[GRASS-SVN] r31376 - in grass/trunk/raster: r.le/r.le.patch r.le/r.le.pixel r.le/r.le.setup r.le/r.le.trace r.mapcalc r.support/front r.univar2 r.watershed/front

svn_grass at osgeo.org svn_grass at osgeo.org
Fri May 16 14:40:49 EDT 2008


Author: epatton
Date: 2008-05-16 14:40:49 -0400 (Fri, 16 May 2008)
New Revision: 31376

Modified:
   grass/trunk/raster/r.le/r.le.patch/description.html
   grass/trunk/raster/r.le/r.le.pixel/description.html
   grass/trunk/raster/r.le/r.le.setup/description.html
   grass/trunk/raster/r.le/r.le.trace/description.html
   grass/trunk/raster/r.mapcalc/r.mapcalc.html
   grass/trunk/raster/r.support/front/description.html
   grass/trunk/raster/r.univar2/r.univar.html
   grass/trunk/raster/r.univar2/r3.univar.html
   grass/trunk/raster/r.watershed/front/description.html
Log:
Raster manpage HTML tags uniformily lowercased, part DEUX

Modified: grass/trunk/raster/r.le/r.le.patch/description.html
===================================================================
--- grass/trunk/raster/r.le/r.le.patch/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.le/r.le.patch/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,37 +1,37 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-The <EM>r.le.patch</EM> module calculates attribute, patch size, core
+The <em>r.le.patch</em> module calculates attribute, patch size, core
 (interior) size, shape, fractal dimension, and perimeter measures for sets
 of patches in a landscape.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Full instructions can be found in the <b>r.le manual</b> (see "REFERENCES"
-section below) and the <em><A HREF="r.le.setup.html">r.le.setup</A></em>
+section below) and the <em><a href="r.le.setup.html">r.le.setup</a></em>
 help page.
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Baker, W.L. and Y. Cai. 1992. The r.le programs for multiscale analysis of
 landscape structure using the GRASS geographical information system.
 Landscape Ecology 7(4):291-302.
-<P>
+<p>
 The <A href="http://grass.itc.it/gdp/landscape/r_le_manual5.pdf"><i>r.le</i>
 manual: Quantitative analysis of landscape structures</a> (GRASS 5; 2001)
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<!-- <A HREF="r.le.dist.html">r.le.dist</A>,
-<A HREF="r.le.null.html">r.le.null</A>, -->
-<A HREF="r.le.pixel.html">r.le.pixel</A>,
-<!-- <A HREF="r.le.rename.html">r.le.rename</A>, -->
-<A HREF="r.le.setup.html">r.le.setup</A>, 
-<A HREF="r.le.trace.html">r.le.trace</A></EM>
+<em>
+<!-- <a href="r.le.dist.html">r.le.dist</a>,
+<a href="r.le.null.html">r.le.null</a>, -->
+<a href="r.le.pixel.html">r.le.pixel</a>,
+<!-- <a href="r.le.rename.html">r.le.rename</a>, -->
+<a href="r.le.setup.html">r.le.setup</a>, 
+<a href="r.le.trace.html">r.le.trace</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 William L. Baker Department of Geography and Recreation University of
 Wyoming Laramie, Wyoming 82071 U.S.A.

Modified: grass/trunk/raster/r.le/r.le.pixel/description.html
===================================================================
--- grass/trunk/raster/r.le/r.le.pixel/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.le/r.le.pixel/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,36 +1,36 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-The <EM>r.le.pixel</EM> module contains a set of measures for attributes,
+The <em>r.le.pixel</em> module contains a set of measures for attributes,
 diversity, texture, juxtaposition, and edge.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Full instructions can be found in the <b>r.le manual</b> (see "REFERENCES"
-section below) and the <em><A HREF="r.le.setup.html">r.le.setup</A></em>
+section below) and the <em><a href="r.le.setup.html">r.le.setup</a></em>
 help page.
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Baker, W.L. and Y. Cai. 1992. The r.le programs for multiscale analysis of
 landscape structure using the GRASS geographical information system.
 Landscape Ecology 7(4):291-302.
-<P>
+<p>
 The <A href="http://grass.itc.it/gdp/landscape/r_le_manual5.pdf"><i>r.le</i>
 manual: Quantitative analysis of landscape structures</a> (GRASS 5; 2001)
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<!-- <A HREF="r.le.dist.html">r.le.dist</A>,
-<A HREF="r.le.null.html">r.le.null</A>, -->
-<A HREF="r.le.patch.html">r.le.patch</A>,
-<!-- <A HREF="r.le.rename.html">r.le.rename</A>, -->
-<A HREF="r.le.setup.html">r.le.setup</A>, 
-<A HREF="r.le.trace.html">r.le.trace</A></EM>
+<em>
+<!-- <a href="r.le.dist.html">r.le.dist</a>,
+<a href="r.le.null.html">r.le.null</a>, -->
+<a href="r.le.patch.html">r.le.patch</a>,
+<!-- <a href="r.le.rename.html">r.le.rename</a>, -->
+<a href="r.le.setup.html">r.le.setup</a>, 
+<a href="r.le.trace.html">r.le.trace</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 William L. Baker Department of Geography and Recreation University of
 Wyoming Laramie, Wyoming 82071 U.S.A.

Modified: grass/trunk/raster/r.le/r.le.setup/description.html
===================================================================
--- grass/trunk/raster/r.le/r.le.setup/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.le/r.le.setup/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,30 +1,30 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.le.setup</EM> program is used to set
+<em>r.le.setup</em> program is used to set
 up the sampling and analysis framework that will be used by the other
-<EM>r.le</EM> programs.
+<em>r.le</em> programs.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 <i>Full instructions can be found in the <b>r.le manual</b> (see "REFERENCES"
 section below).</i>
-<P>
+<p>
 
 The first menu allows the user to define a rectangular sampling frame, 
 select how sampling will be done (regions, sampling units, moving window), 
 setup the limits for groups and classes, and change the color table.  
 Use the left mouse button to make your choice.
 
-<P>
+<p>
 
 Information about the structure of the landscape is obtained by overlaying 
 a set of sampling areas on top of a specified part (the sampling frame of 
 a map layer, and then calculating specific structural measures for the part 
 of the map layer that corresponds to the area in each sampling area.  
 
-<P>
+<p>
 
-To setup a <EM><B>sampling frame</B></EM> click on SAMPLING FRAME in the 
+To setup a <em><b>sampling frame</b></em> click on SAMPLING FRAME in the 
 main menu.  The program will ask "Will the sampling frame (total area 
 within which sampling units are distributed) be the whole map? (y/n)  [y]"  
 Just hit a carriage return to accept the default, which is to use the 
@@ -40,9 +40,9 @@
 setup procedures unless you change it.  You can change it at any time by 
 simply clicking on SAMPLING FRAME again.  
 
-<P>
+<p>
 
-A <EM><B>sampling area</B></EM> may be one of four things.  First, it is 
+A <em><b>sampling area</b></em> may be one of four things.  First, it is 
 possible to treat the entire map layer as the one (and only) sampling area.  
 Second, if the map layer can be divided into meaningful geographical regions, 
 then it is possible to treat the regions themselves as sampling areas.  
@@ -51,16 +51,16 @@
 layer as a whole.  The fourth and final option is that the sampling area 
 may be moved systematically across the map as a moving window. 
 
-<P>
+<p>
 
 If regions are to be used as the sampling areas , then the user can use 
-<EM>r.le.setup</EM> to draw regions or any existing map of regions can 
+<em>r.le.setup</em> to draw regions or any existing map of regions can 
 simply be used directly.  To draw regions and create a new regions map 
-in <EM>r.le.setup</EM> select "REGIONS" from the first <EM>r.le.setup</EM> 
+in <em>r.le.setup</em> select "REGIONS" from the first <em>r.le.setup</em> 
 menu, and the user is asked to do the following:
 
-<DL>
-<PRE>
+<dl>
+<pre>
 1.  "ENTER THE NEW REGION MAP NAME:". Only a new raster map name is 
 acceptable. The user can type LIST to find out the existing raster map 
 names in this location and mapset.
@@ -75,48 +75,48 @@
 
 3. A "REGION OPTIONS:" menu is displayed and the user should use the mouse 
 to select one of
-   the options:<BR>
+   the options:<br>
 "DRAW MORE": repeat the above process and setup another region.
 "START OVER": abandon the previous setup and start all over again.
 "DONE-SAVE": save the regions outlined so far and exit this procedure.
 "QUIT-NO SAVE": quit the procedure without saving the regions.
-</PRE>
-</DL>
+</pre>
+</dl>
 
 Once the "DONE-SAVE" option is selected, the new raster map of the sampling 
 regions is generated. It is displayed on the monitor window for several 
 seconds, the monitor window is refreshed, the main menu is displayed again, 
 and the program is ready for other setup work.  Note that you cannot draw 
-regions in areas outside the mask, if a mask is present (see <EM>r.mask</EM> 
+regions in areas outside the mask, if a mask is present (see <em>r.mask</em> 
 command).
 
-<P>
+<p>
 
-The user can also use the GRASS <EM>r.digit</EM> or <EM>v.digit</EM> 
+The user can also use the GRASS <em>r.digit</em> or <em>v.digit</em> 
 programs to digitize circular or polygonal regions and to create a 
-sampling regions map without using <EM>r.le.setup</EM>.  Or, as mention 
+sampling regions map without using <em>r.le.setup</em>.  Or, as mention 
 above, an existing raster map can be used as a regions map.
 
-<P>
+<p>
 
 If sampling units are to be used as the sampling areas (Fig. 2), then 
-choose "SAMPLING UNITS" from the first <EM>r.le.setup</EM> menu.  
-The program checks the <EM>r.le.para</EM> subdirectory for an existing 
+choose "SAMPLING UNITS" from the first <em>r.le.setup</em> menu.  
+The program checks the <em>r.le.para</em> subdirectory for an existing 
 "units" file from a previous setup session and allows the user to rename 
 this file (to save it) before proceeding.  The r.le.setup program will 
 otherwise overwrite the "units" file.  Then the following choice is 
 displayed followed by a series of other choices:
 
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	Which do you want to do?
 	   (1) Use the keyboard to enter sampling unit parameters
 	   (2) Draw the sampling units with the mouse
 							Enter 1 or 2:
 
-</PRE>
-</DL>
+</pre>
+</dl>
 
 When sampling units are defined using the keyboard, the user inputs the 
 shape and size (scale) of the sampling units by specifying dimensions 
@@ -127,58 +127,58 @@
 can directly determine the method of sampling unit distribution as well 
 as the shape, size, and number of sampling units.
 
