[GRASS-SVN] r41995 - grass-addons/LandDyn/r.landscape.evol.py

svn_grass at osgeo.org svn_grass at osgeo.org
Thu Apr 22 18:17:04 EDT 2010


Author: isaacullah
Date: 2010-04-22 18:17:04 -0400 (Thu, 22 Apr 2010)
New Revision: 41995

Modified:
   grass-addons/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html
Log:
html update

Modified: grass-addons/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html
===================================================================
--- grass-addons/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html	2010-04-22 22:11:33 UTC (rev 41994)
+++ grass-addons/LandDyn/r.landscape.evol.py/r.landscape.evol.py.html	2010-04-22 22:17:04 UTC (rev 41995)
@@ -112,7 +112,7 @@
 mm), and coefficient for the ability of vegetation to prevent erosion
 (C, unitless) from RUSLE with with an estimate of topographically
 driven stream power as shown in equation (1)</P>
-<P><IMG SRC="r.landscape.evol_html_m11de82c.gif" NAME="Object2" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=157 HEIGHT=21></P>
+<P><IMG SRC="m11de82c.gif" NAME="Object2" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=157 HEIGHT=21></P>
 <P>where <I>A</I> is the upslope contributing area (a measure of
 water flowing through a cell) and <EM>B</EM> is the slope of the
 cell. The exponents <EM>m</EM> and <EM>n</EM> are empirically derived
@@ -146,7 +146,7 @@
 (Howard 1980; Tucker and Hancock 2010). This is done by first
 calculating the reach average shear stress (</SPAN><FONT FACE="Times New Roman, serif"><SPAN STYLE="font-weight: normal">τ</SPAN></FONT><SPAN STYLE="font-weight: normal">),
 here estimated for a cellular landscape simply as:</SPAN></P>
-<P><IMG SRC="r.landscape.evol_html_m2f9c13ec.gif" NAME="Object1" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=119 HEIGHT=22></P>
+<P><IMG SRC="m2f9c13ec.gif" NAME="Object1" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=119 HEIGHT=22></P>
 <P> <SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">9806.65</SPAN></I><SPAN STYLE="font-weight: normal">
 is a constant related to the gravitational acceleration of water, </SPAN><I><SPAN STYLE="font-weight: normal">B</SPAN></I><SPAN STYLE="font-weight: normal">
 is the slope of the cell in degrees, and  </SPAN><I><SPAN STYLE="font-weight: normal">D</SPAN></I><SPAN STYLE="font-weight: normal">
@@ -154,7 +154,7 @@
 </SPAN></I><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">is</SPAN></SPAN><SPAN STYLE="font-weight: normal">
 here assumed to be roughly equivalent to the depth of flow during the
 average minute of rainfall, calculated by:</SPAN></P>
-<P STYLE="font-weight: normal"><IMG SRC="r.landscape.evol_html_m2c6cce6a.gif" NAME="Object3" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=137 HEIGHT=42></P>
+<P STYLE="font-weight: normal"><IMG SRC="m2c6cce6a.gif" NAME="Object3" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=137 HEIGHT=42></P>
 <P><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">R</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">m</SPAN></I></SUB><SPAN STYLE="font-weight: normal">
 is the total annual precipitation in meters, </SPAN><I><SPAN STYLE="font-weight: normal">i</SPAN></I><SPAN STYLE="font-weight: normal">
 is the proportion of rainfall that infiltrates rather than </SPAN><SPAN STYLE="font-weight: normal">runs
@@ -166,7 +166,7 @@
 is a constant relating to the number of minutes in a day.</SPAN></SPAN></P>
 <P STYLE="font-style: normal; font-weight: normal">Then the transport
 capacity is calculated by:</P>
-<P STYLE="font-style: normal; font-weight: normal"><IMG SRC="r.landscape.evol_html_m100fb7e.gif" NAME="Object4" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=76 HEIGHT=28></P>
+<P STYLE="font-style: normal; font-weight: normal"><IMG SRC="m100fb7e.gif" NAME="Object4" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=76 HEIGHT=28></P>
 <P><SPAN STYLE="font-weight: normal">Where: </SPAN><I><SPAN STYLE="font-weight: normal">K</SPAN></I><SUB><I><SPAN STYLE="font-weight: normal">t</SPAN></I></SUB><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
 is the transport efficiency factor related to the character of the
 stream bed (0.001 for normal sediment to 0.000001 for bedrock), and </SPAN></SPAN><I><SPAN STYLE="font-weight: normal">n</SPAN></I><SPAN STYLE="font-style: normal"><SPAN STYLE="font-weight: normal">
@@ -176,7 +176,7 @@
 <P>Net erosion and deposition rates are then computed across the
 entire DEM  as change in sediment flow in the x and y directions
 across a cell as follows”</P>
-<P><IMG SRC="r.landscape.evol_html_m8e0f3ca.gif" NAME="Object6" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=204 HEIGHT=38></P>
+<P><IMG SRC="m8e0f3ca.gif" NAME="Object6" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=204 HEIGHT=38></P>
 <P><SPAN STYLE="font-weight: normal">where ED is net erosion or
 deposition rate for sediment and </SPAN><EM><FONT FACE="Times New Roman, serif"><SPAN STYLE="font-weight: normal">α</SPAN></FONT></EM><SPAN STYLE="font-weight: normal">
 is the topographic aspect (i.e., direction of slope) for a cell.
@@ -218,7 +218,7 @@
 change in elevation at each cell (<I>m</I><SUB><I>vert</I></SUB>).
 This is done via a simple algorithm that uses the density of the soil
 and the cell resolution:</P>
-<P><IMG SRC="r.landscape.evol_html_585d862d.gif" NAME="Object5" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=174 HEIGHT=20></P>
+<P><IMG SRC="585d862d.gif" NAME="Object5" ALIGN=ABSMIDDLE HSPACE=8 WIDTH=174 HEIGHT=20></P>
 <P>Where: <I>10000</I> is the number of meters per hectare, <I>Sd </I>is
 the  density of the soil, and <I>Res </I>is the cell resolution
 (width). In order to convert the output back to Tons/Ha (standard
@@ -338,4 +338,4 @@
 </P>
 <P><I>Last changed: $Date: 2009-23-1 (Fri, 21 Jan 2009) $</I></P>
 </BODY>
-</HTML>
\ No newline at end of file
+</HTML>



More information about the grass-commit mailing list