkname] [nvarchar](128) NULL,

[tablemapping] [nvarchar](30) NULL

) ON [PRIMARY]

This table contains one record for each FDO schema that is defined for this data store. FDO includes a couple of internal schemas too. There is not too much interesting here except SCHEMANAME, DESCRIPTION, and OWNER.

	Column
	Type
	Description

	SchemaName
	nvarchar(200)
	Name of the FDO schema.

	Description
	nvarchar(255)
	Description of the schema.

	CreationDate
	datetime
	Date that the schema was created.

	Owner
	nvarchar(200)
	Owner of the schema, the data store name.

	SchemaVersionId
	decimal(5,3)
	Version number of the FDO metadata table schema. Current version is 3.

	TableOwner
	nvarchar(128)
	Owner of the root table if not the data store.

	TableLinkName
	nvarchar(128)
	Database link if needed to access the root table. Null if not using a database link.

	TableMapping
	nvarchar(30)
	The default table mapping to use for inherited classes, either ‘BASE’ or ‘CONCRETE’. The default if not set is ‘CONCRETE’.

1.5 F_ClassDefinition
REATE TABLE [dbo].[f_classdefinition](

[classid] [bigint] IDENTITY(1,1) NOT NULL,

[classname] [nvarchar](200) NOT NULL,

[schemaname] [nvarchar](200) NULL,

[tablename] [nvarchar](128) NULL,

[roottablename] [nvarchar](128) NULL,

[tableowner] [nvarchar](128) NULL,

[tablelinkname] [nvarchar](128) NULL,

[tablemapping] [nvarchar](128) NULL,

[classtype] [smallint] NOT NULL,

[description] [nvarchar](255) NULL,

[isabstract] [tinyint] NOT NULL,

[parentclassname] [varchar](512) NULL,

[isfixedtable] [tinyint] NULL,

[istablecreator] [tinyint] NULL,

[hasversion] [tinyint] NULL,

[haslock] [tinyint] NULL,

[geometryproperty] [nvarchar](4000) NULL

) ON [PRIMARY]

This contains one record for every class defined within this data store. The main properties to know about are CLASSID, CLASSNAME, SCHEMANAME, and TABLENAME. Note that SCHEMANAME is the FDO schema name. If using inheritance, the ISABTSTRACT and PARENTCLASSNAME are important. FDO includes a few other things here to help with existing schema.

	Column
	Type
	Description

	ClassId
	bigint
	Unique generated class id number.

	ClassName
	nvarchar(200)
	Name of the class, unique within Schema Name.

	SchemaName
	nvarchar(200)
	Name of the FDO schema of which owns this class definition.

	TableName
	nvarchar(128)
	Name of the physical table or view that provides the physical storage for the class data.

	RootTableName
	nvarchar(128)
	If the table is a view on a foreign table, then this specifies the actual table name. Null otherwise.

	TableOwner
	nvarchar(128)
	Owner of the table if the table is an existing table, Null otherwise.

	TableLinkName
	nvarchar(128)
	Name of database link if the table is accessed through a link, Null otherwise.

	TableMapping
	mvarchar(128)
	Table mapping option for inherited classes. Values are ‘BASE’ or ‘CONCRETE’ with the default being ‘CONCRETE’, i.e. each subclass will get its own separate table.

	ClassType
	smallint
	Type of FDO class. 2=feature class which is the class type to use for spatial features.

	Description
	nvarchar(255)
	Description of the class.

	IsAbstract
	tinyint
	1 = class is an abstract class, 0 = not.

	ParentClassName
	nvarchar(512)
	Class name of parent class. The class name is fully qualified with schema name, e.g. MySchema:Road. Null if no parent class.

	IsFixedTable
	tinyint
	1 = name of the table was specifically overridden by the application, so FDO will not change the table name. 0 = not fixed so FDO may generate a different name if the schema is applied to another data store.

	IsTableCreator
	tinyint
	1 = table was created by this FDO data store, 0 = not.

	HasVersion
	tinyint
	Not used currently. Reserved for future versioning support.

	HasLock
	tinyint
	Not used. Reserved for future persistent locking support.

	GeometryProperty
	nvarchar(4000)
	Name of the feature class’ main or default geometry property, Null if none. Spatial feature classes should have this set.