-<P>
+<p>
 
 If the choice is made to define sampling units using the keyboard, the 
 following series of questions must be answered:
 
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	How many different SCALES do you want (1-15)?
-</PRE>
-</DL>
+</pre>
+</dl>
 
 The user is asked to specify the number of scales that will be used.  
-The <EM>r.le</EM> programs allow the user to simultaneously sample the 
+The <em>r.le</em> programs allow the user to simultaneously sample the 
 same map with the same measures using sampling areas of different sizes.  
 Currently there can be between 1 and 15 scales that can be sampled 
 simultaneously. Substantial output can be produced if many scales are used.
 
-<P>
+<p>
 
 Sampling units must be placed spatially into the landscape.  There are 
 five options for doing this : 
 
-<P>
+<p>
 
-<EM>Random nonoverlapping</EM><BR>
+<em>Random nonoverlapping</em><br>
 Sampling units are placed in the landscape by randomly choosing numbers 
 that specify the location of the upper left corner of each sampling unit, 
 subject to the constraint that successive sampling units not overlap other 
 sampling units or the edge of the landscape, and that they must be entirely 
-within the area defined by the mask (see <EM>r.mask</EM> command) if one 
+within the area defined by the mask (see <em>r.mask</em> command) if one 
 exists.
 
-<P>
+<p>
 
-<EM>Systematic contiguous</EM><BR>
+<em>Systematic contiguous</em><br>
 Sampling units are placed side by side across the rows.  The user will 
 be able to enter a row and column to indicate where the upper left corner 
 of the systematic contiguous framework should be placed.  Rows are numbered 
 from the top down beginning with row 1 of the sampling frame.  Columns are 
 numbered from left to right, beginning with column 1 of the sampling frame.  
 A random starting location can be obtained by using a standard random 
-number table to choose the starting row and column.  The <EM>r.le.setup</EM> 
+number table to choose the starting row and column.  The <em>r.le.setup</em> 
 program does not avoid placing the set of sampling units over areas 
 outside the mask.  The user will have to make sure that sampling units do 
 not extend outside the mask by choosing a particular starting row and 
 column or by drawing a sampling frame before placing the set of sampling 
 units.
 
-<P>
+<p>
 
-<EM>Systematic noncontiguous</EM><BR>
+<em>Systematic noncontiguous</em><br>
 The user must specify the starting row and column as in #2 above and the 
 amount of spacing (in pixels) between sampling units.  Horizontal and 
 vertical spacing are identical.  Sampling units are again placed side by 
@@ -186,9 +186,9 @@
 placing sampling units outside the masked area; the user will have to 
 position the set of units to avoid areas outside the mask.
 
-<P>
+<p>
 
-<EM>Stratified random</EM><BR>
+<em>Stratified random</em><br>
 The strata are rectangular areas within which single sampling units 
 are randomly located.  The user must first specify the starting row 
 and column as in #2 above.  Then the user must specify the number of 
@@ -196,15 +196,15 @@
 does not avoid placing sampling units outside the masked area; the user 
 will have to position the set of units to avoid areas outside the mask.
 
-<P>
+<p>
 
-<EM>Centered over sites</EM><BR>
+<em>Centered over sites</em><br>
 The user must specify the name of a sitefile containing point locations.  
 A single sampling unit is placed with its center over each site in the site 
 file.  This is a useful approach for determining the landscape structure 
 around points, such as around the location of wildlife observations.
 
-<P>
+<p>
 
 The user is prompted to enter a ratio that defines the shape of the 
 sampling units.  Sampling units may have any rectangular shape, 
@@ -213,13 +213,13 @@
 dimension/vertical dimension) as a real number.  For example, to obtain 
 a sampling unit 10 columns wide by 4 rows long specify the ratio as 2.5 
 (10/4).
-<DL>
-<DD>
-<PRE>
-	Recommended maximum SIZE is m in x cell total area. <BR>
+<dl>
+<dd>
+<pre>
+	Recommended maximum SIZE is m in x cell total area. <br>
 	What size (in cells) for each sampling unit of scale n?
-</PRE>
-</DL>
+</pre>
+</dl>
 
 The user is then given the recommended maximum possible size for a 
 sampling unit (in pixels) and asked to input the size of sampling units 
@@ -229,16 +229,16 @@
 the size, the program determines the nearest actual number of rows and 
 columns, and hence size, that is closest to the requested size, given 
 the shape requested earlier.
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	The nearest size is x cells wide X y cells high = xy cells
 	Is this size OK?  (y/n)  [y]
 
 	Maximum NUMBER of units in scale n is p?
 	What NUMBER of sampling units do you want to try to use?
-</PRE>
-</DL>
+</pre>
+</dl>
 
 The maximum number of units that can be placed over the map, given the 
 shape and size of the units, is then given.  The user can then choose 
@@ -249,12 +249,12 @@
 the columns and down the rows.  The user can then specify a particular 
 layout (e.g., 6 units could be placed as 2 rows of 3 per row or as 3 
 rows of 2 per row).
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	Is this set of sampling units OK?  (y/n)  [y]
-</PRE>
-</DL>
+</pre>
+</dl>
 
 Finally, the set of sampling units is displayed on the screen (e.g., Fig. 1) 
 and the user is asked whether it is acceptable.  If the answer is no, then 
@@ -262,34 +262,34 @@
 the menu for "Methods of sampling unit distribution" so that the user can 
 try the sampling unit setup again.
 
-<P>
+<p>
 
 The choice is made to define sampling units using the mouse, then the 
 following menu for use with the mouse is displayed:
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	Outline the standard sampling unit of scale n.
 	   Left button:	Check unit size
 	   Middle button:	Move cursor
 	   Right button:	Lower right corner of unit here
-</PRE>
-</DL>
+</pre>
+</dl>
 
 The user can then use the mouse and the rubber band box to outline the 
 standard sampling unit.  Once it has been outlined, the number of columns 
 and rows in the unit, the ratio of width/length and the size of the unit, 
 in cells, will be displayed.  After this first unit is outlined, then a 
 new menu is displayed:
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	Outline more sampling units of scale n?
 	   Left button:	Exit
 	   Middle button:	Check unit position
 	   Right button:	Lower right corner of next unit here
-</PRE>
-</DL>
+</pre>
+</dl>
 
 The user can then place more units identical to the standard unit by 
 simply clicking the right mouse button where the lower right corner of 
@@ -300,7 +300,7 @@
 Warning messages are issued for all three of these errors and a sampling 
 unit is simply not placed.
 
-<P>
+<p>
 
 Using this procedure a rectangular "window" or single sampling area is 
 moved systematically across the map to produce a new map (Fig. 2,3).  
@@ -310,10 +310,10 @@
 when defining class or group limits (section 2.3.2.) is used if 
 distributional measures are chosen with the moving window sampling 
 method.  In this case, the user should manually edit the 
-<EM>r.le.para/recl_tb</EM> file so that the desired group is listed as 
+<em>r.le.para/recl_tb</em> file so that the desired group is listed as 
 the first group in this file. 
 
-<P>
+<p>
 
 Sampling begins with the upper left corner of the window placed over 
 the upper left corner of the sampling frame.  It is strongly recommended 
@@ -334,7 +334,7 @@
 are smaller by approximately (m-1)/2 rows and columns, where m is the 
 number of rows or columns in the window.  
 
-<P>
+<p>
 
 If the "MOVE-WINDOW" option in the main menu is selected, first the 
 program checks for an existing "move_wind" file, in the r.le.para 
@@ -347,123 +347,123 @@
 ideas about how moving window size and sampling frame area affect 
 the needed time to complete the analyses.
 
-<P>
+<p>
 
-The <EM>r.le</EM> programs <EM>r.le.dist</EM> and <EM>r.le.patch</EM> 
+The <em>r.le</em> programs <em>r.le.dist</em> and <em>r.le.patch</em> 
 allow the attribute categories in the input map to be reclassed into 
 several attribute groups, and reports the analysis results by each of 
 these attribute groups.  It is necessary to setup group limits for 
-all measures that say "by gp" when typing "<EM>r.le.dist help</EM>" 
-or "<EM>r.le.patch help</EM>" at the GRASS prompt.  The same reclassing 
+all measures that say "by gp" when typing "<em>r.le.dist help</em>" 
+or "<em>r.le.patch help</em>" at the GRASS prompt.  The same reclassing 
 can be done with the measurement indices (e.g., size), except that each 
 "cohort" (class) of the reclassed indices is called an index class 
 instead of a group.  It is also necessary to setup class limits for 
-all measures that say "by class" when typing "<EM>r.le.dist help</EM>" 
-or "<EM>r.le.patch help</EM>" at the GRASS prompt.  
+all measures that say "by class" when typing "<em>r.le.dist help</em>" 
+or "<em>r.le.patch help</em>" at the GRASS prompt.  
 
-<P>
+<p>
 
 Group/class limits are setup by choosing "GROUP/CLASS LIMITS" from the 
-main menu upon starting <EM>r.le.setup</EM>, or you can create the files 
+main menu upon starting <em>r.le.setup</em>, or you can create the files 
 manually using a text editor.  The program checks for existing group/class 
-limit files in subdirectory <EM>r.le.para</EM> and allows the user to 
+limit files in subdirectory <em>r.le.para</em> and allows the user to 
 rename these files prior to continuing.  If the files are not renamed 
 the program will overwrite them.  The files are named recl_tb (attribute 
 group limits), size (size class limits), shape_PA (shape index class 
 limits for perimeter/area index), shape_CPA (shape index class limits 
 for corrected perimeter/area index), shape_RCC (shape index class limits 
 for related circumscribing circle index), and from_to (for the 
-<EM>r.le.dist</EM> program distance methods m7-m9). 
+<em>r.le.dist</em> program distance methods m7-m9). 
 
-<P>
+<p>
 
 Attribute groups and index classes are defined in a different way.  
-In the <EM>r.le</EM> programs attribute groups are defined as in the 
+In the <em>r.le</em> programs attribute groups are defined as in the 
 following example:
-<DL>
-<DD>
-<PRE>
-	1, 3, 5, 7, 9 <B>thru</B> 21 = 1 (comment)
-	31 <B>thru</B> 50 = 2 (comment)
-	<B>end</B>
-</PRE>
-</DL>
+<dl>
+<dd>
+<pre>
+	1, 3, 5, 7, 9 <b>thru</b> 21 = 1 (comment)
+	31 <b>thru</b> 50 = 2 (comment)
+	<b>end</b>
+</pre>
+</dl>
 
 In this example, the existing categories 1, 3, 5, 7, {9, 10, ... 20, 21} 
 are included in the new group 1, while {31, 32, 33, ..., 49, 50} are 
 included in the new group 2.  The characters in bold are the "key words" 
 that are required in the definition.  Each line is called one "reclass rule".
 
