[GRASS-SVN] r57062 - grass-addons/grass6/raster/r.broscoe
svn_grass at osgeo.org
svn_grass at osgeo.org
Wed Jul 10 07:06:21 PDT 2013
Author: annalisapg
Date: 2013-07-10 07:06:21 -0700 (Wed, 10 Jul 2013)
New Revision: 57062
Modified:
grass-addons/grass6/raster/r.broscoe/description.html
Log:
main help upgrade with the new APTDTM statistical test
Modified: grass-addons/grass6/raster/r.broscoe/description.html
===================================================================
--- grass-addons/grass6/raster/r.broscoe/description.html 2013-07-10 14:05:28 UTC (rev 57061)
+++ grass-addons/grass6/raster/r.broscoe/description.html 2013-07-10 14:06:21 UTC (rev 57062)
@@ -1,7 +1,7 @@
<h2>DESCRIPTION</h2>
-<em>r.broscoe.sh</em> Calculates waerden test and t test statistics for some values of threshold area on a single basin, according to A.J.Broscoe theory (1959).<br />
-The program uses some <em><a href="http://www.r-project.org/">R</a></em> commands for statistical analisys and graphic rapresentation. In particoular the R package <em>"agricolae"</em> is required.<br />
+<em>r.broscoe.sh</em> Calculates ADTDTM test and t test statistics for some values of threshold area on a single basin, according to A.J.Broscoe theory (1959).<br />
+The program uses some <em><a href="http://www.r-project.org/">R</a></em> commands for statistical analisys and graphic rapresentation.<br />
The A.J.Broscoe theory is well known as the theory of the "Mean Stream Drop" and it says that, for the extraction by DEM of a stream network, exists a threshold value wich makes <em>drop</em> constant, and this is the <em>right</em> one extraction threshold. <br />
By definig the <em>drop</em> (H) as:<br />
<br />
@@ -18,45 +18,35 @@
<em>H<sub>w</sub> = H<sub>w+1</sub> = H<sub>w+2</sub> = ...</em><br />
<br />
where H<sub>w</sub> is the <em>mean</em> of the drops related to the streams in the same Strahler order (w).<br />
-The area can be found by making some attempts for different area thresholds, doing some statistical tests (Van der Waerden test and linear regression), and choosing the <em>right</em> threshold from the output of the tests.<br />
+The area can be found by making some attempts for different area thresholds, doing some statistical tests (the suggested ADTDTM test and t-test), and choosing the <em>right</em> threshold from the output of the tests.<br />
<br />
-<em>r.broscoe.sh</em> takes in input the DEM, the threshold values on wich calculate statistics, the outlet coords of the basin you want to study; it returns a table (text file) with the output of the Van der Waerden test and linear regression (t test) for each threshold value.<br />
-For the Van der Waerden test the parameter <em>Pvalue</em> is taken. It has to be greater than the possible, it represents the possibility of success of the test (the <em>Mean Stream Drop</em> is the same for all Strahler orders).<br />
-For the linear regression the parameters <em>t, Pr, R_squared_adj</em> are taken. <em>t</em> is the t statistic value, <em>Pr</em> is the possibility of success of the t test, <em>R_squared_adj</em> measures the dispersion of data around the mean value (for each order) for given degrees of freedom.<br />
-Three graphics called "linear_regression", "waerden_test" and "all_tests" are also generated as PDF in the home folder.<br />
-<br />
-Preferably let's take the threshold value wich gives <em>Pvalue</em> (or <em>Pr</em>) greater than 0.95, but is not granted that you can reach that result because it depends of the well-graduation (by Horton-Strahler) of the basin, its geomorphological maturity, so it is not rare that you have to take threshold where <em>Pvalue</em> is simlpy the greatest.<br />
-At the end of the calculation, at first <em>Pvalue</em> is examinated, then, only if Van der Waerden test gives no good results (low <em>Pvalue</em>), the linear regression output (<em>Pr</em>) is examinated; in fact the Van der Waerden test is preferred to linear regression because it allows you to consider the real dispersion of data around the mean: this makes you able to know the real significance of the probability (e.g. the significance is low for few data in the sample) considering an unique parameter.<br />
-<br />
+<em>r.broscoe.sh</em> takes in input the DEM, the threshold values on wich calculate statistics, the outlet coords of the basin you want to study; it returns a table (text file) with the output of the t-test (according to the Tarboton approach) and the ADTDTM test for each threshold value.<br />
+For the ADTDTM test the parameter <em>Pvalue</em> is taken. The right threshold should be the first value just greather than the choosen statistical significance. Here a statistical significance valure of 0.05 is proposed.<br />
+
+An output graphs is generated as PDF in the working folder.<br />