1.6 F_AttributeDefinition
CREATE TABLE [dbo].[f_attributedefinition](

[tablename] [nvarchar](128) NOT NULL,

[classid] [bigint] NOT NULL,

[columnname] [nvarchar](255) NOT NULL,

[attributename] [nvarchar](4000) NOT NULL,

[idposition] [smallint] NULL,

[columntype] [nvarchar](30) NOT NULL,

[columnsize] [bigint] NOT NULL,

[columnscale] [smallint] NULL,

[attributetype] [nvarchar](512) NOT NULL,

[geometrytype] [nvarchar](64) NULL,

[isnullable] [tinyint] NOT NULL,

[isfeatid] [tinyint] NOT NULL,

[issystem] [tinyint] NOT NULL,

[isreadonly] [tinyint] NOT NULL,

[isautogenerated] [tinyint] NULL,

[isrevisionnumber] [tinyint] NULL,

[sequencename] [nvarchar](30) NULL,

[owner] [nvarchar](200) NULL,

[description] [nvarchar](255) NULL,

[rootobjectname] [nvarchar](128) NULL,

[isfixedcolumn] [tinyint] NULL,

[iscolumncreator] [tinyint] NULL,

[haselevation] [tinyint] NULL,

[hasmeasure] [tinyint] NULL

) ON [PRIMARY]

This contains one record for every property of every class. The main properties to know about are TABLENAME, CLASSID, COLUMNNAME, and ATTRIBUTENAME.

	Column
	Type
	Description

	TableName
	nvarchar(128)
	Name of the physical table or view that provides the physical storage for the class data.

	ClassId
	bigint
	Unique generated class id number.

	ColumnName
	nvarchar(255)
	Name of the column within the table.

	AttributeName
	nvarchar(4000)
	Name of the FDO attribute or property.

	IdPosition
	smallint
	If the property is part of the primary key for the class, then this value is the position within the primary key, starting at 1. Null if not part of the primary key.

	ColumnType
	nvarchar(30)
	Type of the column.

	ColumnSize
	bigint
	Size of the column if the type requires it, e.g. string size or number size in number of digits.

	ColumnScale
	smallint
	If a number column, then this is the number of decimal digits.

	AttributeType
	nvarchar(512)
	FDO property type.

	GeometryType
	nvarchar(64)
	Detailed geometry types allowed for this column.

	IsNullable
	tinyint
	1 = value can be Null, 0 = not.

	IsFeatId
	tinyint
	1 = column is the feature id for feature classes.

	IsSystem
	tinyint
	1 = column is a system column, 0 = is not.

	IsReadOnly
	tinyint
	1 = column can be read but not updated, 0 = updatable.

	IsAutoGenerated
	tinyint
	If the column is a feature id, then 1 = column value is autogenerated by FDO for newly inserted objects.

	IsRevisionNumber
	tinyint
	Column is a revision number value.

	SequenceName
	nvarchar(30)
	Not used.

	Owner
	nvarchar(200)
	Owner of the column.

	Description
	nvarchar(255)
	Description of the column.

	RootObjectName
	nvarchar(128)
	If the table is a view on an existing table, then this specifies the actual table name. Null otherwise.

	IsFixedColumn
	tinyint
	1 = name of the column was specifically overridden by the application, so FDO will not change the column name. 0 = not fixed so FDO may generate a different name if the schema is applied to another data store.

	IsColumnCreator
	tinyint
	1 = column was created by this FDO data store, 0 = not.

	HasElevation
	tinyint
	For geometry properties, 1 = geometry has an elevation or Z dimension, 0 = not. Not used?

	HasMeasure
	tinyint
	For geometry properties, 1 = geometry has a measure dimension, 0 = not. Not used.

For 3rd party applications, given the description above about the columns that we add, they normally don’t need to worry too much about these metadata tables, unless they get into complex inheritance situations or existing schema situations. The main thing is to get the classid from the f_classdefinition table, but they can usually determine most of what they need from the SQL Server schema.

1.7 F_SpatialContext

CREATE TABLE [dbo].[f_spatialcontext](

[scid] [bigint] IDENTITY(0,1) NOT NULL,

[scname] [nvarchar](255) NOT NULL,

[description] [nvarchar](255) NULL,

[scgid] [bigint] NULL

) ON [PRIMARY]

This table contains a record for each FDO spatial context defined in the FDO data store. The FDO Sysadmin command creates by default spatial context 0 (SCID = 0). The corresponding coordinate system information for a spatial context is recorded in the F_SpatialContextGroup table record referenced by SCGID. A number of FDO spatial contexts can refer to the same spatial context group.