-<P>
+<p>
 
 The GRASS reclass convention is adopted here with a little modification 
-(see "<EM>r.reclass</EM>" command in the GRASS User's Manual).  
+(see "<em>r.reclass</em>" command in the GRASS User's Manual).  
 The difference is that r.le only allows one rule for each group while the 
-GRASS <EM>r.reclass</EM> command allows more than one. The definition of 
+GRASS <em>r.reclass</em> command allows more than one. The definition of 
 "from" and "to" groups is simply the extension of the GRASS reclass rule.  
 The advantage of using the GRASS reclass convention is that the user can
 generate a permanent reclassed map, using GRASS programs, directly from the 
-<EM>r.le</EM> setup results.
+<em>r.le</em> setup results.
 
-<P>
+<p>
 
-The <EM>r.le</EM> measurement index classes are defined by the lower 
+The <em>r.le</em> measurement index classes are defined by the lower 
 limits of the classes, as in the following example:
-<DL>
-<DD>
-<PRE>
-	0.0, 10.0, 50.0, 200.0, <B>-999</B>
-</PRE>
-</DL>
+<dl>
+<dd>
+<pre>
+	0.0, 10.0, 50.0, 200.0, <b>-999</b>
+</pre>
+</dl>
 
 This means: 
-<DL>
-<DD>
-<PRE>
+<dl>
+<dd>
+<pre>
 	if v &gt;= 0.0 and v &lt; 10.0 then  v belongs to index class 1;
 	if v &gt;= 10.0 and v &lt; 50.0 then  v belongs to index class 2;
 	if v &gt;= 50.0 and v &lt; 200.0 then v belongs to index class 3;
 	if v &gt;= 200.0 then v belongs to index class 4;
-</PRE>
-</DL>
+</pre>
+</dl>
 
-where v is the calculated index value and <B>-999</B> marks the end of 
+where v is the calculated index value and <b>-999</b> marks the end of 
 the index class definition. The measurement index can be the size index, 
 one of the three shape indices, or one of the three distance indices.  
 The program is currently designed to allow no more than 25 attribute 
 groups, 25 size classes, 25 shape index classes, and 25 distance index 
 classes.  As an alternative, the user may want to permanently group 
-certain attributes prior to entering the <EM>r.le</EM> programs.  
+certain attributes prior to entering the <em>r.le</em> programs.  
 For example, the user may want to group attributes 1-10, in a map whose 
 attributes are ages, into a single attribute representing young patches.  
-The user can do this using the GRASS <EM>r.reclass</EM> and 
-<EM>r.resample</EM> commands, which will create a new map layer that can 
+The user can do this using the GRASS <em>r.reclass</em> and 
+<em>r.resample</em> commands, which will create a new map layer that can 
 then be analyzed directly (without setting up group limits) with the 
-<EM>r.le</EM> programs.
+<em>r.le</em> programs.
 
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Baker, W.L. and Y. Cai. 1992. The r.le programs for multiscale analysis of
 landscape structure using the GRASS geographical information system.
 Landscape Ecology 7(4):291-302.
-<P>
+<p>
 The <A href="http://grass.itc.it/gdp/landscape/r_le_manual5.pdf"><i>r.le</i>
 manual: Quantitative analysis of landscape structures</a> (GRASS 5; 2001)
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<!-- <A HREF="r.le.dist.html">r.le.dist</A>,
-<A HREF="r.le.null.html">r.le.null</A>, -->
-<A HREF="r.le.patch.html">r.le.patch</A>,
-<A HREF="r.le.pixel.html">r.le.pixel</A>,
-<!-- <A HREF="r.le.rename.html">r.le.rename</A>, -->
-<A HREF="r.le.trace.html">r.le.trace</A></EM>
+<em>
+<!-- <a href="r.le.dist.html">r.le.dist</a>,
+<a href="r.le.null.html">r.le.null</a>, -->
+<a href="r.le.patch.html">r.le.patch</a>,
+<a href="r.le.pixel.html">r.le.pixel</a>,
+<!-- <a href="r.le.rename.html">r.le.rename</a>, -->
+<a href="r.le.trace.html">r.le.trace</a></em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 William L. Baker Department of Geography and Recreation University of
 Wyoming Laramie, Wyoming 82071 U.S.A.

Modified: grass/trunk/raster/r.le/r.le.trace/description.html
===================================================================
--- grass/trunk/raster/r.le/r.le.trace/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.le/r.le.trace/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,40 +1,40 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-The <EM>r.le.trace</EM> module can be used to display the boundary of each
+The <em>r.le.trace</em> module can be used to display the boundary of each
 <b>r.le</b> patch and show how the boundary is traced, display the attribute,
 size, perimeter, and shape indices for each patch, and save the data in an
 output file.
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
 Full instructions can be found in the <b>r.le manual</b> (see "REFERENCES"
-section below) and the <em><A HREF="r.le.setup.html">r.le.setup</A></em>
+section below) and the <em><a href="r.le.setup.html">r.le.setup</a></em>
 help page.
 
 
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 Baker, W.L. and Y. Cai. 1992. The r.le programs for multiscale analysis of
 landscape structure using the GRASS geographical information system.
 Landscape Ecology 7(4):291-302.
-<P>
+<p>
 The <A href="http://grass.itc.it/gdp/landscape/r_le_manual5.pdf"><i>r.le</i>
 manual: Quantitative analysis of landscape structures</a> (GRASS 5; 2001)
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
-<!--<A HREF="r.le.dist.html">r.le.dist</A>,
-<A HREF="r.le.null.html">r.le.null</A>, -->
-<A HREF="r.le.patch.html">r.le.patch</A>,
-<A HREF="r.le.pixel.html">r.le.pixel</A>,
-<!-- <A HREF="r.le.rename.html">r.le.rename</A>, -->
-<A HREF="r.le.setup.html">r.le.setup</A> 
-</EM>
+<em>
+<!--<a href="r.le.dist.html">r.le.dist</a>,
+<a href="r.le.null.html">r.le.null</a>, -->
+<a href="r.le.patch.html">r.le.patch</a>,
+<a href="r.le.pixel.html">r.le.pixel</a>,
+<!-- <a href="r.le.rename.html">r.le.rename</a>, -->
+<a href="r.le.setup.html">r.le.setup</a> 
+</em>
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 William L. Baker Department of Geography and Recreation University of
 Wyoming Laramie, Wyoming 82071 U.S.A.

Modified: grass/trunk/raster/r.mapcalc/r.mapcalc.html
===================================================================
--- grass/trunk/raster/r.mapcalc/r.mapcalc.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.mapcalc/r.mapcalc.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -7,41 +7,41 @@
 </head>
 <body bgcolor="white">
 <img src="grass_logo.png" alt="GRASS logo"><hr align=center size=6 noshade>
-<H2>NAME</H2>
-<EM><B>r.mapcalc</B></EM>
-<H2>DESCRIPTION</H2>
-<EM>r.mapcalc</EM> performs arithmetic on raster map layers.
+<h2>NAME</h2>
+<em><b>r.mapcalc</b></em>
+<h2>DESCRIPTION</h2>
+<em>r.mapcalc</em> performs arithmetic on raster map layers.
 New raster map layers can be created which are arithmetic expressions
 involving existing raster map layers, integer or floating point constants,
 and functions.
-<H2>PROGRAM USE</H2>
-If used without command line arguments, <EM>r.mapcalc</EM> will read its
+<h2>PROGRAM USE</h2>
+If used without command line arguments, <em>r.mapcalc</em> will read its
 input, one line at a time, from standard input
 (which is the keyboard, unless redirected from a file or across a pipe).
 Otherwise, the expression on the command line is evaluated.
-<EM>r.mapcalc</EM> expects its input to have the form:
-<P>
-<B>result=</B><EM>expression</EM>
-<P>
-where <EM>result</EM> is the name of a raster map layer
+<em>r.mapcalc</em> expects its input to have the form:
+<p>
+<b>result=</b><em>expression</em>
+<p>
+where <em>result</em> is the name of a raster map layer
 to contain the result of the calculation and
-<EM>expression</EM> is any legal arithmetic expression involving existing
+<em>expression</em> is any legal arithmetic expression involving existing
 raster map layers, integer or floating point constants,
 and functions known to the calculator.
 Parentheses are allowed in the expression and may be nested to any depth.
-<EM>result</EM> will be created in the user's current mapset.
-<P>
-The formula entered to <EM>r.mapcalc</EM> by the user is recorded both in the
-<EM>result</EM> map title (which appears in the category file for <EM>result</EM>)
-and in the history file for <EM>result</EM>.
-<P>
+<em>result</em> will be created in the user's current mapset.
+<p>
+The formula entered to <em>r.mapcalc</em> by the user is recorded both in the
+<em>result</em> map title (which appears in the category file for <em>result</em>)
+and in the history file for <em>result</em>.
+<p>
 Some characters have special meaning to the command shell. If the user
-is entering input to <EM>r.mapcalc</EM> on the command line, expressions
+is entering input to <em>r.mapcalc</em> on the command line, expressions
 should be enclosed within single quotes.  See NOTES, below.
-<P>
-<H2>OPERATORS AND ORDER OF PRECEDENCE</H2>
+<p>
+<h2>OPERATORS AND ORDER OF PRECEDENCE</h2>
 The following operators are supported:
-<div class="code"><PRE>
+<div class="code"><pre>
      Operator   Meaning                    Type        Precedence
      --------------------------------------------------------------
      -          negation                   Arithmetic  12
@@ -69,111 +69,111 @@
      ||         logical or                 Logical      2
      |||        logical or[1]              Logical      2
      ?:         conditional                Logical      1
-</PRE></div>
+</pre></div>
 (modulus is the remainder upon division)
-<P>
+<p>
 [1] The &amp;&amp;&amp; and ||| operators handle null values differently to other
 operators. See the section entitled <b>NULL support</b> below for more
 details.
-<P>
+<p>
 The operators are applied from left to right, with those of higher precedence
 applied before those with lower precedence.
 Division by 0 and modulus by 0 are acceptable and give a NULL result.
 The logical operators give a 1 result if the comparison is true, 0 otherwise.
-<P>
-<P>
-<H2>RASTER MAP LAYER NAMES</H2>
+<p>
+<p>
+<h2>RASTER MAP LAYER NAMES</h2>
 Anything in the expression which is not a number, operator, or function name
 is taken to be a raster map layer name.
 Examples:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 elevation
 x3
 3d.his
-</PRE></div>
-<P>
+</pre></div>
+<p>
 Most GRASS raster map layers meet this naming convention.
 However, if a raster map layer has a name which conflicts with the
 above rule, it should be quoted.  For example, the expression
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 x = a-b
-</PRE></div>
-<P>
+</pre></div>
+<p>
 would be interpreted as:  x equals a minus b, whereas
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 x = "a-b"
-</PRE></div>
-<P>
-would be interpreted as:  x equals the raster map layer named <EM>a-b</EM>
-<P>
+</pre></div>
+<p>
+would be interpreted as:  x equals the raster map layer named <em>a-b</em>
+<p>
 Also
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 x = 3107
-</PRE></div>
-<P>
-would create <EM>x</EM> filled with the number 3107, while
-<P>
-<div class="code"><PRE>
+</pre></div>
+<p>
+would create <em>x</em> filled with the number 3107, while
+<p>
+<div class="code"><pre>
 x = "3107"
-</PRE></div>
-<P>
-would copy the raster map layer <EM>3107</EM> to the raster map layer <EM>x</EM>.
+</pre></div>
+<p>
+would copy the raster map layer <em>3107</em> to the raster map layer <em>x</em>.
 
