[GRASS-SVN] r53352 - grass-addons/grass6/raster/mcda/r.mcda.roughset

svn_grass at osgeo.org svn_grass at osgeo.org
Wed Oct 10 08:37:14 PDT 2012


Author: gianluca
Date: 2012-10-10 08:37:13 -0700 (Wed, 10 Oct 2012)
New Revision: 53352

Modified:
   grass-addons/grass6/raster/mcda/r.mcda.roughset/r.mcda.roughset.py
Log:
handle null values

Modified: grass-addons/grass6/raster/mcda/r.mcda.roughset/r.mcda.roughset.py
===================================================================
--- grass-addons/grass6/raster/mcda/r.mcda.roughset/r.mcda.roughset.py	2012-10-10 12:59:22 UTC (rev 53351)
+++ grass-addons/grass6/raster/mcda/r.mcda.roughset/r.mcda.roughset.py	2012-10-10 15:37:13 UTC (rev 53352)
@@ -1,14 +1,14 @@
 #!/usr/bin/env python
 ############################################################################
 #
-# MODULE:       r.mcda.roughset
-# AUTHOR:       Gianluca Massei - Antonio Boggia
-# PURPOSE:      Generate a MCDA map from several criteria maps using Dominance Rough Set Approach - DRSA 
-#                       (DOMLEM algorithm proposed by  (S. Greco, B. Matarazzo, R. Slowinski)     
+# MODULE:	   r.mcda.roughset
+# AUTHOR:	   Gianluca Massei - Antonio Boggia
+# PURPOSE:	  Generate a MCDA map from several criteria maps using Dominance Rough Set Approach - DRSA 
+#					   (DOMLEM algorithm proposed by  (S. Greco, B. Matarazzo, R. Slowinski)	 
 # COPYRIGHT:  c) 2010 Gianluca Massei, Antonio Boggia  and the GRASS 
-#                       Development Team. This program is free software under the 
-#                       GNU General PublicLicense (>=v2). Read the file COPYING 
-#                       that comes with GRASS for details.
+#					   Development Team. This program is free software under the 
+#					   GNU General PublicLicense (>=v2). Read the file COPYING 
+#					   that comes with GRASS for details.
 #
 #############################################################################
 
@@ -61,6 +61,11 @@
 #% key: l
 #% description: do not remove single rules in vector format
 #%end
+#%flag
+#% key: n
+#% description: compute null value as zero
+#% answer:true
+#%end
 
 import sys
 import copy
@@ -71,521 +76,525 @@
 
 
 def BuildFileISF(attributes, preferences, decision, outputMap, outputTxt):
-    outputTxt=outputTxt+".isf"
-    outf = file(outputTxt,"w")
-    outf.write("**ATTRIBUTES\n")
-    for i in range(len(attributes)):
-        outf.write("+ %s: (continuous)\n" % attributes[i])
-    outf.write("+ %s: [" % decision)
-    value=[]
-    value=grass.read_command("r.describe", flags = "1n", map = decision)
-    v=value.split()
+	outputTxt=outputTxt+".isf"
+	outf = file(outputTxt,"w")
+	outf.write("**ATTRIBUTES\n")
+	for i in range(len(attributes)):
+		outf.write("+ %s: (continuous)\n" % attributes[i])
+	outf.write("+ %s: [" % decision)
+	value=[]
+	value=grass.read_command("r.describe", flags = "1n", map = decision)
+	v=value.split()
 
-    for i in range(len(v)-1):
-        outf.write("%s, " % str(v[i]))
-    outf.write("%s]\n" % str(v[len(v)-1]))
-    outf.write("decision: %s\n" % decision)
+	for i in range(len(v)-1):
+		outf.write("%s, " % str(v[i]))
+	outf.write("%s]\n" % str(v[len(v)-1]))
+	outf.write("decision: %s\n" % decision)
 
-    outf.write("\n**PREFERENCES\n")
-    for i in range(len(attributes)):
-        if(preferences[i]==""):
-            preferences[i]="none"
-        outf.write("%s: %s\n" % (attributes[i], preferences[i]))
-    outf.write("%s: gain\n" % decision)
-    
-    
-    outf.write("\n**EXAMPLES\n")
-    examples=[]
-    MATRIX=[]
-    for i in range(len(attributes)):
-        grass.mapcalc("rast=if(isnull(${decision})==0,${attribute},null())",
-                         rast="rast",
-                         decision=decision,
-                         attribute=attributes[i])
-        tmp=grass.read_command("r.stats", flags = "1n", nv="?", input = "rast")
-        example=tmp.split()
-        examples.append(example)
-        
-    tmp=grass.read_command("r.stats", flags = "1n", nv="?", input = decision)
-    example=tmp.split()
-    examples.append(example)
+	outf.write("\n**PREFERENCES\n")
+	for i in range(len(attributes)):
+		if(preferences[i]==""):
+			preferences[i]="none"
+		outf.write("%s: %s\n" % (attributes[i], preferences[i]))
+	outf.write("%s: gain\n" % decision)
+	
+	if flags['n']:
+		for i in range(len(attributes)):
+			print "%s - convert null to 0" % str(attributes[i])
+			grass.run_command("r.null", map=attributes[i], null=0)
+			
+	outf.write("\n**EXAMPLES\n")
+	examples=[]
+	MATRIX=[]
 
