[GRASS-SVN] r55434 - in grass-promo/grassposter/2013_EGU_G7_Landscape: . images

svn_grass at osgeo.org svn_grass at osgeo.org
Mon Mar 18 21:14:37 PDT 2013


Author: ychemin
Date: 2013-03-18 21:14:37 -0700 (Mon, 18 Mar 2013)
New Revision: 55434

Added:
   grass-promo/grassposter/2013_EGU_G7_Landscape/images/floodrisk.png
   grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix.png
   grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix1.png
   grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix2.png
Modified:
   grass-promo/grassposter/2013_EGU_G7_Landscape/poster.tex
Log:
Added two blocks: unmix and floodrisk

Added: grass-promo/grassposter/2013_EGU_G7_Landscape/images/floodrisk.png
===================================================================
(Binary files differ)


Property changes on: grass-promo/grassposter/2013_EGU_G7_Landscape/images/floodrisk.png
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix.png
===================================================================
(Binary files differ)


Property changes on: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix.png
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix1.png
===================================================================
(Binary files differ)


Property changes on: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix1.png
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix2.png
===================================================================
(Binary files differ)


Property changes on: grass-promo/grassposter/2013_EGU_G7_Landscape/images/unmix2.png
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Modified: grass-promo/grassposter/2013_EGU_G7_Landscape/poster.tex
===================================================================
--- grass-promo/grassposter/2013_EGU_G7_Landscape/poster.tex	2013-03-18 20:33:23 UTC (rev 55433)
+++ grass-promo/grassposter/2013_EGU_G7_Landscape/poster.tex	2013-03-19 04:14:37 UTC (rev 55434)
@@ -96,16 +96,75 @@
 \end{center}
 }
 
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\getcurrentrow{box}
+\coordinate (funkcionalita) at (box.south west);
+\coordinate (funkcionalitaeast) at (box.east);
+\coordinate (screenshot) at (box.north west);
+
+\blocknodew[($(funkcionalita)+(20,-1)$)]{35}{References}{
+\scriptsize
+\begin{center}
+\begin{tabular}{rp{0.9\textwidth}}
+[1] & Neteler \& Bowman \&  Landa \& Metz, 2012. Environment \& Modeling Software, 31:124-130\\{}
+[2] & Petráš, 2012. M.Sc. Thesis, OSGeoREL, FCE CTU, Prague.\\{}
+[3] & Momsen \& Metz, 2012. i.segment module. GRASS GIS Software, Version 7.\\{}
+[4] & Sant'Anna Bins \& Fonseca \& Erthal \& Misuo, 1996. Anais VIII Simpósio Brasileiro de Sensoria.
+Rem., Salvador, Brasil, INPE, 677-680.\\{}
+[5] & Athelogou \& Schmidt \& Schäpe \& Baatz \& Binnig, 2007. Imaging Cellular \& Molecular Biological
+Functions, 407-422.\\{}
+[6] & Chemin, 2012. Chapter 19, DOI: 10.5772/23571 ({\url {http://bit.ly/16qJOep}})\\{}
+[7] & Kratochvílová \& Petráš, 2013. OSGeoREL, FCE CTU, Prague.\\{}
+[8] & Chemin \& Rabbani, 2011. International Journal of Geoinformatics,  7(3):1-6.\\{}
+[9] & Neteler \& Grasso \& Michelazzi \& Miori \& Merler \& Furlanello, 2005. 
+International Journal of Geoinformatics, 1(1): 51-61.\\{}
+[10] & Chemin \& Phuphak \& Asilo \& Hijmans, 2012. International Journal of GeoInformatics. 8(1):1-12.
+\end{tabular}
+\end{center}
+\smallskip
+\hrulefill
+\vspace{-5pt}
+
+\begin{center}
+\begin{tabular}{cp{0.9\textwidth}}
+\begin{minipage}{0.15\textwidth}
+\includegraphics[width=0.7in]{./images/iwmi_qr.pdf}
+\end{minipage}
+
+\begin{minipage}{0.3\textwidth}
+\small {\url{www.iwmi.org}}
+\end{minipage}
+
+\begin{minipage}{0.15\textwidth}
+\includegraphics[width=0.7in]{./images/grass_qr.pdf}
+\end{minipage}
+
+\begin{minipage}{0.3\textwidth}
+\small {\url{grass.osgeo.org}}
+\end{minipage}
+\end{tabular}
+\end{center}
+
+\hrulefill
+\vspace{14pt}
+\begin{center}
+\newcommand{\logowidth}{5em}
+\newcommand{\logospace}{\hspace{0.1em}}
+\noindent
+\includegraphics[width=\logowidth]{./svg_images/public_domain_logo.pdf}
+\raisebox{0.7\height}{\logospace 2013 GRASS Development Team}
+\end{center}
+}
+
 \startsecondcolumn
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \blocknode{Interactive supervised classification}{
-\small 
 This interactive tool [7], aims at greatly simplifying quantitative surpervised class training areas creation.
 It calculates the spectral signatures based on the cells within the specified areas. 
 The resulting signature file can be used by a maximum likelihood classification module (i.maxlik). 
 During the process the user is shown a histogram of the area cell values for each image band, 
-and coincident plot which shows the separability of classes.\newline
+and coincident plot which shows the separability of classes.\newline\linebreak
 Another way the user can inspect the suitability of the created training areas 
 is by displaying the cells of the image bands which fall within a user-specified 
 number of standard deviations from the means in the spectral signature. This
@@ -121,7 +180,6 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \blocknode{Satellite imagery products}{
-\small
 \begin{itemize}
  \item {\bf i.vi} 15 vegetation indices available
  \item {\bf i.albedo} Broadband Albedo (snow \~= 0.6-0.8, water=0.05)
@@ -140,9 +198,9 @@
 {\bf Actual ET: i.eb.* modules using thermodynamic heat flux modeling}
 