-<P>
+<p>
 Quotes are not required unless the raster map layer names
 look like numbers or contain operators, OR unless the program
 is run non-interactively.  Examples given here assume the
 program is run interactively.  See NOTES, below.
-<P>
-<EM>r.mapcalc</EM> will look for the raster map layers according to the
+<p>
+<em>r.mapcalc</em> will look for the raster map layers according to the
 user's current mapset search path.
 It is possible to override the search path and specify the mapset
 from which to select the raster map layer.
 This is done by specifying the raster map layer name in the form:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 name at mapset
-</PRE></div>
-<P>
+</pre></div>
+<p>
 For example, the following is a legal expression:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 result = x at PERMANENT / y at SOILS
-</PRE></div>
-<P>
+</pre></div>
+<p>
 The mapset specified does not have to be in the mapset search path.
 (This method of overriding the mapset search path is common to all
-GRASS commands, not just <EM>r.mapcalc</EM>.)
-<P>
-<H2>THE NEIGHBORHOOD MODIFIER</H2>
+GRASS commands, not just <em>r.mapcalc</em>.)
+<p>
+<h2>THE NEIGHBORHOOD MODIFIER</h2>
 Maps and images are data base files stored in raster format, i.e.,
 two-dimensional matrices of integer values.
-In <EM>r.mapcalc</EM>, maps may be followed by a <EM>neighborhood</EM> modifier that
+In <em>r.mapcalc</em>, maps may be followed by a <em>neighborhood</em> modifier that
 specifies a relative offset from the current cell being evaluated.  The format is
-<EM>map[r,c]</EM>, where <EM>r</EM> is the row offset and <EM>c</EM> is the column offset.
-For example, <EM>map[1,2]</EM> refers to the cell one row below and two columns
-to the right of the current cell, <EM>map[-2,-1]</EM> refers to the cell
+<em>map[r,c]</em>, where <em>r</em> is the row offset and <em>c</em> is the column offset.
+For example, <em>map[1,2]</em> refers to the cell one row below and two columns
+to the right of the current cell, <em>map[-2,-1]</em> refers to the cell
 two rows above and one column to the left of the current cell,
-and <EM>map[0,1]</EM> refers to the cell one column to the right of the current cell.
+and <em>map[0,1]</em> refers to the cell one column to the right of the current cell.
 This syntax permits the development of neighborhood-type filters within a single
 map or across multiple maps.
 
