[GRASS-SVN] r53046 - grass/branches/releasebranch_6_4/raster/r.grow.distance

svn_grass at osgeo.org svn_grass at osgeo.org
Sat Sep 1 03:48:14 PDT 2012


Author: neteler
Date: 2012-09-01 03:48:14 -0700 (Sat, 01 Sep 2012)
New Revision: 53046

Modified:
   grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html
Log:
manual prettified

Modified: grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html
===================================================================
--- grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html	2012-09-01 09:32:14 UTC (rev 53045)
+++ grass/branches/releasebranch_6_4/raster/r.grow.distance/description.html	2012-09-01 10:48:14 UTC (rev 53046)
@@ -4,7 +4,6 @@
 distance to the nearest non-null cell in the input map and/or the
 value of the nearest non-null cell.
 
-
 <h2>NOTES</h2>
 The user has the option of specifying four different metrics which
 control the geometry in which grown cells are created, (controlled by
@@ -12,13 +11,14 @@
 <i>Manhattan</i>, and <i>Maximum</i>.
 
 <p>
-
 The <i>Euclidean distance</i> or <i>Euclidean metric</i> is the "ordinary" distance 
 between two points that one would measure with a ruler, which can be 
 proven by repeated application of the Pythagorean theorem. 
 The formula is given by: 
 
-<div class="code"><pre>d(dx,dy) = sqrt(dx^2 + dy^2)</pre></div>
+<div class="code"><pre>
+d(dx,dy) = sqrt(dx^2 + dy^2)
+</pre></div>
 
 Cells grown using this metric would form isolines of distance that are
 circular from a given point, with the distance given by the <b>radius</b>.
@@ -29,7 +29,6 @@
 and is sufficient if only relative values are required.
 
 <p>
-
 The <i>Manhattan metric</i>, or <i>Taxicab geometry</i>, is a form of geometry in 
 which the usual metric of Euclidean geometry is replaced by a new 
 metric in which the distance between two points is the sum of the (absolute) 
@@ -39,39 +38,42 @@
 points' distance in taxicab geometry.
 The formula is given by:
 
-<div class="code"><pre>d(dx,dy) = abs(dx) + abs(dy)</pre></div>
+<div class="code"><pre>
+d(dx,dy) = abs(dx) + abs(dy)
+</pre></div>
 
 where cells grown using this metric would form isolines of distance that are
 rhombus-shaped from a given point. 
 
 <p>
-
 The <i>Maximum metric</i> is given by the formula
 
-<div class="code"><pre>d(dx,dy) = max(abs(dx),abs(dy))</pre></div>
+<div class="code"><pre>
+d(dx,dy) = max(abs(dx),abs(dy))
+</pre></div>
 
 where the isolines of distance from a point are squares.
 
 
 <h2>EXAMPLE</h2>
 
-Spearfish sample dataset
+Distance from the streams network (North Carolina sample dataset):
 <div class="code"><pre>
-r.grow.distance input=roads distance=dist_from_roads
+g.region rast=streams_derived -p
+r.grow.distance input=streams_derived distance=dist_from_streams
 </pre></div>
 
 
 <h2>SEE ALSO</h2>
 
 <em>
-<a href="r.grow.html">r.grow</a><br>
-<a href="r.buffer.html">r.buffer</a><br>
-<a href="r.cost.html">r.cost</a><br>
+<a href="r.grow.html">r.grow</a>,
+<a href="r.buffer.html">r.buffer</a>,
+<a href="r.cost.html">r.cost</a>,
 <a href="r.patch.html">r.patch</a>
 </em>
 
 <p>
-
 <em>
 <a href="http://en.wikipedia.org/wiki/Euclidean_metric">Wikipedia Entry:
     Euclidean Metric</a><br>



More information about the grass-commit mailing list