 \begin{center}
- \includegraphics[width=0.4\textwidth]{./images/slet2005}
+ \includegraphics[width=0.45\textwidth]{./images/slet2005}
  \hspace{20mm}
- \includegraphics[width=0.4\textwidth]{./images/slet2010}
+ \includegraphics[width=0.45\textwidth]{./images/slet2010}
  \newline
  Figure 4: Actual evapotranspiration (i.eb.*) for water monitoring and management [6]
 \end{center}
@@ -151,8 +209,8 @@
 \startthirdcolumn
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \blocknode{Lidar}{
-\medskip
-\small The Lidar library ({\url {www.liblas.org}}) included in GRASS GIS permits the import of Lidar (.las)
+\smallskip
+The Lidar library ({\url {www.liblas.org}}) included in GRASS GIS permits the import of Lidar (.las)
 data in raster (r.in.lidar using statistics of choice) or in vector format (v.in.lidar). 
 Author Markus Metz tested r.in.lidar with a 705Gb .las file. \newline
 On-farm water storage study with lidar data in NSW (Australia) developed a full remote sensing monitoring methodology
@@ -167,7 +225,7 @@
 }
 
 \blocknode{Temporal signature cleaning}{
-\medskip
+\smallskip
 \begin{itemize}
  \item r.hants produces a harmonic analysis through incomplete returned Fourier inversion.
  \item i.lmf computes a temporal Local Maximum Fitting with Akaike Information Content.
@@ -182,13 +240,8 @@
 \end{center}
 }
 
-
-
-\startfourthcolumn
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \blocknode{Other Improvements \& Additions}{
 \smallskip
-\small 
 
 {\bf Remanufacturing, performance improvement}
 
@@ -213,76 +266,38 @@
  \item {\bf i.sunhours} maps potential hours of sunshine in a day at a given location (hh.hhh)
  \item {\bf r.sun.angle} maps the sun elevation and sun azimuth angles for the given time of day
 \end{itemize}
-
-{\bf Temporal cleaning and smoothing}
-
-\begin{itemize}
- \item {\bf r.hants} Fourier temporal smoothing
- \item {\bf i.lmf} Local maximum fitting of temporal data
-\end{itemize}
-
-{\bf Multi- and hyperspectral data analysis}
-
-\begin{itemize}
- \item {\bf i.spec.unmix} Spectral Unmixing
-\end{itemize}
 }
 