-<P>
-<H2>RASTER MAP LAYER VALUES FROM THE CATEGORY FILE</H2>
+<p>
+<h2>RASTER MAP LAYER VALUES FROM THE CATEGORY FILE</h2>
 Sometimes it is desirable to use a value associated with a category's
-<EM>label</EM> instead of the category value itself.  If a raster
-map layer name is preceded by the <B>@</B>
+<em>label</em> instead of the category value itself.  If a raster
+map layer name is preceded by the <b>@</b>
 operator, then the labels in the category file for the raster map layer
 are used in the expression instead of the category value.
-<P>
-For example, suppose that the raster map layer <EM>soil.ph</EM>
+<p>
+For example, suppose that the raster map layer <em>soil.ph</em>
 (representing soil pH values) has a category file with labels as follows:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 cat	label
 ------------------
 0	no data
@@ -184,17 +184,17 @@
 5	7.2
 6	8.8
 7	9.4
-</PRE></div>
-<P>
+</pre></div>
+<p>
 Then the expression:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 result = @soils.ph
-</PRE></div>
-<P>
+</pre></div>
+<p>
 would produce a result with category values
 0, 1.4, 2.4, 3.5, 5.8, 7.2, 8.8 and 9.4.
-<P>
+<p>
 Note that this operator may only be applied to raster map layers
 and produces a floating point value in the expression.
 Therefore, the category label must start with a valid number.
@@ -202,96 +202,96 @@
 a floating point number. I the category label does not start
 with a number or is missing, it will be represented by NULL
 (no data) in the resulting raster map. 
-<H2>GREY SCALE EQUIVALENTS AND COLOR SEPARATES</H2>
+<h2>GREY SCALE EQUIVALENTS AND COLOR SEPARATES</h2>
 It is often helpful to manipulate the colors assigned to map categories.
 This is particularly useful when the spectral properties of cells have meaning
 (as with imagery data), or when the map category values represent real
 quantities (as when category values reflect true elevation values).
 Map color manipulation can also aid visual recognition, and map printing.
-<P>
+<p>
 The # operator can be used to either convert map category values to their
 grey scale equivalents or to extract the red, green, or blue components
 of a raster map layer into separate raster map layers.
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 result = #map
-</PRE></div>
-<P>
-converts each category value in <EM>map</EM> to a value in the range 0-255 which
+</pre></div>
+<p>
+converts each category value in <em>map</em> to a value in the range 0-255 which
 represents the grey scale level implied by the color for the category.
 If the map has a grey scale color table, then the grey level is what
 #map evaluates to.  Otherwise, it is computed as:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
  0.10 * red + 0.81 * green + 0.01 * blue
-</PRE></div>
-<P>
+</pre></div>
+<p>
 Alternatively, you can use:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 result = y#map
-</PRE></div>
-<P>
+</pre></div>
+<p>
 to use the NTSC weightings:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
  0.30 * red + 0.59 * green + 0.11 * blue
-</PRE></div>
-<P>
+</pre></div>
+<p>
 Or, you can use:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 result = i#map
-</PRE></div>
-<P>
+</pre></div>
+<p>
 to use equal weightings:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
  0.33 * red + 0.33 * green + 0.33 * blue
-</PRE></div>
-<P>
+</pre></div>
+<p>
 The # operator has three other forms:  r#map, g#map, b#map.
 These extract the red, green, or blue components in the named raster map,
-respectively.  The GRASS shell script <EM><A HREF="r.blend.html">r.blend</A></EM> extracts each of these
+respectively.  The GRASS shell script <em><a href="r.blend.html">r.blend</a></em> extracts each of these
 components from two raster map layers, and combines them by a user-specified
 percentage.
 These forms allow color separates to be made.  For example, to
-extract the red component from <EM>map</EM>
-and store it in the new 0-255 map layer <EM>red</EM>,
+extract the red component from <em>map</em>
+and store it in the new 0-255 map layer <em>red</em>,
 the user could type:
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 red = r#map
-</PRE></div>
-<P>
+</pre></div>
+<p>
 To assign this map grey colors type:
-<P>
-<div class="code"><PRE>
-<A HREF="r.colors.html">r.colors</A> map=red color=rules
+<p>
+<div class="code"><pre>
+<a href="r.colors.html">r.colors</a> map=red color=rules
 black
 white
-</PRE></div>
-<P>
+</pre></div>
+<p>
 To assign this map red colors type:
-<P>
-<div class="code"><PRE>
-<A HREF="r.colors.html">r.colors</A> map=red color=rules
+<p>
+<div class="code"><pre>
+<a href="r.colors.html">r.colors</a> map=red color=rules
 black
 red
-</PRE></div>
-<P>
-<H2>FUNCTIONS</H2>
+</pre></div>
+<p>
+<h2>FUNCTIONS</h2>
 The functions currently supported are listed in the table below.
 The type of the result is indicated in the last column.
-<EM>F</EM>
+<em>F</em>
 means that the functions always results in a floating point value,
-<EM>I</EM>
+<em>I</em>
 means that the function gives an integer result, and
-<EM>*</EM>
+<em>*</em>
 indicates that the result is float if any of the arguments to the function
 are floating point values and integer if all arguments are integer.
-<P>
-<div class="code"><PRE>
+<p>
+<div class="code"><pre>
 function		description					type
 ---------------------------------------------------------------------------
 abs(x)			return absolute value of x			*
@@ -327,8 +327,8 @@
 sqrt(x)			square root of x				F
 tan(x)			tangent of x (x is in degrees)			F
 xor(x,y)		exclusive-or (XOR) of x and y			I
-</PRE></div>
-<div class="code"><PRE>
+</pre></div>
+<div class="code"><pre>
 Internal variables:
  row()                  current row of moving window
  col()                  current col of moving window
@@ -337,14 +337,14 @@
  ewres()                current east-west resolution
  nsres()                current north-south resolution
  null()                 NULL value
-</PRE></div>
+</pre></div>
 Note, that the row() and col() indexing starts with 1.
-<H2>FLOATING POINT VALUES IN THE EXPRESSION</H2>
+<h2>FLOATING POINT VALUES IN THE EXPRESSION</h2>
 Floating point numbers are allowed in the expression. A floating point
 number is a number which contains a decimal point:
-<div class="code"><PRE>
+<div class="code"><pre>
     2.3   12.0   12.   .81
-</PRE></div>
+</pre></div>
 Floating point values in the expression are handled in a special way.
 With arithmetic and logical operators, if either operand is float,
 the other is converted to float and the result of the operation is float.
@@ -352,35 +352,35 @@
 (truncated) integer, while division of floats results in an accurate
 floating point value.  With functions of type * (see table above),
 the result is float if any argument is float, integer otherwise.
-<P>
+<p>
 Note: If you calculate with integer numbers, the resulting map will
 be integer. If you want to get a float result, add the decimal point
 to integer number(s).
-<P>
+<p>
 If you want floating point division, at least one of the arguments has
 to be a floating point value. Multiplying one of them by 1.0 will
 produce a floating-point result, as will using float():
-<div class="code"><PRE>
+<div class="code"><pre>
       r.mapcalc "ndvi=float(lsat.4 - lsat.3) / (lsat.4 + lsat.3)"
-</PRE></div>
-<H2>NULL support</H2>
+</pre></div>
+<h2>NULL support</h2>
 <menu>
 <li>Division by zero should result in NULL. 
 <li>Modulus by zero should result in NULL. 
 <li>     NULL-values in any arithmetic or logical operation should result
          in NULL. (however, &amp;&amp;&amp; and ||| are treated specially, as described below).
 <li>	 The &amp;&amp;&amp; and ||| operators observe the following axioms even when x is NULL:
-<div class="code"><PRE>
+<div class="code"><pre>
 	x &&& false == false
 	false &&& x == false
 	x ||| true == true
 	true ||| x == true
-</PRE></div>
+</pre></div>
 <li>     NULL-values in function arguments should result in NULL (however,
          if(), eval() and isnull() are treated specially, as described below).
 <li>	 The eval() function always returns its last argument
 <li>	 The situation for if() is:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(x) 
 	NULL if x is NULL; 0 if x is zero; 1 otherwise 
 if(x,a) 
@@ -390,19 +390,19 @@
 if(x,n,z,p) 
 	NULL if x is NULL; n if x is negative; 
 z if x is zero; p if x is positive 
-</PRE></div>
+</pre></div>
 <li>     The (new) function isnull(x) returns: 1 if x is NULL; 
          0 otherwise. The (new) function null() 
          (which has no arguments) returns an integer NULL. 
 <li>Non-NULL, but invalid, arguments to functions should result in NULL. 
-<div class="code"><PRE>
+<div class="code"><pre>
 Examples: 
 log(-2) 
 sqrt(-2) 
 pow(a,b) where a is negative and b is not an integer 
-</PRE></div>
+</pre></div>
 </menu>
-<P>
+<p>
 NULL support: Please note that any math performed with NULL cells always
 results in a NULL value for these cells. If you want to replace a NULL cell
 on-the-fly, use the isnull() test function in a if-statement.
@@ -410,40 +410,40 @@
 Example: The users wants the NULL-valued cells to be treated like zeros. To
 add maps A and B (where B contains NULLs) to get a map C the user can use a
 construction like:<p>
-<div class="code"><PRE>
+<div class="code"><pre>
 C=A + if(isnull(B),0,B)
-</PRE></div>
+</pre></div>
 <p>
 <b>NULL and conditions:</b>
 <p>
 For the one argument form:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(x) = NULL		if x is NULL
 if(x) = 0		if x = 0
 if(x) = 1		otherwise (i.e. x is neither NULL nor 0).
-</PRE></div>
+</pre></div>
 <p>
 For the two argument form:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(x,a) = NULL		if x is NULL
 if(x,a) = 0		if x = 0
 if(x,a) = a		otherwise (i.e. x is neither NULL nor 0).
-</PRE></div>
+</pre></div>
 <p>
 For the three argument form:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(x,a,b) = NULL	if x is NULL
 if(x,a,b) = b		if x = 0
 if(x,a,b) = a		otherwise (i.e. x is neither NULL nor 0).
-</PRE></div>
+</pre></div>
 <p>
 For the four argument form:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(x,a,b,c) = NULL	if x is NULL
 if(x,a,b,c) = a		if x > 0
 if(x,a,b,c) = b		if x = 0
 if(x,a,b,c) = c		if x < 0
-</PRE></div>
+</pre></div>
 More generally, all operators and most functions return NULL if *any*
 of their arguments are NULL.
 <br>
@@ -456,7 +456,7 @@
 All forms of if() return NULL if the first argument is NULL. The 2, 3
 and 4 argument forms of if() return NULL if the "selected" argument is
 NULL, e.g.:
-<div class="code"><PRE>
+<div class="code"><pre>
 if(0,a,b) = b	regardless of whether a is NULL
 if(1,a,b) = a	regardless of whether b is NULL
 </pre></div>
@@ -472,31 +472,31 @@
 unknown quantity. E.g. if x and y are both unknown, then the values of
 "x == y" and "x != y" are also unknown; if they both have unknown
 values, the user doesn't know whether or not they both have the same value.
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 To compute the average of two raster map layers
-<EM>a</EM> and <EM>b</EM>:
-<div class="code"><PRE>
+<em>a</em> and <em>b</em>:
+<div class="code"><pre>
 ave = (a + b)/2
 </pre></div>
 To form a weighted average:
-<div class="code"><PRE>
+<div class="code"><pre>
 ave = (5*a + 3*b)/8.0
 </pre></div>
 To produce a binary representation of the raster map layer
-<EM>a</EM> so that category 0 remains 0 and all other categories become 1:
-<div class="code"><PRE>
+<em>a</em> so that category 0 remains 0 and all other categories become 1:
+<div class="code"><pre>
 mask = a != 0
 </pre></div>
 This could also be accomplished by:
-<div class="code"><PRE>
+<div class="code"><pre>
 mask = if(a)
 </pre></div>
-To mask raster map layer <EM>b</EM> by raster map layer <EM>a</EM>:
-<div class="code"><PRE>
+To mask raster map layer <em>b</em> by raster map layer <em>a</em>:
+<div class="code"><pre>
 result = if(a,b)
 </pre></div>
 To change all values below 5 to NULL:
-<div class="code"><PRE>
+<div class="code"><pre>
 newmap = if(map&lt;5, null(), 5)
 </pre></div>
 The graph function allows users to specify a x-y conversion using 
@@ -512,11 +512,11 @@
 the associated y value returned.  Any x value higher than the last
 will similarly have the associated y value returned.  Consider the
 request:
-<div class="code"><PRE>
+<div class="code"><pre>
 newmap = graph(map, 1,10, 2,25, 3,50)
 </pre></div>
 X (map) values supplied and y (newmap) values returned:
-<div class="code"><PRE>
+<div class="code"><pre>
 0, 10
 1, 10,
 1.5, 16.5
@@ -524,98 +524,98 @@
 4, 50
 100, 50
 </pre></div>
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 Extra care must be taken if the expression is given on the command line.
 Some characters have special meaning to the UNIX shell.
 These include, among others:
-<P>
+<p>
 * ( ) &gt; &amp; |
-<P>
+<p>
 It is advisable to put single quotes around the expression; e.g.:
-<div class="code"><PRE>
+<div class="code"><pre>
 result = 'elevation * 2'
 </pre></div>
 Without the quotes, the *, which has special meaning to the UNIX shell,
-would be altered and <EM>r.mapcalc</EM> would see something other than the *.
-<P>
-If the input comes directly from the keyboard and the <EM>result</EM> raster
+would be altered and <em>r.mapcalc</em> would see something other than the *.
+<p>
+If the input comes directly from the keyboard and the <em>result</em> raster
 map layer exists, the user will be asked if it can be overwritten.
-Otherwise, the <EM>result</EM> raster map layer will automatically be
+Otherwise, the <em>result</em> raster map layer will automatically be
 overwritten if it exists.
-<P>
-Quoting <EM>result</EM> is not allowed.
-However, it is never necessary to quote <EM>result</EM> since
+<p>
+Quoting <em>result</em> is not allowed.
+However, it is never necessary to quote <em>result</em> since
 it is always taken to be a raster map layer name.
-<P>
+<p>
 For formulas that the user enters from standard input
 (rather than from the command line), a line continuation feature now exists.
-If the user adds \e to the end of an input line, <EM>r.mapcalc</EM> assumes that
+If the user adds \e to the end of an input line, <em>r.mapcalc</em> assumes that
 the formula being entered by the user continues on to the next input line.
 There is no limit to the possible number of input lines
 or to the length of a formula.
-<P>
-If the <EM>r.mapcalc</EM> formula entered by the user is very long,
+<p>
+If the <em>r.mapcalc</em> formula entered by the user is very long,
 the map title will contain only some of it, but most (if not all) of
-the formula will be placed into the history file for the <EM>result</EM> map.
-<P>
-When the user enters input to <EM>r.mapcalc</EM> non-interactively on
+the formula will be placed into the history file for the <em>result</em> map.
+<p>
+When the user enters input to <em>r.mapcalc</em> non-interactively on
 the command line, the program will not warn the user not to overwrite
 existing map layers.  Users should therefore take care to assign program
 outputs raster map names that do not yet exist in their current mapsets.
-<P>
+<p>
 The environment variable GRASS_RND_SEED is read to initialise the
 random number generator.
-<H2>BUGS</H2>
+<h2>BUGS</h2>
 Continuation lines must end with a \ and have NO trailing white space
 (blanks or tabs).  If the user does leave white space at the end of
-continuation lines, the error messages produced by <EM>r.mapcalc</EM> will
+continuation lines, the error messages produced by <em>r.mapcalc</em> will
 be meaningless and the equation will not work as the user intended.
 This is important for the eval() function.
-<P>
-Error messages produced by <EM>r.mapcalc</EM> are almost useless.
-In future, <EM>r.mapcalc</EM> should make some attempt
+<p>
+Error messages produced by <em>r.mapcalc</em> are almost useless.
+In future, <em>r.mapcalc</em> should make some attempt
 to point the user to the offending section of the equation, e.g.:
-<div class="code"><PRE>
+<div class="code"><pre>
 x = a * b ++ c
 ERROR: somewhere in line 1: ...  b ++ c ...
 </pre></div>
-<P>
-Currently, there is no comment mechanism in <EM>r.mapcalc</EM>.
+<p>
+Currently, there is no comment mechanism in <em>r.mapcalc</em>.
 Perhaps adding a capability that would cause the entire line to be
 ignored when the user inserted a # at the start of a line
 as if it were not present, would do the trick.
-<P>
+<p>
 The function should require the user to type "end" or "exit" instead
 of simply a blank line. This would make separation of multiple scripts
 separable by white space.
-<P>
+<p>
 r.mapcalc does not print a warning in case of operations on NULL cells.
 It is left to the user to utilize the isnull() function.
-<H2>SEE ALSO</H2>
-<B><A HREF="http://grass.itc.it/gdp/raster/mapcalc-algebra.pdf">r.mapcalc: An Algebra for GIS and Image
-Processing</A></B>, by Michael Shapiro and Jim Westervelt, U.S. Army
+<h2>SEE ALSO</h2>
+<b><a href="http://grass.itc.it/gdp/raster/mapcalc-algebra.pdf">r.mapcalc: An Algebra for GIS and Image
+Processing</a></b>, by Michael Shapiro and Jim Westervelt, U.S. Army
 Construction Engineering Research Laboratory (March/1991).
-<P> 
-<B><A HREF="http://grass.itc.it/gdp/raster/mapcalc.pdf">Performing Map Calculations on GRASS Data:
-r.mapcalc Program Tutorial</A></B>, by Marji Larson, Michael Shapiro and Scott
+<p> 
+<b><a href="http://grass.itc.it/gdp/raster/mapcalc.pdf">Performing Map Calculations on GRASS Data:
+r.mapcalc Program Tutorial</a></b>, by Marji Larson, Michael Shapiro and Scott
 Tweddale, U.S. Army Construction Engineering Research Laboratory (December
 1991)
 <p>
 Grey scale conversion is based on the C.I.E. x,y,z system where y represents
 luminance.  See "Fundamentals of Digital Image Processing,"
 by Anil K. Jain (Prentice Hall, NJ, 1989; p 67).
-<P>
-<EM>
-<A HREF="g.region.html">g.region</A>,
-<A HREF="r.bitpattern.html">r.bitpattern</A>,
-<A HREF="r.blend.html">r.blend</A>,
-<A HREF="r.colors.html">r.colors</A>,
-<A HREF="r.fillnulls.html">r.fillnulls</A>
-</EM>
-<H2>AUTHORS</H2>
+<p>
+<em>
+<a href="g.region.html">g.region</a>,
+<a href="r.bitpattern.html">r.bitpattern</a>,
+<a href="r.blend.html">r.blend</a>,
+<a href="r.colors.html">r.colors</a>,
+<a href="r.fillnulls.html">r.fillnulls</a>
+</em>
+<h2>AUTHORS</h2>
 Michael Shapiro, U.S.Army Construction Engineering 
 Research Laboratory
-<P>
+<p>
 Glynn Clements
 <p><i>Last changed: $Date$</i>
 </body>

