[GRASS-SVN] r30200 - grass/trunk/raster/simwe/r.sim.water

svn_grass at osgeo.org svn_grass at osgeo.org
Sat Feb 16 22:46:52 EST 2008


Author: helena
Date: 2008-02-16 22:46:52 -0500 (Sat, 16 Feb 2008)
New Revision: 30200

Modified:
   grass/trunk/raster/simwe/r.sim.water/description.html
Log:
man page updates

Modified: grass/trunk/raster/simwe/r.sim.water/description.html
===================================================================
--- grass/trunk/raster/simwe/r.sim.water/description.html	2008-02-17 01:55:23 UTC (rev 30199)
+++ grass/trunk/raster/simwe/r.sim.water/description.html	2008-02-17 03:46:52 UTC (rev 30200)
@@ -9,9 +9,10 @@
 resolutions   (Mitas and Mitasova 1998).  The key inputs of the model include
 elevation (<i>elevin</i> raster map), flow gradient vector given by
 first-order partial derivatives of elevation field (<i>dxin</i> and <i>dyin</i> raster maps), rainfall
-excess rate (<i>rain</i> raster map) and a surface  roughness coefficient
-given by Manning's n (<i>manin</i> raster map). Partial
-derivatives raster maps can be computed along with the interpolation of a DEM using
+excess rate (<i>rain</i> raster map or <i>rain_val</i> single value) 
+and a surface  roughness coefficient given by Manning's n 
+(<i>manin</i> raster map or <i>manin_val</i> single value). Partial
+derivatives raster maps can be computed along with interpolation of a DEM using
 the -d option in <a href="v.surf.rst.html">
 v.surf.rst</a> module. If elevation raster is already provided, partial derivatives
 can  be computed using <a href="r.slope.aspect.html">r.slope.aspect</a> module. 
@@ -35,7 +36,8 @@
 For saturated  soil and steady-state  water flow it can be estimated  using
 saturated hydraulic  conductivity rates  based on field measurements or using
 reference values which can be found in literature.
-Optionally, user can provide a runoff infiltration rate map <i>infil</i> in [mm/hr]
+Optionally, user can provide an overland flow infiltration rate map 
+<i>infil</i> or a single value <i>infil_val</i> in [mm/hr]
 that control the rate of infiltration for the already flowing water, effectively 
 reducing the flow depth and discharge.
 Overland flow can be further controled by permeable check dams or similar type of structures,
@@ -50,16 +52,18 @@
 and err is its RMSE). The output vector points map <i>outwalk</i> can be used to analyze and visualize 
 spatial distribution of walkers at different simulation times (note that 
 the resulting water depth is based on the density of these walkers). Number 
-of the output walkers is controled by the <i>density</i> parameter, which says
-how many walkers used in simalution should be used in the output 
+of the output walkers is controled by the <i>density</i> parameter, which controls
+how many walkers used in simulation should be written into the output. 
 <!--(<font color="#ff0000"> toto treba upresnit/zmenit, lebo nwalk ide prec</font>). -->
 Duration of simulation is controled by the <i>niter</i> parameter.  The default value 
-is 1000 iterations, to reach the steady-state may require, depending on the time step,
-complexity of terrain and land cover and size of the area, several thousand iterations. 
-Output files can be saved during simulation using <i>outiter</i> parameter 
-defining the time step for writing output files. This  option requires 
-the time series flag <i>-t</i>. Files are saved with suffix  containing 
+is 10 minutes, reaching the steady-state may require much longer time, 
+depending on the time step, complexity of terrain, land cover and size of the area. 
+Output water depth and discharge maps can be saved during simulation using 
+the time series flag <i>-t</i> and <i>outiter</i> parameter 
+defining the time step in minutes for writing output files. 
+Files are saved with suffix  containing 
 iteration number (e.g. name.500, name.1000, etc.).<br>
+<P>
 Overland flow is routed based on partial derivatives  of elevation
 field or other landscape features influencing water flow. Simulation
 equations include a diffusion term (<i>diffc</i> parameter) which enables 
@@ -145,21 +149,24 @@
 Path sampling method for modeling overland water flow, sediment transport 
 and short term terrain evolution in Open Source GIS. 
 In: C.T. Miller, M.W. Farthing, V.G. Gray, G.F. Pinder eds., 
-Computational Methods in Water Resources, Elsevier.
+Proceedings of the XVth International Conference on Computational Methods in Water 
+Resources (CMWR XV), June 13-17 2004, Chapel Hill, NC, USA, Elsevier, pp. 1479-1490.
 <P>
 <a href="http://skagit.meas.ncsu.edu/~helena/gmslab/gisc00/duality.html">
- Mitasova H, Mitas, L., 2000, Modeling spatial processes in multiscale framework: exploring duality between particles and fields, plenary talk at GIScience2000 conference, Savannah, GA. </a>
+Mitasova H, Mitas, L., 2000, Modeling spatial processes in multiscale framework: 
+exploring duality between particles and fields, </a>
+plenary talk at GIScience2000 conference, Savannah, GA. 
 <P>
 Mitas, L., and Mitasova, H., 1998, Distributed soil erosion simulation 
-for effective erosion prevention. Water Resources Research, 34(3), 505-516.<p></p>
+for effective erosion prevention. Water Resources Research, 34(3), 505-516.
 <P>
- Mitasova, H., Mitas, L., 2001, Multiscale soil erosion simulations for land use management, 
+<a href="http://skagit.meas.ncsu.edu/~helena/gmslab/papers/LLEmiterev1.pdf">
+ Mitasova, H., Mitas, L., 2001, Multiscale soil erosion simulations for land use management, </a>
 In: Landscape erosion and landscape evolution modeling, Harmon R. and Doe W. eds., 
 Kluwer Academic/Plenum Publishers, pp. 321-347.
 <p>
 <a href="http://www.grassbook.org">
-Neteler, M. and Mitasova, H., 2004, Open Source GIS: A GRASS GIS Approach, Second Edition, </a> 
-Kluwer International Series in Engineering and Computer Science, 773, Kluwer Academic Press / Springer, 
-Boston, Dordrecht, 424 pages.
+Neteler, M. and Mitasova, H., 2008, Open Source GIS: A GRASS GIS Approach. Third Edition.</a>
+The International Series in Engineering and Computer Science: Volume 773. Springer New York Inc, p. 406.
 <P>
-Last changed: Date: 2003/11/01 15:55:10 $<p></p>
+Last changed: Date: 2008/02/16 15:55:10 $<p></p>



More information about the grass-commit mailing list