+
<h2>EXAMPLE</h2>
-An example on Menotre stream (Umbria, Italy):<br />
-The syntax:
+An example on Chiascio stream (Umbria, Italy):<br />
+The command syntax:
<div class="code"><pre>
- r.broscoe.sh dem=dtm20_regione at AB 'thresholds=400 600 800 1000 1200 1400 1800 2000' xcoor=2291350.34 ycoor=4765192.22 lt=4 result=menotre_txt
+ r.broscoe.sh dem=dem_abt 'thresholds=2000 3000 4000 5000' xcoor=2320378.547 ycoor=4779694.770 lt=3 result=broscoe_chiascio
</pre></div>
-The results:
+The results are an "output.csv":
<div class="code"><pre>
-threshold t Pr Radj Pvalue
-400 0.5713518 0.568486 -0.003798402 0.6085511
-600 0.8791352 0.3810997 -0.001896266 0.2798474
-800 1.053110 0.2948033 0.001067895 0.29454
-1000 0.02578308 0.9794938 -0.01233737 0.8535388
-1200 0.3985548 0.69147 -0.01234108 0.6340721
-1400 -1.024254 0.3100425 0.0008457844 0.256408
-1800 -0.6368832 0.5274277 -0.01309044 0.5764749
-2000 -0.4003206 0.6908575 -0.01901582 0.814699
+threshold n1 n2 Mean 1 Mean >1 diff sd 1 sd >1 TrMean 1 Tr Mean >1 diff Test t eq var Perm Test eq var Perm Test noeq var Perm Test diff TrMean
+2000 127 47 59.3228346456693 64.1063829787234 -4.78354833305411 71.8789637294643 62.2363077459624 52.2869565217391 58.3953488372093 -6.10839231547018 0.687063371319418 0.663366336633663 0.712871287128713 0.534653465346535
+3000 87 32 67.9885057471264 63.78125 4.20725574712644 79.5933698087265 68.0449255651095 60.1139240506329 57.1666666666667 2.94725738396625 0.791240399171673 0.801980198019802 0.801980198019802 0.693069306930693
+4000 74 21 72.0945945945946 51.6190476190476 20.475546975547 100.947724016344 42.6104167903533 57.6764705882353 49.8421052631579 7.8343653250774 0.368259756306302 0.405940594059406 0.198019801980198 0.623762376237624
+5000 60 16 76.4833333333333 61.0625 15.4208333333333 108.929224676854 52.2193690118906 59.0555555555556 61.0625 -2.00694444444444 0.585538501927895 0.683168316831683 0.623762376237624 0.920792079207921
</pre></div>
<br />
-<img src="images/wt_rbroscoe.jpg"> <img src="images/lr_rbroscoe.jpg"> <img src="images/at_rbroscoe.jpg"> <br />
+..and an "output.pdf" file of the graphics where threshold values are natural (left) and logaritmic (right):
+<img src="outputN.png" width="450" height="350"> <img src="outputL.png" width="450" height="350"><br />
<br />
-By the report and graphics, you can see that the Van der Werden test gives not-so-good results (<em>Pvalue_max</em>=0.85 for threshold=1000 cells) but, if you consider the linear regression output (<em>Pr</em>), you can see that for the same threshold value (1000 cells) <em>Pr</em> is 97%.<br />
-So the threshold=1000 cells is chosen. Moreover the program returns a set of vector map called <em>"orderd_thresholdvalue"</em> from wich you can extract the right one orderd-network (in this case the right one is <em>"orderd_1000"</em>), you can rename and use it as well as you want.<br />
-<br />
-<img src="images/menotre.jpg"><br />
-<br />
+
<h2>NOTES</h2>
The <em>lt</em> value requested in input is a parameter that prevents eventual errors in the DEM; it considers the presence of pits and represents the height difference <em>lesserthan</em> a drop is not considered as a drop but as a pit, and extracted from <em>Mean Stream Drop</em> analysis.<br />
<br />
@@ -67,8 +57,7 @@
<em><a href="r.strahler.sh.html">r.strahler.sh</a></em><br>
<h2>REFERENCES</h2>
-NIST, (2006). <i>Van Der Waerden.</i><br />
-URL: <em><a href="http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm">http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/vanderwa.htm</a></em><br />
+C. Cencetti et alii, (submitted to <b>Computers & Geosciences</b>). <i>A more efficient statistical test for drainage networks delineation using GIS and the theory of MEAN STREAM DROP.</i><br />
<p>
D. G. Tarboton and D. P. Ames, (2001). <i>Advances in the mapping of flow networks from digital elevation data.</i><b> World Water and Environment Resources Congress</b>, presentation (2001).<br />
<p>
@@ -80,13 +69,11 @@
J. C. Davis, (1990). <i>Statistics and Data Analysis in Geology</i>. John Wiley \& Sons editors (New York, NY, USA).<br />
<p>
A. J. Broscoe, (1959). <i>Quantitative analysis of longitudinal stream profiles of small watersheds</i>. Department of Geology, Columbia University, NY.<br />
-<p>
-F. De Mendiburu, (2006). <i>Statistical Procedures for Agricultural Research.</i><br />
-URL: <em><a href="http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html">http://rss.acs.unt.edu/Rdoc/library/agricolae/html/agricolae.package.html</a></em><br />
+
<h2>AUTHORS</h2>
-Ivan Marchesini and Annalisa Minelli, Univ. Perugia. <br>
+Pierluigi De Rosa, Ivan Marchesini and Annalisa Minelli, Univ. Perugia. <br>
<p>
<i>Last changed: $Date$</i>
More information about the grass-commit
mailing list