-    MATRIX=map(list,zip(*examples))
-    MATRIX=[r for r in MATRIX if not '?' in r] #remove all rows with almost one "?"
-    MATRIX=[list(i) for i in set(tuple(j) for j in MATRIX)] #remove duplicate example 
-    
-    for r in range(len(MATRIX)):
-        for c in range(len(MATRIX[0])):
-            outf.write("%s " % (MATRIX[r][c]))
-#            outf.write("%s " % round(float(MATRIX[r][c]), 2))
-        outf.write("\n")
-       
-    outf.write("**END")
-    outf.close()
-    return outputTxt
-    
-    
+	for i in range(len(attributes)):
+		grass.mapcalc("rast=if(isnull(${decision})==0,${attribute},null())",
+						 rast="rast",
+						 decision=decision,
+						 attribute=attributes[i])
+		tmp=grass.read_command("r.stats", flags = "1n", nv="?", input = "rast")
+		example=tmp.split()
+		examples.append(example)
+	tmp=grass.read_command("r.stats", flags = "1n", nv="?", input = decision)
+	example=tmp.split()
+	examples.append(example)
 
+	MATRIX=map(list,zip(*examples))
+	MATRIX=[r for r in MATRIX if not '?' in r] #remove all rows with almost one "?"
+	MATRIX=[list(i) for i in set(tuple(j) for j in MATRIX)] #remove duplicate example 
+	
+	for r in range(len(MATRIX)):
+		for c in range(len(MATRIX[0])):
+			outf.write("%s " % (MATRIX[r][c]))
+#			outf.write("%s " % round(float(MATRIX[r][c]), 2))
+		outf.write("\n")
+	   
+	outf.write("**END")
+	outf.close()
+	return outputTxt
+	
+	
+
 def collect_attributes (data):
-    "Collects the values of header files isf, puts them in an array of dictionaries"
-    header=[]
-    attribute=dict()
-    j=0
-    start=(data.index(['**ATTRIBUTES'])+1)
-    end=(data.index(['**PREFERENCES'])-1)
-    for r in range(start, end):
-        attribute={'name':data[r][1].strip('+:')}
-        header.append(attribute)
-    decision=data[end-1][1]
-    end=(data.index(['**EXAMPLES']))
-    
-    start=(data.index(['**PREFERENCES'])+1)
-    for r in header:
-        r['preference']=data[start+j][1]
-        j=j+1
-    return header    
+	"Collects the values of header files isf, puts them in an array of dictionaries"
+	header=[]
+	attribute=dict()
+	j=0
+	start=(data.index(['**ATTRIBUTES'])+1)
+	end=(data.index(['**PREFERENCES'])-1)
+	for r in range(start, end):
+		attribute={'name':data[r][1].strip('+:')}
+		header.append(attribute)
+	decision=data[end-1][1]
+	end=(data.index(['**EXAMPLES']))
+	
+	start=(data.index(['**PREFERENCES'])+1)
+	for r in header:
+		r['preference']=data[start+j][1]
+		j=j+1
+	return header	
 
 
 def collect_examples (data):
-    "Collect examples values and put them in a matrix (list of lists) "
-    
-    matrix=[]
-    data=[r for r in data if not '?' in r] #filter objects with " ?"
-#    data=[data.remove(r) for r in data if data.count(r)>1] 
-    start=(data.index(['**EXAMPLES'])+1)
-    end=data.index(['**END'])
-    for i in range(start, end):
-        data[i]=(map(float, data[i]))
-        matrix.append(data[i])
-    i=1
-    for r in matrix:
-        r.insert(0, str(i))
-        i=i+1
-##    matrix=[list(i) for i in set(tuple(j) for j in matrix)] #remove duplicate example   
-    return matrix
+	"Collect examples values and put them in a matrix (list of lists) "
+	
+	matrix=[]
+	data=[r for r in data if not '?' in r] #filter objects with " ?"
+#	data=[data.remove(r) for r in data if data.count(r)>1] 
+	start=(data.index(['**EXAMPLES'])+1)
+	end=data.index(['**END'])
+	for i in range(start, end):
+		data[i]=(map(float, data[i]))
+		matrix.append(data[i])
+	i=1
+	for r in matrix:
+		r.insert(0, str(i))
+		i=i+1
+##	matrix=[list(i) for i in set(tuple(j) for j in matrix)] #remove duplicate example   
+	return matrix
 
 
 def FileToInfoSystem(isf):
-    "Read *.isf file and copy it's values in Infosystem dictionary"
-    data=[]
-    try:
-        infile=open(isf,"r")
-        rows=infile.readlines()
-        for line in rows:
-            line=(line.split())
-            if (len(line)>0 ):
-                data.append(line)
-        infile.close()       
-        infosystem={'attributes':collect_attributes(data),'examples':collect_examples(data)}
-    except TypeError:
-        print "\n\n Computing error or input file %s is not readeable. Exiting gracefully" % isf
-        sys.exit(0)
-        
-    return infosystem
+	"Read *.isf file and copy it's values in Infosystem dictionary"
+	data=[]
+	try:
+		infile=open(isf,"r")
+		rows=infile.readlines()
+		for line in rows:
+			line=(line.split())
+			if (len(line)>0 ):
+				data.append(line)
+		infile.close()	   
+		infosystem={'attributes':collect_attributes(data),'examples':collect_examples(data)}
+	except TypeError:
+		print "\n\n Computing error or input file %s is not readeable. Exiting gracefully" % isf
+		sys.exit(0)
+		
+	return infosystem
 