Modified: grass/trunk/raster/r.support/front/description.html
===================================================================
--- grass/trunk/raster/r.support/front/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.support/front/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -11,7 +11,7 @@
 module will run  non-interactively. If only the map name is given
 <em>r.support</em> will run interactively within a terminal shell and the
 user with be prompted for input.
-<P>
+<p>
 Freeform metadata information is stored in a "<tt>hist</tt>" file which may be
 appended to by using the <b>history</b> option. Currently this is limited to
 50 lines of text with a maximum line length of 78 characters. Any input
@@ -32,8 +32,8 @@
 
 <h2>AUTHORS</h2>
 
-Micharl Shapiro, CERL: Original author<BR>
-<a href="MAILTO:rez at touchofmadness.com">Brad Douglas</a>: GRASS 6 Port<BR>
+Micharl Shapiro, CERL: Original author<br>
+<a href="MAILTO:rez at touchofmadness.com">Brad Douglas</a>: GRASS 6 Port<br>
 M. Hamish Bowman: command line enhancements<br>
 Markus Neteler: category copy from other map
 

Modified: grass/trunk/raster/r.univar2/r.univar.html
===================================================================
--- grass/trunk/raster/r.univar2/r.univar.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.univar2/r.univar.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.univar</EM> calculates the univariate statistics of a raster map.
+<em>r.univar</em> calculates the univariate statistics of a raster map.
 This includes the number of cells counted, minimum and maximum cell values,
 range, arithmetic mean, population variance, standard deviation, and 
 coefficient of variation.
@@ -9,45 +9,45 @@
 If the <b>-g</b> flag is given the results are presented in a format suitable
 for use in a shell script.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-As with most GRASS raster modules, <EM>r.univar</EM> operates on the cell
+As with most GRASS raster modules, <em>r.univar</em> operates on the cell
 array defined by the current region settings, not the original extent and
-resolution of the input map. See <em><A HREF="g.region.html">g.region</A></em>.
-<P>
+resolution of the input map. See <em><a href="g.region.html">g.region</a></em>.
+<p>
 This module can use large amounts of system memory when the <b>-e</b>
 extended statistics flag is used with a very large region setting. If the
 region is too large the module should exit gracefully with a memory allocation
 error. Basic statistics can be calculated using any size input region.
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 <i>mode, skewness, kurtosis</i>
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="g.region.html">g.region</A><br>
-<A HREF="r3.univar.html">r3.univar</A><br>
-<A HREF="r.univar.sh.html">r.univar.sh</A><br>
-<A HREF="r.average.html">r.average</A><br>
-<A HREF="r.median.html">r.median</A><br>
-<A HREF="r.mode.html">r.mode</A><br>
-<A HREF="r.sum.html">r.sum</A><br>
-<A HREF="r.series.html">r.series</A><br>
-<A HREF="r.stats.html">r.stats</A><br>
-<A HREF="r.statistics.html">r.statistics</A><br>
-<A HREF="v.univar.html">v.univar</A><br>
-<A HREF="v.univar.sh.html">v.univar.sh</A><br>
+<a href="g.region.html">g.region</a><br>
+<a href="r3.univar.html">r3.univar</a><br>
+<a href="r.univar.sh.html">r.univar.sh</a><br>
+<a href="r.average.html">r.average</a><br>
+<a href="r.median.html">r.median</a><br>
+<a href="r.mode.html">r.mode</a><br>
+<a href="r.sum.html">r.sum</a><br>
+<a href="r.series.html">r.series</a><br>
+<a href="r.stats.html">r.stats</a><br>
+<a href="r.statistics.html">r.statistics</a><br>
+<a href="v.univar.html">v.univar</a><br>
+<a href="v.univar.sh.html">v.univar.sh</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
-Hamish Bowman, Otago University, New Zealand<BR>
+Hamish Bowman, Otago University, New Zealand<br>
 Extended statistics by Martin Landa
 
 <p>

Modified: grass/trunk/raster/r.univar2/r3.univar.html
===================================================================
--- grass/trunk/raster/r.univar2/r3.univar.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.univar2/r3.univar.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,6 +1,6 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r3.univar</EM> calculates the univariate statistics for raster3d maps.
+<em>r3.univar</em> calculates the univariate statistics for raster3d maps.
 This includes the number of cells counted, minimum and maximum cell values,
 range, arithmetic mean, population variance, standard deviation, and 
 coefficient of variation.
@@ -9,47 +9,47 @@
 If the <b>-g</b> flag is given the results are presented in a format suitable
 for use in a shell script.
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-As with most GRASS raster3d modules, <EM>r3.univar</EM> operates on the cell
+As with most GRASS raster3d modules, <em>r3.univar</em> operates on the cell
 array defined by the current 3d region settings, not the original extent and
-resolution of the input map. See <em><A HREF="g.region.html">g.region</A></em>.
-<P>
+resolution of the input map. See <em><a href="g.region.html">g.region</a></em>.
+<p>
 This module can use large amounts of system memory when the <b>-e</b>
 extended statistics flag is used with a very large region setting. If the
 region is too large the module should exit gracefully with a memory allocation
 error. Basic statistics can be calculated using any size input region.
 
 
-<H2>TODO</H2>
+<h2>TODO</h2>
 
 <i>mode, skewness, kurtosis</i>
 
 
 
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
 <em>
-<A HREF="g.region.html">g.region</A><br>
-<A HREF="r.univar.html">r.univar</A><br>
-<A HREF="r.univar.sh.html">r.univar.sh</A><br>
-<A HREF="r.average.html">r.average</A><br>
-<A HREF="r.median.html">r.median</A><br>
-<A HREF="r.mode.html">r.mode</A><br>
-<A HREF="r.sum.html">r.sum</A><br>
-<A HREF="r.series.html">r.series</A><br>
-<A HREF="r.stats.html">r.stats</A><br>
-<A HREF="r.statistics.html">r.statistics</A><br>
-<A HREF="v.univar.html">v.univar</A><br>
-<A HREF="v.univar.sh.html">v.univar.sh</A><br>
+<a href="g.region.html">g.region</a><br>
+<a href="r.univar.html">r.univar</a><br>
+<a href="r.univar.sh.html">r.univar.sh</a><br>
+<a href="r.average.html">r.average</a><br>
+<a href="r.median.html">r.median</a><br>
+<a href="r.mode.html">r.mode</a><br>
+<a href="r.sum.html">r.sum</a><br>
+<a href="r.series.html">r.series</a><br>
+<a href="r.stats.html">r.stats</a><br>
+<a href="r.statistics.html">r.statistics</a><br>
+<a href="v.univar.html">v.univar</a><br>
+<a href="v.univar.sh.html">v.univar.sh</a><br>
 </em>
 
 
-<H2>AUTHORS</H2>
+<h2>AUTHORS</h2>
 
 Soeren Gebbert<br>
 Code is based on r.univar from<br>
-Hamish Bowman, Otago University, New Zealand<BR>
+Hamish Bowman, Otago University, New Zealand<br>
 and Martin Landa
 
 

Modified: grass/trunk/raster/r.watershed/front/description.html
===================================================================
--- grass/trunk/raster/r.watershed/front/description.html	2008-05-16 18:39:44 UTC (rev 31375)
+++ grass/trunk/raster/r.watershed/front/description.html	2008-05-16 18:40:49 UTC (rev 31376)
@@ -1,107 +1,107 @@
-<H2>DESCRIPTION</H2>
+<h2>DESCRIPTION</h2>
 
-<EM>r.watershed</EM> generates a set of maps indicating:
+<em>r.watershed</em> generates a set of maps indicating:
 1) the location of watershed basins, and
 2) the LS and S factors of the Revised Universal Soil Loss Equation (RUSLE).
 
-<P>
+<p>
 <!-- Interactive mode not activated in GRASS 6.
-<EM>r.watershed</EM> can be run either interactively or non-interactively.
+<em>r.watershed</em> can be run either interactively or non-interactively.
 If the user types <tt>r.watershed</tt>
 on the command line without program arguments, the program will prompt the user
 with a verbose description of the input maps.  The interactive version of
-<EM>r.watershed</EM> can prepare inputs to lumped-parameter hydrologic models.
-After a verbose interactive session, <EM>r.watershed</EM> will query the user
+<em>r.watershed</em> can prepare inputs to lumped-parameter hydrologic models.
+After a verbose interactive session, <em>r.watershed</em> will query the user
 for a number of
 map layers.  Each map layer's values will be tabulated by watershed basin and sent
 to an output file.  This output file is organized to ease data entry into a
 lumped-parameter hydrologic model program.  The non-interactive version of
-<EM>r.watershed</EM> cannot create this file.
+<em>r.watershed</em> cannot create this file.
 
