[GRASS-SVN] r53046 - grass/branches/releasebranch_6_4/raster/r.grow.distance
svn_grass at osgeo.org
svn_grass at osgeo.org
Sat Sep 1 03:48:14 PDT 2012
Author: neteler
Date: 2012-09-01 03:48:14 -0700 (Sat, 01 Sep 2012)
New Revision: 53046
Modified:
grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html
Log:
manual prettified
Modified: grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html
===================================================================
--- grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html 2012-09-01 09:32:14 UTC (rev 53045)
+++ grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html 2012-09-01 10:48:14 UTC (rev 53046)
@@ -4,7 +4,6 @@
distance to the nearest non-null cell in the input map and/or the
value of the nearest non-null cell.
-
<h2>NOTES</h2>
The user has the option of specifying four different metrics which
control the geometry in which grown cells are created, (controlled by
@@ -12,13 +11,14 @@
<i>Manhattan</i>, and <i>Maximum</i>.
<p>
-
The <i>Euclidean distance</i> or <i>Euclidean metric</i> is the "ordinary" distance
between two points that one would measure with a ruler, which can be
proven by repeated application of the Pythagorean theorem.
The formula is given by:
-<div class="code"><pre>d(dx,dy) = sqrt(dx^2 + dy^2)</pre></div>
+<div class="code"><pre>
+d(dx,dy) = sqrt(dx^2 + dy^2)
+</pre></div>
Cells grown using this metric would form isolines of distance that are
circular from a given point, with the distance given by the <b>radius</b>.
@@ -29,7 +29,6 @@
and is sufficient if only relative values are required.
<p>
-
The <i>Manhattan metric</i>, or <i>Taxicab geometry</i>, is a form of geometry in
which the usual metric of Euclidean geometry is replaced by a new
metric in which the distance between two points is the sum of the (absolute)
@@ -39,39 +38,42 @@
points' distance in taxicab geometry.
The formula is given by:
-<div class="code"><pre>d(dx,dy) = abs(dx) + abs(dy)</pre></div>
+<div class="code"><pre>
+d(dx,dy) = abs(dx) + abs(dy)
+</pre></div>
where cells grown using this metric would form isolines of distance that are
rhombus-shaped from a given point.
<p>
-
The <i>Maximum metric</i> is given by the formula
-<div class="code"><pre>d(dx,dy) = max(abs(dx),abs(dy))</pre></div>
+<div class="code"><pre>
+d(dx,dy) = max(abs(dx),abs(dy))
+</pre></div>
where the isolines of distance from a point are squares.
<h2>EXAMPLE</h2>
-Spearfish sample dataset
+Distance from the streams network (North Carolina sample dataset):
<div class="code"><pre>
-r.grow.distance input=roads distance=dist_from_roads
+g.region rast=streams_derived -p
+r.grow.distance input=streams_derived distance=dist_from_streams
</pre></div>
<h2>SEE ALSO</h2>
<em>
-<a href="r.grow.html">r.grow</a><br>
-<a href="r.buffer.html">r.buffer</a><br>
-<a href="r.cost.html">r.cost</a><br>
+<a href="r.grow.html">r.grow</a>,
+<a href="r.buffer.html">r.buffer</a>,
+<a href="r.cost.html">r.cost</a>,
<a href="r.patch.html">r.patch</a>
</em>
<p>
-
<em>
<a href="http://en.wikipedia.org/wiki/Euclidean_metric">Wikipedia Entry:
Euclidean Metric</a><br>
More information about the grass-commit
mailing list