 
 def UnionOfClasses (infosystem):
-    "Find upward and downward union for all classes and put it in a dictionary"
-    DecisionClass=[]
-    AllClasses=[]
-    matrix=infosystem['examples']
-    for r in matrix:
-        DecisionClass.append(int(r[-1]))
-    DecisionClass=list(set(DecisionClass))
-    for c in range(len(DecisionClass)):
-        tmplist=[r for r in matrix if int(r[-1])==DecisionClass[c]]
-        AllClasses.append(tmplist)  
-    
-    return AllClasses
-    
-    
+	"Find upward and downward union for all classes and put it in a dictionary"
+	DecisionClass=[]
+	AllClasses=[]
+	matrix=infosystem['examples']
+	for r in matrix:
+		DecisionClass.append(int(r[-1]))
+	DecisionClass=list(set(DecisionClass))
+	for c in range(len(DecisionClass)):
+		tmplist=[r for r in matrix if int(r[-1])==DecisionClass[c]]
+		AllClasses.append(tmplist)  
+	
+	return AllClasses
+	
+	
 def DownwardUnionsOfClasses (infosystem):
-    "For each decision class, downward union corresponding to a decision class\
-    is composed of this class and all worse classes (<=)"
+	"For each decision class, downward union corresponding to a decision class\
+	is composed of this class and all worse classes (<=)"
 
-    DownwardUnionClass=[]
-    DecisionClass=[]
-    matrix=infosystem['examples']
-    for r in matrix:
-        DecisionClass.append(int(r[-1]))
-    DecisionClass=list(set(DecisionClass))
-    for c in DecisionClass:
-        tmplist=[r for r in matrix if int(r[-1])<=c]
-        DownwardUnionClass.append(tmplist)
-        #label=[row[0] for row in tmplist]
-    return DownwardUnionClass
+	DownwardUnionClass=[]
+	DecisionClass=[]
+	matrix=infosystem['examples']
+	for r in matrix:
+		DecisionClass.append(int(r[-1]))
+	DecisionClass=list(set(DecisionClass))
+	for c in DecisionClass:
+		tmplist=[r for r in matrix if int(r[-1])<=c]
+		DownwardUnionClass.append(tmplist)
+		#label=[row[0] for row in tmplist]
+	return DownwardUnionClass
 
 
 def UpwardUnionsOfClasses (infosystem):
-    "For each decision class, upward union corresponding to a decision class \
-    is composed of this class and all better classes.(>=)"
+	"For each decision class, upward union corresponding to a decision class \
+	is composed of this class and all better classes.(>=)"
 
-    UpwardUnionClass=[]
-    DecisionClass=[]
-    matrix=infosystem['examples']
-    for r in matrix:
-        DecisionClass.append(int(r[-1]))
-    DecisionClass=list(set(DecisionClass))
-    for c in DecisionClass:
-        tmplist=[r for r in matrix if int(r[-1])>=c]
-        UpwardUnionClass.append(tmplist)
-        #label=[row[0] for row in tmplist]
-    return UpwardUnionClass
+	UpwardUnionClass=[]
+	DecisionClass=[]
+	matrix=infosystem['examples']
+	for r in matrix:
+		DecisionClass.append(int(r[-1]))
+	DecisionClass=list(set(DecisionClass))
+	for c in DecisionClass:
+		tmplist=[r for r in matrix if int(r[-1])>=c]
+		UpwardUnionClass.append(tmplist)
+		#label=[row[0] for row in tmplist]
+	return UpwardUnionClass
   
-    
+	
 ###############################
 def is_better (r1,r2, preference):
-    "Check if r1 is better than r2"
-    return all((( x >=y and p=='gain') or (x<=y and p=='cost')) for x,y, p in zip(r1,r2, preference) ) 
-    
+	"Check if r1 is better than r2"
+	return all((( x >=y and p=='gain') or (x<=y and p=='cost')) for x,y, p in zip(r1,r2, preference) ) 
+	
 
 def is_worst (r1,r2, preference): 
-    "Check if r1 is worst than r2"
-    return all((( x <=y and p=='gain') or (x>=y and p=='cost')) for x,y, p in zip(r1,r2, preference) ) 
+	"Check if r1 is worst than r2"
+	return all((( x <=y and p=='gain') or (x>=y and p=='cost')) for x,y, p in zip(r1,r2, preference) ) 
  #################################
 
 
 def DominatingSet (infosystem):
-    "Find P-dominating set"
-    matrix=infosystem['examples']
-    preference=[s['preference'] for s in infosystem['attributes'] ]
-    Dominating=[]
-    for row in matrix:
-        examples=[r  for r in matrix if  is_better(r[1:-1], row[1:-1], preference) ] 
-        Dominating.append({'object':row[0], 'dominance':[i[0] for i in examples], 'examples':examples})
-##    for dom in Dominating:
-##        print  dom['dominance'] ,' dominating ', dom['object'] 
-    return Dominating
+	"Find P-dominating set"
+	matrix=infosystem['examples']
+	preference=[s['preference'] for s in infosystem['attributes'] ]
+	Dominating=[]
+	for row in matrix:
+		examples=[r  for r in matrix if  is_better(r[1:-1], row[1:-1], preference) ] 
+		Dominating.append({'object':row[0], 'dominance':[i[0] for i in examples], 'examples':examples})
+##	for dom in Dominating:
+##		print  dom['dominance'] ,' dominating ', dom['object'] 
+	return Dominating
 