-<P>
+<p>
 The user can run the program non-interactively, by specifying input map names
 on the command line. Parameter names may be specified by their
 full names, or by any initial string that distinguish them from other parameter names.
-In <EM>r.watershed</EM>'s case, the first two letters of each name sufficiently
+In <em>r.watershed</em>'s case, the first two letters of each name sufficiently
 distinguishes parameter names.
-For example, the two expressions below are equivalent inputs to <EM>r.watershed</EM>:
-<P>
-<PRE>
+For example, the two expressions below are equivalent inputs to <em>r.watershed</em>:
+<p>
+<pre>
  el=elev.map th=100 st=stream.map ba=basin.map
 
  elevation=elev.map threshold=100 stream=stream.map basin=basin.map
-</PRE>
+</pre>
 -->
-<H2>OPTIONS</H2>
+<h2>OPTIONS</h2>
 
 <dl>
-<DT><EM>-m</EM> 
+<dt><em>-m</em> 
 
-<DD>Without this flag set, the entire analysis is run in memory
+<dd>Without this flag set, the entire analysis is run in memory
 maintained by the operating system.  This can be limiting, but is
 relatively fast.  Setting the flag causes the program to manage memory
 on disk which allows larger maps to be processes but is considerably
 slower.
 
-<DT><EM>-4</EM> 
+<dt><em>-4</em> 
 
-<DD>Allow only horizontal and vertical flow of water.
+<dd>Allow only horizontal and vertical flow of water.
 Stream and slope lengths are approximately the same as outputs from default surface
 flow (allows horizontal, vertical, and diagonal flow of water).
 This flag will also make the drainage basins look more homogeneous.
 
-<DT><EM>elevation</EM> 
+<dt><em>elevation</em> 
 
-<DD>Input map: Elevation on which entire analysis is based.
+<dd>Input map: Elevation on which entire analysis is based.
 
-<DT><EM>depression</EM> 
+<dt><em>depression</em> 
 
-<DD>Input map:  Map layer of actual depressions or sinkholes in the
+<dd>Input map:  Map layer of actual depressions or sinkholes in the
 landscape that are large enough to slow and store surface runoff from 
 a storm event.  Any non-zero values indicate depressions.
 
-<DT><EM>flow</EM> 
+<dt><em>flow</em> 
 
-<DD>Input map: amount of overland flow per cell.  This map indicates the
+<dd>Input map: amount of overland flow per cell.  This map indicates the
 amount of overland flow units that each cell will contribute to the
 watershed basin model.  Overland flow units represent the amount of
 overland flow each cell contributes to surface flow.  If omitted, a
 value of one (1) is assumed. The algorithm is D8 flow accumulation.
 
-<DT><EM>disturbed.land</EM> 
+<dt><em>disturbed.land</em> 
 
-<DD>Raster map input layer or value containing the percent of disturbed
+<dd>Raster map input layer or value containing the percent of disturbed
 land (i.e., croplands, and construction sites) where the raster or input
-value of 17 equals 17%.  If no map or value is given, <EM>r.watershed</EM>
+value of 17 equals 17%.  If no map or value is given, <em>r.watershed</em>
 assumes no disturbed land.  This input is used for the RUSLE calculations.
 
-<DT><EM>blocking</EM> 
+<dt><em>blocking</em> 
 
-<DD>Input map: terrain that will block overland surface flow.  Terrain
+<dd>Input map: terrain that will block overland surface flow.  Terrain
 that will block overland surface flow and restart the slope length
 for the RUSLE.  Any non-zero values indicate blocking terrain.
 
-<DT><EM>threshold</EM> 
+<dt><em>threshold</em> 
 
-<DD>The minimum size of an exterior watershed basin in cells, if no flow
+<dd>The minimum size of an exterior watershed basin in cells, if no flow
 map is input, or overland flow units when a flow map is given.
 Warning: low threshold values will dramactically increase run time and
 generate difficult too read basin and half.basin results.
 This parameter also controls the level of detail in the <em>stream</em>
 segments map.
 
-<DT><EM>max.slope.length</EM> 
+<dt><em>max.slope.length</em> 
 
-<DD>Input value indicating the maximum length of overland surface flow
+<dd>Input value indicating the maximum length of overland surface flow
 in meters.  If overland flow travels greater than the maximum length,
 the program assumes the maximum length (it assumes that landscape
 characteristics not discernible in the digital elevation model exist
 that maximize the slope length).  This input is used for the RUSLE calculations
 and is a sensitive parameter.
 
-<DT><EM>accumulation</EM> 
+<dt><em>accumulation</em> 
 
-<DD>Output map: The absolute value of each cell in this output map layer is
+<dd>Output map: The absolute value of each cell in this output map layer is
 the amount of overland flow that traverses the cell. This value will be
 the number of upland cells plus one if no overland flow map is given. If
 the overland flow map is given, the value will be in overland flow units.
@@ -110,9 +110,9 @@
 negative values cannot have their surface runoff and sedimentation yields
 calculated accurately.
 
-<DT><EM>drainage</EM> 
+<dt><em>drainage</em> 
 
-<DD>Output map: drainage direction.  Provides the "aspect" for each
+<dd>Output map: drainage direction.  Provides the "aspect" for each
 cell.  Multiplying positive values by 45 will give the direction in
 degrees that the surface runoff will travel from that cell.  The
 value -1 indicates that the cell is a depression area (defined by
@@ -121,124 +121,124 @@
 region.  The absolute value of these negative cells indicates the
 direction of flow.
 
-<DT><EM>basin</EM> 
+<dt><em>basin</em> 
 
-<DD>Output map: Unique label for each watershed basin.  Each basin will
+<dd>Output map: Unique label for each watershed basin.  Each basin will
 be given a unique positive even integer.  Areas along edges may not
 be large enough to create an exterior watershed basin.  0 values
 indicate that the cell is not part of a complete watershed basin
 in the current geographic region.
 
-<DT><EM>stream</EM> 
+<dt><em>stream</em> 
 
-<DD>Output map: stream segments.  Values correspond to the watershed
+<dd>Output map: stream segments.  Values correspond to the watershed
 basin values.
 
-<DT><EM>half.basin</EM> 
+<dt><em>half.basin</em> 
 
-<DD>Output map: each half-basin is given a unique value.  Watershed
+<dd>Output map: each half-basin is given a unique value.  Watershed
 basins are divided into left and right sides.  The right-hand side
 cell of the watershed basin (looking upstream) are given even values
 corresponding to the values in basin.  The left-hand side
 cells of the watershed basin are given odd values which are one less
 than the value of the watershed basin.
 
-<DT><EM>visual</EM> 
+<dt><em>visual</em> 
 
-<DD>Output map: useful for visual display of results.
+<dd>Output map: useful for visual display of results.
 Surface runoff accumulation with the values
 modified to provide for easy display.  All negative accumulation values
 are changed to zero.  All positive values above the basin threshold
 are given the value of the <em>threshold</em> parameter.
 
-<DT><EM>length.slope</EM> 
+<dt><em>length.slope</em> 
 
-<DD>Output map: slope length and steepness (LS) factor.  Contains the LS
+<dd>Output map: slope length and steepness (LS) factor.  Contains the LS
 factor for the Revised Universal Soil Loss Equation.  Equations taken
-from <EM>Revised Universal Soil Loss Equation for Western Rangelands</EM>
+from <em>Revised Universal Soil Loss Equation for Western Rangelands</em>
 (Weltz et al. 1987).
 Since the LS factor is a small number, it is multiplied by 100 for the
 GRASS output map.
 
-<DT><EM>slope.steepness</EM> 
+<dt><em>slope.steepness</em> 
 
-<DD>Output map: slope steepness (S) factor for RUSLE.
+<dd>Output map: slope steepness (S) factor for RUSLE.
 Contains the revised S factor for the Universal Soil
 Loss Equation.  Equations taken from article entitled
-<EM>Revised Slope Steepness Factor for the Universal Soil
-Loss Equation</EM> (McCool et al. 1987).  Since the S factor
+<em>Revised Slope Steepness Factor for the Universal Soil
+Loss Equation</em> (McCool et al. 1987).  Since the S factor
 is a small number (usually less than one), it is multiplied
 by 100 for the GRASS output map layer.
 </dd>
 </dl>
 
 
-<H2>NOTES</H2>
+<h2>NOTES</h2>
 
-<EM>r.watershed</EM> uses an algorithm designed to minimize the impact of
-DEM data errors. This algorithm works slower than <EM>r.terraflow</EM> but
+<em>r.watershed</em> uses an algorithm designed to minimize the impact of
+DEM data errors. This algorithm works slower than <em>r.terraflow</em> but
 provides more accurate results in areas of low slope as well as DEMs
 constructed with techniques that mistake canopy tops as the ground elevation.
 Kinner et al. (2005), for example, used SRTM and IFSAR DEMs to compare
-<EM>r.watershed</EM> against <EM>r.terraflow</EM> results in Panama.
-<EM>r.terraflow</EM> was unable to replicate stream locations in the larger
-valleys while  <EM>r.watershed</EM> performed much better. Thus, if forest
+<em>r.watershed</em> against <em>r.terraflow</em> results in Panama.
+<em>r.terraflow</em> was unable to replicate stream locations in the larger
+valleys while  <em>r.watershed</em> performed much better. Thus, if forest
 canopy exists in valleys, SRTM, IFSAR, and similar data products will cause
-major errors in <EM>r.terraflow</EM> stream output. Under similar conditions,
-<EM>r.watershed</EM> will generate better <b>stream</b> and <b>half.basin</b>
-results. If watershed divides contain flat to low slope, <EM>r.watershed</EM>
-will generate better basin results than <EM>r.terraflow</EM>.
-(<EM>r.terraflow</EM> uses the same type of algorithm as ESRI's ArcGIS
+major errors in <em>r.terraflow</em> stream output. Under similar conditions,
+<em>r.watershed</em> will generate better <b>stream</b> and <b>half.basin</b>
+results. If watershed divides contain flat to low slope, <em>r.watershed</em>
+will generate better basin results than <em>r.terraflow</em>.
+(<em>r.terraflow</em> uses the same type of algorithm as ESRI's ArcGIS
 watershed software which fails under these conditions.) Also, if watershed
 divides contain forest canopy mixed with uncanopied areas using SRTM, IFSAR,
-and similar data products, <EM>r.watershed</EM> will generate better basin
-results than <EM>r.terraflow</EM>.
+and similar data products, <em>r.watershed</em> will generate better basin
+results than <em>r.terraflow</em>.
 
