[GRASS-SVN] r48368 - grass/trunk/raster/r.texture
svn_grass at osgeo.org
svn_grass at osgeo.org
Mon Sep 19 15:35:13 EDT 2011
Author: neteler
Date: 2011-09-19 12:35:13 -0700 (Mon, 19 Sep 2011)
New Revision: 48368
Modified:
grass/trunk/raster/r.texture/r.texture.html
Log:
cleanup
Modified: grass/trunk/raster/r.texture/r.texture.html
===================================================================
--- grass/trunk/raster/r.texture/r.texture.html 2011-09-19 19:26:37 UTC (rev 48367)
+++ grass/trunk/raster/r.texture/r.texture.html 2011-09-19 19:35:13 UTC (rev 48368)
@@ -1,6 +1,6 @@
<h2>DESCRIPTION</h2>
-<em>r.texture</em> - Creates map raster with textural features for
+<em>r.texture</em> creates raster maps with textural features from a
user-specified raster map layer. The module calculates textural features
based on spatial dependence matrices at 0, 45, 90, and 135
degrees for a <em>distance</em> (default = 1).
@@ -11,17 +11,16 @@
In general, several variables constitute texture: differences in grey level values,
coarseness as scale of grey level differences, presence or lack of directionality
and regular patterns.
-
<p>
<em>r.texture</em> reads a GRASS raster map as input and calculates textural
features based on spatial
dependence matrices for north-south, east-west, northwest, and southwest
-directions using a side by side neighborhood (i.e., a distance of 1). Be
-sure to carefully set your resolution (using
-<a href="g.region.html">g.region</a>) before running this program, or else your
-computer could run out of memory. Also, make sure that your raster map has
-no more than 255 categories. The output consists into four images for each
-textural feature, one for every direction.</p>
+directions using a side by side neighborhood (i.e., a distance of 1). The user
+should be sure to carefully set the resolution (using <em>g.region</em>) before
+running this program, or the computer may run out of memory.
+The output consists into four images for each textural feature, one for every
+direction.
+
<p>
A commonly used texture model is based on the so-called grey level co-occurrence
matrix. This matrix is a two-dimensional histogram of grey levels
@@ -78,17 +77,9 @@
</ul>
<h2>NOTES</h2>
-Algorithm taken from:<br>
-Haralick, R.M., K. Shanmugam, and I. Dinstein. 1973. Textural features for
- image classification. <em>IEEE Transactions on Systems, Man, and
- Cybernetics</em>, SMC-3(6):610-621.
+Importantly, the input raster map cannot have more than 255 categories.
-<p>The code was taken by permission from <em>pgmtexture</em>, part of
- PBMPLUS (Copyright 1991, Jef Poskanser and Texas Agricultural Experiment
- Station, employer for hire of James Darrell McCauley). <br>
- Man page of <a href="http://netpbm.sourceforge.net/doc/pgmtexture.html">pgmtexture</a></p>
-
<h2>EXAMPLE</h2>
Calculation of Angular Second Moment of B/W orthophoto (North Carolina data set):
@@ -109,36 +100,43 @@
This calculates four maps (requested texture at four orientations):
ortho_texture_ASM_0, ortho_texture_ASM_45, ortho_texture_ASM_90, ortho_texture_ASM_135.
-
<h2>BUGS</h2>
The program can run incredibly slow for large raster maps.
<h2>REFERENCES</h2>
-<b>Haralick, R.M., K. Shanmugam, and I. Dinstein</b> (1973). Textural features for
- image classification. <em>IEEE Transactions on Systems, Man, and
- Cybernetics</em>, SMC-3(6):610-621.
+
+The algorithm was implemented after Haralick et al., 1973.
+
<p>
-<b>Bouman, C. A., Shapiro, M.</b>,(March
- 1994).A Multiscale Random Field Model for Bayesian Image
- Segmentation, IEEE Trans. on Image Processing, vol. 3, no.2.
-<p>
-<b>Haralick, R.</b>, (May 1979). <i>Statistical and structural approaches to texture</i>,
- Proceedings of the IEEE, vol. 67, No.5, pp. 786-804</p>
-<p>
-<b>Hall-Beyer, M.</b> (2007). <a href="http://www.fp.ucalgary.ca/mhallbey/tutorial.htm">The GLCM Tutorial Home Page</a>
+The code was taken by permission from <em>pgmtexture</em>, part of
+PBMPLUS (Copyright 1991, Jef Poskanser and Texas Agricultural Experiment
+Station, employer for hire of James Darrell McCauley). <br>
+Manual page of <a href="http://netpbm.sourceforge.net/doc/pgmtexture.html">pgmtexture</a></p>
+
+<ul>
+<li>Haralick, R.M., K. Shanmugam, and I. Dinstein (1973). Textural features for
+ image classification. <em>IEEE Transactions on Systems, Man, and
+ Cybernetics</em>, SMC-3(6):610-621.</li>
+<li>Bouman, C. A., Shapiro, M. (1994). A Multiscale Random Field Model for
+ Bayesian Image Segmentation, IEEE Trans. on Image Processing, vol. 3, no. 2.</li>
+<li>Haralick, R. (May 1979). <i>Statistical and structural approaches to texture</i>,
+ Proceedings of the IEEE, vol. 67, No.5, pp. 786-804</li>
+<li>Hall-Beyer, M. (2007). <a href="http://www.fp.ucalgary.ca/mhallbey/tutorial.htm">The GLCM Tutorial Home Page</a>
(Grey-Level Co-occurrence Matrix texture measurements). University of Calgary, Canada
-
+</ul>
+
<h2>SEE ALSO</h2>
-<em><a href="i.smap.html">i.smap</a></em>,
-<em><a href="i.gensigset.html">i.gensigset</a></em>,
-<em><a href="i.pca.html">i.pca</a></em>,
-<em><a href="r.digit.html">r.digit</a></em>,
-<em><a href="i.group.html">i.group</a></em>
+<em>
+<a href="i.smap.html">i.smap</a>,
+<a href="i.gensigset.html">i.gensigset</a>,
+<a href="i.pca.html">i.pca</a>,
+<a href="r.rescale.html">r.rescale</a>
+</em>
-<h2>AUTHOR</h2>
+<h2>AUTHORS</h2>
<a href="mailto:antoniol at ieee.org">G. Antoniol</a> - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
-<a href="mailto:basco at unisannio.it">C. Basco</a> - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
-<a href="mailto:ceccarelli at unisannio.it">M. Ceccarelli</a> - Facolta di Scienze, Universita del Sannio, Benevento
+C. Basco - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
+M. Ceccarelli - Facolta di Scienze, Universita del Sannio, Benevento
-<p><i>Last changed: $Date$</i></p>
+<p><i>Last changed: $Date$</i>
More information about the grass-commit
mailing list