 def DominatedSet (infosystem):
-    "Find P-Dominated set"
-    matrix=infosystem['examples']
-    preference=[s['preference'] for s in infosystem['attributes'] ]
-    Dominated=[]
-    for row in matrix:
-        examples=[r  for r in matrix if  is_worst(r[1:-1], row[1:-1], preference[:-1]) ] 
-        Dominated.append({'object':row[0], 'dominance':[i[0] for i in examples], 'examples':examples})
-##    for dom in Dominated:
-##        print  dom['dominance'] ,' is dominated by ', dom['object'] 
-    return Dominated
+	"Find P-Dominated set"
+	matrix=infosystem['examples']
+	preference=[s['preference'] for s in infosystem['attributes'] ]
+	Dominated=[]
+	for row in matrix:
+		examples=[r  for r in matrix if  is_worst(r[1:-1], row[1:-1], preference[:-1]) ] 
+		Dominated.append({'object':row[0], 'dominance':[i[0] for i in examples], 'examples':examples})
+##	for dom in Dominated:
+##		print  dom['dominance'] ,' is dominated by ', dom['object'] 
+	return Dominated
 
 
 def LowerApproximation (UnionClasses,  Dom):
-    "Find Lower approximation and return a dictionaries list"
-    c=1
-    LowApprox=[]
-    single=dict()
-    for union in UnionClasses:
-        tmp=[]
-        UClass=set([row[0] for row in union] )
-        for d in Dom:
-            if (UClass.issuperset(set(d['dominance']))): #if Union class is a superse of dominating/dominated set, =>single Loer approx.
-                tmp.append(d['object'])
-        single={'class':c, 'objects':tmp} #dictionary for lower approximation  -- 
-        LowApprox.append(single) #insert all Lower approximation in a list
-        c+=1
-    return LowApprox
+	"Find Lower approximation and return a dictionaries list"
+	c=1
+	LowApprox=[]
+	single=dict()
+	for union in UnionClasses:
+		tmp=[]
+		UClass=set([row[0] for row in union] )
+		for d in Dom:
+			if (UClass.issuperset(set(d['dominance']))): #if Union class is a superse of dominating/dominated set, =>single Loer approx.
+				tmp.append(d['object'])
+		single={'class':c, 'objects':tmp} #dictionary for lower approximation  -- 
+		LowApprox.append(single) #insert all Lower approximation in a list
+		c+=1
+	return LowApprox
 
 
 def UpperApproximation (UnionClasses,  Dom):
-    "Find Upper approximation and return a dictionaries list"
-    c=1
-    UppApprox=[]
-    single=dict()
-    for union in UnionClasses:
-        UnClass=[row[0] for row in union]  #single union class
-        s=[]
-        for d in Dom:
-           if len(set(d['dominance']) & set(UnClass)) >0:
-               s.append(d['object'])
-#               print set(s)
-        single={'class':c,'objects':list(set(s))}
-        UppApprox.append(single)
-        c+=1
+	"Find Upper approximation and return a dictionaries list"
+	c=1
+	UppApprox=[]
+	single=dict()
+	for union in UnionClasses:
+		UnClass=[row[0] for row in union]  #single union class
+		s=[]
+		for d in Dom:
+		   if len(set(d['dominance']) & set(UnClass)) >0:
+			   s.append(d['object'])
+#			   print set(s)
+		single={'class':c,'objects':list(set(s))}
+		UppApprox.append(single)
+		c+=1
 
-    return UppApprox
+	return UppApprox
 
 
 def Boundaries (UppApprox, LowApprox):
-    "Find Boundaries like doubtful regions"
-    Boundary=[]
-    single=dict()
+	"Find Boundaries like doubtful regions"
+	Boundary=[]
+	single=dict()
 
-    for i in range(len(UppApprox)):
-        single={'class':i, 'objects':list (set(UppApprox[i]['objects'])-set(LowApprox[i]['objects']) )}
-        Boundary.append(single)
-        
-    return Boundary
-    
+	for i in range(len(UppApprox)):
+		single={'class':i, 'objects':list (set(UppApprox[i]['objects'])-set(LowApprox[i]['objects']) )}
+		Boundary.append(single)
+		
+	return Boundary
+	
 
 def AccuracyOfApproximation(UppApprox, LowApprox):
-    "Define the accuracy of approximation of Upward and downward approximation class"
-    return len(LowApprox)/len(UppApprox)
-    
-    
+	"Define the accuracy of approximation of Upward and downward approximation class"
+	return len(LowApprox)/len(UppApprox)
+	
+	
 def QualityOfQpproximation(DownwardBoundary,  infosystem):
-    "Defines the quality of approximation of the partition Cl or, briefly, the quality of sorting"
-    UnionBoundary=set()
-    U=set([i[0] for i in infosystem['examples']])
-    for b in DownwardBoundary:
-        UnionBoundary=set(UnionBoundary) | set(b['objects'])
-    return float(len(U-UnionBoundary)) / float(len(U))
-    
-    
+	"Defines the quality of approximation of the partition Cl or, briefly, the quality of sorting"
+	UnionBoundary=set()
+	U=set([i[0] for i in infosystem['examples']])
+	for b in DownwardBoundary:
+		UnionBoundary=set(UnionBoundary) | set(b['objects'])
+	return float(len(U-UnionBoundary)) / float(len(U))
+	
+	
 def FindObjectCovered (rules, selected):
-    "Find objects covered by a single rule and return\
-    all related examples covered"
-    obj=[]
-    examples=[]
-    
-    for rule in rules:
-        examples.append(rule['objectsCovered']) 
+	"Find objects covered by a single rule and return\
+	all related examples covered"
+	obj=[]
+	examples=[]
+	
+	for rule in rules:
+		examples.append(rule['objectsCovered']) 
 