-<P>
-There are two versions of this program: <EM>ram</EM> and <EM>seg</EM>.
-Which is version is run depends on whether the <EM>-m</EM> flag is set.
-<BR>
-The <EM>ram</EM> version uses virtual memory managed by the operating
-system to store all the data structures and is faster than the <EM>seg</EM>
+<p>
+There are two versions of this program: <em>ram</em> and <em>seg</em>.
+Which is version is run depends on whether the <em>-m</em> flag is set.
+<br>
+The <em>ram</em> version uses virtual memory managed by the operating
+system to store all the data structures and is faster than the <em>seg</em>
 version;
-<EM>seg</EM> uses the GRASS segmentation library which manages data in disk
-files. Thus <EM>seg</EM> uses much less system memory (RAM) allowing other
+<em>seg</em> uses the GRASS segmentation library which manages data in disk
+files. Thus <em>seg</em> uses much less system memory (RAM) allowing other
 processes to operate on the same CPU, even when the current geographic
 region is huge.
-<BR>
+<br>
 Due to memory requirements of both programs, it is quite easy to run out of
-memory when working with huge map regions. If the <EM>ram</EM> version runs
+memory when working with huge map regions. If the <em>ram</em> version runs
 out of memory and the resolution size of the current geographic region
 cannot be increased, either more memory  needs to be added to the computer,
-or the swap space size needs to be increased.  If <EM>seg</EM> runs out of
+or the swap space size needs to be increased.  If <em>seg</em> runs out of
 memory, additional disk space needs to be freed up for the program to run.
 
-<P>
+<p>
 Both versions use the A<sup>T</sup> least-cost search algorithm to determine
 the flow of water over the landscape (see <a href="#seealso">SEE ALSO</a>
 section).
 The algorithm produces results similar to those obtained when running
-<EM><A HREF="r.cost.html">r.cost</A></EM> and
-<EM><A HREF="r.drain.html">r.drain</A></EM> on every cell on the map.
+<em><a href="r.cost.html">r.cost</a></em> and
+<em><a href="r.drain.html">r.drain</a></em> on every cell on the map.
 
-<P>
+<p>
 In many situations, the elevation data will be too finely detailed for
-the amount of time or memory available.  Running <EM>r.watershed</EM> may
+the amount of time or memory available.  Running <em>r.watershed</em> may
 require use of a coarser resolution.  To make the results more closely
 resemble the finer terrain data, create a map layer containing the
 lowest elevation values at the coarser resolution.  This is done by:
 1) Setting the current geographic region equal to the elevation map
-layer with <EM>g.region</EM>, and 2) Use the <EM>r.neighbors</EM> or
-<EM>r.resamp.stats</EM> command to find the lowest value for an area
+layer with <em>g.region</em>, and 2) Use the <em>r.neighbors</em> or
+<em>r.resamp.stats</em> command to find the lowest value for an area
 equal in size to the desired resolution.  For example, if the resolution
 of the elevation data is 30 meters and the resolution of the geographic
-region for <EM>r.watershed</EM> will be 90 meters:  use the minimum 
+region for <em>r.watershed</em> will be 90 meters:  use the minimum 
 function for a 3 by 3 neighborhood.  After changing to the resolution at
-which <EM>r.watershed</EM> will be run, <EM>r.watershed</EM> should be run
-using the values from the <EM>neighborhood</EM> output map layer that
+which <em>r.watershed</em> will be run, <em>r.watershed</em> should be run
+using the values from the <em>neighborhood</em> output map layer that
 represents the minimum elevation within the region of the coarser cell.
 
-<P>
+<p>
 The minimum size of drainage basins, defined by the <em>threshold</em>
 parameter, is only relevant for those watersheds with a single stream
 having at least the <em>threshold</em> of cells flowing into it.
@@ -248,8 +248,8 @@
 an interior stream segment is determined by the distance between the
 tributaries flowing into it.
 
-<P>
-The <EM>r.watershed</EM> program does not require the user to have the
+<p>
+The <em>r.watershed</em> program does not require the user to have the
 current geographic region filled with elevation values.  Areas without
 elevation data MUST be masked out, by creating a raster map (or raster
 reclassification) named <tt>MASK</tt>.  Areas
@@ -258,33 +258,33 @@
 unimportant areas can significantly reduce processing time if the watersheds 
 of interest occupy a small percentage of the overall area.
 
-<P>
+<p>
 Zero data values will be treated as elevation data (not no_data).
 
-<P>
+<p>
 To isolate an individual river network using the output of this module,
 a number of approaches may be considered.
-<OL>
-<LI>Use a resample of the basins catchment raster map as a MASK.<BR>
+<ol>
+<li>Use a resample of the basins catchment raster map as a MASK.<br>
   The equivalent vector map method is similar using <em>v.select</em> or
   <em>v.overlay</em>.
-<LI>Use the <em>r.cost</em> module with a point in the river as a starting
+<li>Use the <em>r.cost</em> module with a point in the river as a starting
   point.
-<LI>Use the <em>v.net.iso</em> module with a node in the river as a
+<li>Use the <em>v.net.iso</em> module with a node in the river as a
   starting point.
-</OL>
+</ol>
 
 
-<P>
+<p>
 To create <i>river mile</i> segmentation from a vectorized streams map,
 try the <em>v.net.iso</em> or <em>v.lrs.segment</em> modules.
 
 
-<H2>EXAMPLES</H2>
+<h2>EXAMPLES</h2>
 <i>These examples use the Spearfish sample dataset.</i>
-<P>
+<p>
 Convert <em>r.watershed</em> streams map output to a vector layer.
-<P>
+<p>
 If you want a detailed stream network, set the threshold option
 small to create lots of catchment basins, as only one stream is
 presented per catchment. The r.to.vect -v flag preserves the
@@ -294,9 +294,9 @@
   r.watershed elev=elevation.dem stream=rwater.stream
   r.to.vect -v in=rwater.stream out=rwater_stream
 </pre></div>
-<BR>
+<br>
 
-<P>
+<p>
 Set a nice color table for the accumulation map:
 <div class="code"><pre>
   MAP=rwater.accum
@@ -320,10 +320,10 @@
     100% red
   EOF
 </pre></div>
-<BR>
+<br>
 
 
-<P>
+<p>
 Create a more detailed stream map using the accumulation map and convert
 it to a vector output map. The accumulation cut-off, and therefore fractal
 dimension, is arbitrary; in this example we use the map's mean number of
@@ -351,9 +351,9 @@
   points map and upload to that ?? -->
 <!-- Note value column containing accumulation cells in output vector
   may not necessarily reference the downstream end of the line! drop it? -->
-<BR>
+<br>
 
-<P>
+<p>
 Create watershed basins map and convert to a vector polygon map
 <div class="code"><pre>
   r.watershed elev=elevation.dem basin=rwater.basin thresh=15000
@@ -361,50 +361,50 @@
   v.db.dropcol map=rwater_basins column=label
   v.db.renamecol map=rwater_basins column=value,catchment
 </pre></div>
-<BR>
+<br>
 
-<P>
+<p>
 Display output in a nice way
 <div class="code"><pre>
   r.shaded.relief map=elevation.dem
   d.shadedmap rel=elevation.dem.shade drape=rwater.basin bright=40
   d.vect rwater_course color=orange
 </pre></div>
-<BR>
+<br>
 
 <a name="references"></a>
-<H2>REFERENCES</H2>
+<h2>REFERENCES</h2>
 
 
 Ehlschlaeger, C. (1989). <i>Using the A<sup>T</sup> Search Algorithm
 to Develop Hydrologic Models from Digital Elevation Data</i>,
 <b>Proceedings of International Geographic Information Systems (IGIS)
-Symposium '89</b>, pp 275-281 (Baltimore, MD, 18-19 March 1989).<BR>
+Symposium '89</b>, pp 275-281 (Baltimore, MD, 18-19 March 1989).<br>
 URL: <a href="http://faculty.wiu.edu/CR-Ehlschlaeger2/older/IGIS/paper.html">
 http://faculty.wiu.edu/CR-Ehlschlaeger2/older/IGIS/paper.html</a>
 
-<P>
+<p>
 Kinner D., H. Mitasova, R. Harmon, L. Toma, R., Stallard. (2005).
 <i>GIS-based Stream Network Analysis for The Chagres River Basin,
 Republic of Panama</i>. <b>The Rio Chagres: A Multidisciplinary Profile of
-a Tropical Watershed</b>, R. Harmon (Ed.), Springer/Kluwer, p.83-95.<BR>
+a Tropical Watershed</b>, R. Harmon (Ed.), Springer/Kluwer, p.83-95.<br>
 URL: <a href="http://skagit.meas.ncsu.edu/%7Ehelena/measwork/panama/panama.html">
 http://skagit.meas.ncsu.edu/~helena/measwork/panama/panama.html</a>
 
-<P>
+<p>
 McCool et al. (1987). <i>Revised Slope Steepness Factor for the Universal
 Soil Loss Equation</i>, <b>Transactions of the ASAE</b> Vol 30(5).
 
-<P>
+<p>
 Weltz M. A., K. G. Renard, J. R. Simanton (1987). <i>Revised Universal Soil
 Loss Equation for Western Rangelands</i>, <b>U.S.A./Mexico Symposium of
 Strategies for Classification and Management of Native Vegetation for
 Food Production In Arid Zones</b> (Tucson, AZ, 12-16 Oct. 1987).
 
 <a name="seealso"></a>
-<H2>SEE ALSO</H2>
+<h2>SEE ALSO</h2>
 
-<EM>
+<em>
 <a href="g.region.html">g.region</a>,
 <a href="r.cost.html">r.cost</a>,
 <a href="r.drain.html">r.drain</a>,
@@ -416,10 +416,10 @@
 <a href="r.terraflow.html">r.terraflow</a>,
 <a href="r.topidx.html">r.topidx</a>,
 <a href="r.water.outlet.html">r.water.outlet</a>
-</EM>
+</em>
 
 
-<H2>AUTHOR</H2>
+<h2>AUTHOR</h2>
 
 Charles Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory
 <p>



More information about the grass-commit mailing list