	Column
	Type
	Description

	SCId
	bigint
	ID of the spatial context, generated by FDO.

	SCName
	nvarchar(255)
	Name of the spatial context.

	Description
	nvarchar(255)
	Description of the spatial context.

	SCGId
	bigint
	Reference to the Spatial Context Group.

1.8 F_SpatialContextGroup

REATE TABLE [dbo].[f_spatialcontextgroup](

[scgid] [bigint] IDENTITY(0,1) NOT NULL,

[crsname] [nvarchar](255) NULL,

[crswkt] [nvarchar](2048) NULL,

[srid] [bigint] NULL,

[areaunit] [nvarchar](30) NULL,

[lengthunit] [nvarchar](30) NULL,

[positionxyunit] [nvarchar](30) NULL,

[positionzunit] [nvarchar](30) NULL,

[volumeunit] [nvarchar](30) NULL,

[measureunit] [nvarchar](30) NULL,

[xtolerance] [float] NOT NULL,

[ztolerance] [float] NULL,

[xmin] [float] NOT NULL,

[ymin] [float] NOT NULL,

[zmin] [float] NULL,

[xmax] [float] NOT NULL,

[ymax] [float] NOT NULL,

[zmax] [float] NULL,

[extenttype] [varchar](1) NOT NULL

) ON [PRIMARY]

This table contains a record for each group of FDO spatial contexts that use the same coordinate system definition. The FDO Sysadmin command creates spatial context group 0 (SCGID = 0) to contain the coordinate system information specified when the data store is created.
	Column
	Type
	Description

	SCGId
	bigint
	ID of the spatial context group, generated by FDO.

	CRSName
	nvarchar(255)
	Name of the coordinate system.

	CRSWkt
	nvarchar(2048)
	Copy of the coordinate system definition in wkt format.

	SRId
	bigint
	SRID of the coordinate system.

	AreaUnit
	nvarchar(30)
	

	LengthUnit
	nvarchar(30)
	

	PositionXYUnit
	nvarchar(30)
	

	PositionZUnit
	nvarchar(30)
	

	VolumeUnit
	nvarchar(30)
	

	MeasureUnit
	nvarchar(30)
	

	XTolerance
	float
	

	ZTolerance
	float
	

	XMin
	float
	Extent of the spatial context.

	YMin
	float
	

	ZMin
	float
	

	XMax
	float
	

	YMax
	float
	

	ZMax
	float
	

	ExtentType
	nvarchar(1)
	Static or Dynamic extent. Leave as NULL for Oracle.

1.9 F_SpatialContextGeom

CREATE TABLE [dbo].[f_spatialcontextgeom](

[scid] [bigint] NOT NULL,

[geomtablename] [nvarchar](128) NOT NULL,

[geomcolumnname] [nvarchar](128) NOT NULL,

[dimensionality] [smallint] NOT NULL

) ON [PRIMARY]

This table contains the relationship between geometry columns in feature tables and their corresponding spatial contexts. The column SCID references the spatial context in the F_SpatialContext table. GeomTableName and GeomColumnName refer to TableName and ColumnName in F_Attributedefinition.
	Column
	Type
	Description

	SCId
	bigint
	ID of the corresponding spatial context.

	GeomTableName
	nvarchar(128)
	Name of the table containing the geometry column.

	GeomColumnName
	nvarchar(128)
	Name of the geometry column.

	Dimensionality
	smallint
	Dimension of the corresponding geometry. This is a bit mask. 0=xy, 1=Z, 2=M. So XYZ would be 1, XYM would be 2, and XYZM would be 3.

2 Privileges
To create fdo user, a user must have either securityadmin or sysadmin privileges.

As for the database access, a user must have the following roles granted for the specific database:

Read-only user: db_datareader

Read-write user without schema modification: db_datareader, db_datawriter

These privileges are meant to allow the user to execute any FDO command. For customers that require users to have more limited privileges, alternate roles defined by customers can be used.
Here is the breakdown of privileges used for different user scenarios.

1. Privileges for creating FDO data store

2. Privileges for creating or modifying schema for an FDO data store.

3. Minimum privileges for accessing a data store for read and write but without modifying the schema.

4. Minimum privileges for reading a data store without updating it.

If a particular user will only be accessing one FDO data store, then they can have privileges restricted only to tables of that SQL Server database.
Here are the statements for creating new role and granting privileges for read/write FDO datastore access:

Autodesk, Inc.
1
2010-10-26