-    if len(examples)>0:
-        examples = reduce(set.intersection,map(set,examples))  #functional approach: intersect all lists if example is not empty
-        examples = list(set(examples) & set([r[0] for r in selected]))
-    return examples #all examples covered from a single rule
-    
-        
+	if len(examples)>0:
+		examples = reduce(set.intersection,map(set,examples))  #functional approach: intersect all lists if example is not empty
+		examples = list(set(examples) & set([r[0] for r in selected]))
+	return examples #all examples covered from a single rule
+	
+		
 def Evaluate (elem,rules,G,selected,infosystem):
-    "Calcolate first and second evaluate index, according with original DOMLEM Algorithm"
-    tmpRules=copy.deepcopy(rules)
-    tmpElem=copy.deepcopy(elem)
-    tmpRules.append(tmpElem)
-    Object=[]
-    Object=FindObjectCovered(tmpRules,selected)
-    if(float(len(Object)))>0:
-             firstEvaluate=float(len(set(G) & set(Object))) / float(len(Object))
-             secondEvaluate=float(len(set(G) & set(Object)))
-    else:
-             firstEvaluate=0
-             secondEvaluate=0
-             
-    return firstEvaluate,secondEvaluate
-    
-    
+	"Calcolate first and second evaluate index, according with original DOMLEM Algorithm"
+	tmpRules=copy.deepcopy(rules)
+	tmpElem=copy.deepcopy(elem)
+	tmpRules.append(tmpElem)
+	Object=[]
+	Object=FindObjectCovered(tmpRules,selected)
+	if(float(len(Object)))>0:
+			 firstEvaluate=float(len(set(G) & set(Object))) / float(len(Object))
+			 secondEvaluate=float(len(set(G) & set(Object)))
+	else:
+			 firstEvaluate=0
+			 secondEvaluate=0
+			 
+	return firstEvaluate,secondEvaluate
+	
+	
   
 def FindBestCondition (best, elem, rules, selected, G, infosystem):
-    "Choose the best condition"
+	"Choose the best condition"
 
-    firstElem,secondElem=Evaluate(elem,rules,G,selected,infosystem)
-    firstBest,secondBest=Evaluate(best,rules,G,selected,infosystem)
-    
-    if (firstElem>firstBest) or (firstElem==firstBest and secondElem>=secondBest):
-        best=copy.deepcopy(elem)
-    else:
-        best=best
+	firstElem,secondElem=Evaluate(elem,rules,G,selected,infosystem)
+	firstBest,secondBest=Evaluate(best,rules,G,selected,infosystem)
+	
+	if (firstElem>firstBest) or (firstElem==firstBest and secondElem>=secondBest):
+		best=copy.deepcopy(elem)
+	else:
+		best=best
 
-    return best
+	return best
 
-    
+	
 def Type_one_rule (c,  e,  preference,  matrix):
-    elem={'criterion':c,'condition':e, 'sign':preference[c-1],'class':'', \
-    'objectsCovered':[r[0] for r in matrix if (((r[c] >= e ) and (preference[c-1] == 'gain')) \
-                                                                              or ((r[c] <= e ) and (preference[c-1] == 'cost' )))],'label':''}
-    return elem
-    
+	elem={'criterion':c,'condition':e, 'sign':preference[c-1],'class':'', \
+	'objectsCovered':[r[0] for r in matrix if (((r[c] >= e ) and (preference[c-1] == 'gain')) \
+																			  or ((r[c] <= e ) and (preference[c-1] == 'cost' )))],'label':''}
+	return elem
+	
 def Type_three_rule (c,  e,  preference,  matrix):
-    elem={'criterion':c,'condition':e, 'sign':preference[c-1],'class':'', \
-    'objectsCovered':[r[0] for r in matrix if (((r[c] <= e ) and (preference[c-1] == 'gain')) \
-                                                        or ((r[c] >= e ) and (preference[c-1] == 'cost' )))],'label':''}
-    return elem
+	elem={'criterion':c,'condition':e, 'sign':preference[c-1],'class':'', \
+	'objectsCovered':[r[0] for r in matrix if (((r[c] <= e ) and (preference[c-1] == 'gain')) \
+														or ((r[c] >= e ) and (preference[c-1] == 'cost' )))],'label':''}
+	return elem
 
 
 def Find_rules (B, infosystem, type_rule):
-    "Search rule from a family of lower approximation of upward unions \
-    of decision classes"
-    start=time()
-    matrix=copy.deepcopy(infosystem['examples'])
-    criteria_num=len(infosystem['attributes'])
-    criteria=[r[1:-1] for r in matrix]
-    preference=[s['preference'] for s in infosystem['attributes'] ] #extract preference label
-    num_rules=0 #total rules number for each lower approximation
-    G=copy.deepcopy(B)        #a set of objects from the given approximation
-    E=[]        #a set  of rules covering set B (is a list of dictionary)
-    all_obj_cov_by_rules=[] #all objects covered by all rules in E
-    selected=copy.deepcopy(matrix) #storage reduct matrix by single elementary condition
-    while (len(G)!=0 ):
-        rules=[]     #starting comples (single rule built from elementary conditions  )
-        S=copy.deepcopy(G)         #set of objects currently covered by rule
-        control=0
-        while (len(rules)==0 or set(obj_cov_by_rules).issubset(B)==False):
-            obj_cov_by_rules=[] #set covered by rules
-            best={'criterion':'','condition':'','sign':'','class':'','objectsCovered':'','label':'', 'type':''} #best candidate for elementary condition - start as empty
-            for c in range(1, criteria_num):
-                Cond=[r[c] for r in selected if  r[0] in S] #for each positive object from S create an elementary condition
-                for e in Cond:
-                    if type_rule=='one':
-                        elem= Type_one_rule (c,  e,  preference,  matrix)
-                    elif type_rule=='three':
-                        elem= Type_three_rule (c,  e,  preference,  matrix)
-                        
-                    else:
-                        elem={'criterion':'','condition':'','sign':'','class':'','objectsCovered':'','label':'', 'type':''}
-                        
-                    best=FindBestCondition(best, elem, rules, selected, G, infosystem)
-            if best not in rules:
-                rules.append(best)   #add the best condition to the complex 
+	"Search rule from a family of lower approximation of upward unions \
+	of decision classes"
+	start=time()
+	matrix=copy.deepcopy(infosystem['examples'])
+	criteria_num=len(infosystem['attributes'])
+	criteria=[r[1:-1] for r in matrix]
+	preference=[s['preference'] for s in infosystem['attributes'] ] #extract preference label
+	num_rules=0 #total rules number for each lower approximation
+	G=copy.deepcopy(B)		#a set of objects from the given approximation
+	E=[]		#a set  of rules covering set B (is a list of dictionary)
+	all_obj_cov_by_rules=[] #all objects covered by all rules in E
+	selected=copy.deepcopy(matrix) #storage reduct matrix by single elementary condition
+	while (len(G)!=0 ):
+		rules=[]	 #starting comples (single rule built from elementary conditions  )
+		S=copy.deepcopy(G)		 #set of objects currently covered by rule
+		control=0
+		while (len(rules)==0 or set(obj_cov_by_rules).issubset(B)==False):
+			obj_cov_by_rules=[] #set covered by rules
+			best={'criterion':'','condition':'','sign':'','class':'','objectsCovered':'','label':'', 'type':''} #best candidate for elementary condition - start as empty
+			for c in range(1, criteria_num):
+				Cond=[r[c] for r in selected if  r[0] in S] #for each positive object from S create an elementary condition
+				for e in Cond:
+					if type_rule=='one':
+						elem= Type_one_rule (c,  e,  preference,  matrix)
+					elif type_rule=='three':
+						elem= Type_three_rule (c,  e,  preference,  matrix)
+					else:
+						elem={'criterion':'','condition':'','sign':'','class':'','objectsCovered':'','label':'', 'type':''}
+					best=FindBestCondition(best, elem, rules, selected, G, infosystem)
+			if best not in rules:
+				rules.append(best)   #add the best condition to the complex 
 
-            for r in rules:
-                obj_cov_by_rules.append(r['objectsCovered'])
-            obj_cov_by_rules=list((reduce(set.intersection,map(set,obj_cov_by_rules)))) #reduce():Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value.
+			for r in rules:
+				obj_cov_by_rules.append(r['objectsCovered'])
+			obj_cov_by_rules=list((reduce(set.intersection,map(set,obj_cov_by_rules)))) #reduce():Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value.
 
-            S=list(set(S) & set(best['objectsCovered'] ))
-            control+=1
+			S=list(set(S) & set(best['objectsCovered'] ))
+			control+=1
 
-#        rules=CheckMinimalCondition (rules,B,matrix)
-        
-        if rules not in E:
-            E.append(rules) #add the induced rule
-            num_rules+=1
-        all_obj_cov_by_rules=list(set(all_obj_cov_by_rules) | set(obj_cov_by_rules))
-        
-        G=list(set(B)-set(all_obj_cov_by_rules)) #remove example coverred by all finded rule -- this operation is a set difference
-        selected=[o  for o in selected if  not  o[0]  in all_obj_cov_by_rules] #reduct matrix, remove object coverred by all finded rule
-        num_rules+=1
-        
-    return E
-    
-    
+#		rules=CheckMinimalCondition (rules,B,matrix)
+		
+		if rules not in E:
+			E.append(rules) #add the induced rule
+			num_rules+=1
+		all_obj_cov_by_rules=list(set(all_obj_cov_by_rules) | set(obj_cov_by_rules))
+		
+		G=list(set(B)-set(all_obj_cov_by_rules)) #remove example coverred by all finded rule -- this operation is a set difference
+		selected=[o  for o in selected if  not  o[0]  in all_obj_cov_by_rules] #reduct matrix, remove object coverred by all finded rule
+		num_rules+=1
+		
+	return E
+	
+	
   
 def Domlem(Lu,Ld, infosystem):
-    "DOMLEM algoritm \
-    (An algorithm for induction of decision rules consistent with the dominance\
-    principle - Greco S., Matarazzo, B., Slowinski R., Stefanowski J.)"
-    attributes=infosystem['attributes']
-    
-    RULES=[]
+	"DOMLEM algoritm \
+	(An algorithm for induction of decision rules consistent with the dominance\
+	principle - Greco S., Matarazzo, B., Slowinski R., Stefanowski J.)"
+	attributes=infosystem['attributes']
+	
+	RULES=[]
 ## *** AT LEAST {>= Class} - Type 1 rules *** "
-    for a in Lu[1:]:
-        B=a['objects']
-        E=Find_rules (B, infosystem, 'one')
-        for e in E:
-            for i in e:
-                i['class']=a['class']
-                i['label']=attributes[i['criterion']-1]['name']
-                i['type']='at_last'
-                if (attributes[i['criterion']-1]['preference']=='gain'):
-                    i['sign']='>='
-                else:
-                    i['sign']='<='
-            RULES.append(e)       
-                
+	for a in Lu[1:]:
+		B=a['objects']
+		E=Find_rules (B, infosystem, 'one')
+		for e in E:
+			for i in e:
+				i['class']=a['class']
+				i['label']=attributes[i['criterion']-1]['name']
+				i['type']='at_last'
+				if (attributes[i['criterion']-1]['preference']=='gain'):
+					i['sign']='>='
+				else:
+					i['sign']='<='
+			RULES.append(e)	   
+				
 
-##  *** AT MOST {<= Class} - Type 3 rules ***"        
-    for b in Ld[:-1]:
-        B=b['objects']
-        E=Find_rules(B, infosystem, 'three')
-        for e in E:
-            for i in e:
-                i['class']=b['class']
-                i['label']=attributes[i['criterion']-1]['name']
-                i['type']='at_most'
-                if (attributes[i['criterion']-1]['preference']=='gain'):
-                    i['sign']='<='
-                else:
-                    i['sign']='>='
-            RULES.append(e)
+##  *** AT MOST {<= Class} - Type 3 rules ***"		
+	for b in Ld[:-1]:
+		B=b['objects']
+		E=Find_rules(B, infosystem, 'three')
+		for e in E:
+			for i in e:
+				i['class']=b['class']
+				i['label']=attributes[i['criterion']-1]['name']
+				i['type']='at_most'
+				if (attributes[i['criterion']-1]['preference']=='gain'):
+					i['sign']='<='
+				else:
+					i['sign']='>='
+			RULES.append(e)
 
-    return RULES
-    
-    
+	return RULES
+	
+	
 def Print_rules(RULES, outputTxt):
-    "Print rls output file"
+	"Print rls output file"
 
-    i=1
-    outfile=open(outputTxt+".rls","w")
-    outfile.write('[RULES]\n')
-    
-    for R in RULES:
-        outfile.write("%d: " % i, )
-        #"&".join(e)
-        for e in R:
-                outfile.write("( %s %s %.3f )" % (e['label'], e['sign'],e['condition'] ))
-        outfile.write("=> ( class %s , %s )\n" % ( e['type'], e['class'] ))
-        i+=1
-    outfile.close()
-    return 0
+	i=1
+	outfile=open(outputTxt+".rls","w")
+	outfile.write('[RULES]\n')
+	
+	for R in RULES:
+		outfile.write("%d: " % i, )
+		#"&".join(e)
+		for e in R:
+				outfile.write("( %s %s %.3f )" % (e['label'], e['sign'],e['condition'] ))
+		outfile.write("=> ( class %s , %s )\n" % ( e['type'], e['class'] ))
+		i+=1
+	outfile.close()
+	return 0
 
 def Parser_mapcalc(RULES, outputMap):
-    "Parser to build a formula to be included  in mapcalc command"
-    i=1
-    category=[]
-    maps=[]
-    stringa=[]
-    out=outputMap
+	"Parser to build a formula to be included  in mapcalc command"
+	i=1
+	category=[]
+	maps=[]
+	stringa=[]
+	
+	for R in RULES: 
+		formula="if("
+		for e in R[:-1]: #build a mapcalc formula
+			formula+= "(%s %s %.4f ) && " % (e['label'],  e['sign'] ,  e['condition'] )
+		formula+= "(%s %s %.4f ),%d,null())" % (R[-1]['label'],R[-1]['sign'], R[-1]['condition'] ,i )
+		mappa="r%d_%s_%d" % ( i, R[0]['type'], R[0]['class'] ) #build map name for mapcalc output
+		category.append({'id':i, 'type': R[0]['type'], 'class':R[0]['class']}) #extract category name
+		maps.append(mappa) #extract maps name
+		grass.mapcalc(mappa +"=" +formula)
+		i+=1
+	mapstring=",".join(maps)
+	print mapstring
+	
+	for m in maps:
+		print "mappa:", m
+		grass.run_command("r.to.vect", overwrite='True', flags='s', input=m, output=m, feature='area')
+		grass.run_command("v.db.addcol", map=m, columns='rule varchar(25)')
+		grass.run_command("v.db.update", map=m, column='rule', value=m)
+		grass.run_command("v.db.update", map=m, column='label', value=" ".join(m.split('_')[1:]))
+	if len(maps)>1:
+		grass.run_command("v.patch", overwrite='True', flags='e', input=mapstring, output=outputMap)
+	else:
+		grass.run_command("g.copy",vect=(mapstring,outputMap))
+	
+	grass.run_command("g.remove",  rast=mapstring)
+	if not flags['l']:
+		grass.run_command("g.remove",  vect=mapstring)
 
-    for R in RULES: 
-        formula="if("
-        for e in R[:-1]: #build a mapcalc formula
-            formula+= "(%s %s %.4f ) && " % (e['label'],  e['sign'] ,  e['condition'] )
-        formula+= "(%s %s %.4f ),%d,null())" % (R[-1]['label'],R[-1]['sign'], R[-1]['condition'] ,i )
-        mappa="r%d_%s_%d" % ( i, R[0]['type'], R[0]['class'] ) #build map name for mapcalc output
-        category.append({'id':i, 'type': R[0]['type'], 'class':R[0]['class']}) #extract category name
-        maps.append(mappa) #extract maps name
-        grass.mapcalc(mappa +"=" +formula)
-        i+=1
-    mapstring=",".join(maps)
-     
-    for m in maps:
-	print "mappa:", m
-        grass.run_command("r.to.vect", overwrite='True', flags='s', input=m, output=m, feature='area')
-        grass.run_command("v.db.addcol", map=m, columns='rule varchar(25)')
-        grass.run_command("v.db.update", map=m, column='rule', value=m)
-	grass.run_command("v.db.update", map=m, column='label', value=" ".join(m.split('_')[1:]))
-    grass.run_command("v.patch", overwrite='True', flags='e', input=mapstring, output=outputMap)
-    
-    grass.run_command("g.remove",  rast=mapstring)
-    if not flags['l']:
-    	grass.run_command("g.remove",  vect=mapstring)
 
-
-    return 0
-      
-    
+	return 0
+	  
+	
 def main():
-    "main function for DOMLEM algorithm"
+	"main function for DOMLEM algorithm"
 
-    try:
-        start=time()
-        attributes = options['criteria'].split(',')
-        preferences=options['preferences'].split(',')
-        decision=options['decision']
-        outputMap= options['outputMap']
-        outputTxt= options['outputTxt']
-        out=BuildFileISF(attributes, preferences, decision, outputMap, outputTxt)
-        infosystem=FileToInfoSystem(out)
-        
-        UnionOfClasses(infosystem)
-        DownwardUnionClass=DownwardUnionsOfClasses(infosystem)
-        UpwardUnionClass=UpwardUnionsOfClasses(infosystem)
-        Dominating=DominatingSet(infosystem)
-        Dominated=DominatedSet(infosystem)
-    ##    upward union class
-        print "elaborate upward union"
-        Lu=LowerApproximation(UpwardUnionClass, Dominating) #lower approximation of upward union for type 1 rules
-        Uu=UpperApproximation(UpwardUnionClass,Dominated ) #upper approximation of upward union
-        UpwardBoundary=Boundaries(Uu, Lu)
-    ##    downward union class
-        print "elaborate downward union"
-        Ld=LowerApproximation(DownwardUnionClass, Dominated) # lower approximation of  downward union for type 3 rules
-        Ud=UpperApproximation(DownwardUnionClass,Dominating ) # upper approximation of  downward union 
-        DownwardBoundary=Boundaries(Ud, Ld)
-        
-        QualityOfQpproximation(DownwardBoundary,  infosystem)
-        print "RULES extraction (*)" 
-        RULES=Domlem(Lu,Ld, infosystem)
-              
-        Parser_mapcalc(RULES, outputMap)           
-        Print_rules(RULES, outputTxt)
-        end=time()
-        print "Time computing-> %.4f s" % (end-start)
-        return 0
-    except:
-        print "ERROR in main function!"
-        sys.exit()
+	try:
+		start=time()
+		attributes = options['criteria'].split(',')
+		preferences=options['preferences'].split(',')
+		decision=options['decision']
+		outputMap= options['outputMap']
+		outputTxt= options['outputTxt']
+		out=BuildFileISF(attributes, preferences, decision, outputMap, outputTxt)
+		infosystem=FileToInfoSystem(out)
+		
+		UnionOfClasses(infosystem)
+		DownwardUnionClass=DownwardUnionsOfClasses(infosystem)
+		UpwardUnionClass=UpwardUnionsOfClasses(infosystem)
+		Dominating=DominatingSet(infosystem)
+		Dominated=DominatedSet(infosystem)
+	##	upward union class
+		print "elaborate upward union"
+		Lu=LowerApproximation(UpwardUnionClass, Dominating) #lower approximation of upward union for type 1 rules
+		Uu=UpperApproximation(UpwardUnionClass,Dominated ) #upper approximation of upward union
+		UpwardBoundary=Boundaries(Uu, Lu)
+	##	downward union class
+		print "elaborate downward union"
+		Ld=LowerApproximation(DownwardUnionClass, Dominated) # lower approximation of  downward union for type 3 rules
+		Ud=UpperApproximation(DownwardUnionClass,Dominating ) # upper approximation of  downward union 
+		DownwardBoundary=Boundaries(Ud, Ld)
+		QualityOfQpproximation(DownwardBoundary,  infosystem)
+		print "RULES extraction (*)" 
+		RULES=Domlem(Lu,Ld, infosystem)
+		Parser_mapcalc(RULES, outputMap)		   
+		Print_rules(RULES, outputTxt)
+		end=time()
+		print "Time computing-> %.4f s" % (end-start)
+		return 0
+	except:
+		print "ERROR! Rules does not generated!"
+		sys.exit()
 
 if __name__ == "__main__":
-    options, flags = grass.parser()
-    sys.exit(main())
+	options, flags = grass.parser()
+	sys.exit(main())
 
+



More information about the grass-commit mailing list