-
+\startfourthcolumn
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\getcurrentrow{box}
-\coordinate (funkcionalita) at (box.south west);
-\coordinate (funkcionalitaeast) at (box.east);
-\coordinate (screenshot) at (box.north west);
+\blocknode{Multi- and hyperspectral data analysis}{
+\smallskip
+{\bf Unmixing mixed pixels (i.spec.unmix [9]) is based upon identifying orignal spectral signatures
+that ideally come from a land cover that is covering at least one full pixel in the image
+studied.}
 
-\blocknodew[($(funkcionalita)+(20,-1)$)]{35}{References}{
-\scriptsize
 \begin{center}
-\begin{tabular}{rp{0.9\textwidth}}
-[1] & Neteler \& Bowman \&  Landa \& Metz, 2012. Environment \& Modeling Software, 31:124-130\\{}
-[2] & Petráš, 2012. M.Sc. Thesis, OSGeoREL, FCE CTU, Prague.\\{}
-[3] & Momsen \& Metz, 2012. i.segment module. GRASS GIS Software, Version 7.\\{}
-[4] & Sant'Anna Bins \& Fonseca \& Erthal \& Misuo, 1996. Anais VIII Simpósio Brasileiro de Sensoria.
-Rem., Salvador, Brasil, INPE, 677-680.\\{}
-[5] & Athelogou \& Schmidt \& Schäpe \& Baatz \& Binnig, 2007. Imaging Cellular \& Molecular Biological
-Functions, 407-422.\\{}
-[6] & Chemin, 2012. Chapter 19, DOI: 10.5772/23571 ({\url {http://bit.ly/16qJOep}})\\{}
-[7] & Kratochvílová \& Petráš, 2013. OSGeoREL, FCE CTU, Prague.\\{}
-[8] & Chemin \& Rabbani, 2011. International Journal of Geoinformatics,  7(3):1-6.
-\end{tabular}
+ \includegraphics[width=0.4\textwidth]{./images/unmix1.png}
+ \hspace{10mm}
+ \includegraphics[width=0.5\textwidth]{./images/unmix.png}
 \end{center}
-\smallskip
-\hrulefill
-\vspace{-5pt}
-
 \begin{center}
-\begin{tabular}{cp{0.9\textwidth}}
-\begin{minipage}{0.15\textwidth}
-\includegraphics[width=0.7in]{./images/iwmi_qr.pdf}
-\end{minipage}
+ \includegraphics[width=0.5\textwidth]{./images/unmix2.png}
+ \newline
+ Figure 7: Unmixing principle (left), end-members selection (right), error space (below)
+\end{center}
+}
 
-\begin{minipage}{0.3\textwidth}
-\small {\url{www.iwmi.org}}
-\end{minipage}
 
-\begin{minipage}{0.15\textwidth}
-\includegraphics[width=0.7in]{./images/grass_qr.pdf}
-\end{minipage}
+\blocknode{Spatio-temporal Analysis}{
+\smallskip
+Repetitive daily open water mapping (i.wi), provides with the probability 
+of flood destruction on rice crop area in Thailand [10].\newline
 
-\begin{minipage}{0.3\textwidth}
-\small {\url{grass.osgeo.org}}
-\end{minipage}
-\end{tabular}
-\end{center}
-
-\hrulefill
-\vspace{14pt}
 \begin{center}
-\newcommand{\logowidth}{5em}
-\newcommand{\logospace}{\hspace{0.1em}}
-\noindent
-\includegraphics[width=\logowidth]{./svg_images/public_domain_logo.pdf}
-\raisebox{0.7\height}{\logospace 2013 GRASS Development Team}
+ \includegraphics[width=0.75\textwidth]{./images/floodrisk}
+ \newline
+ Figure 8: Flood risk on Eastern Thailand analysed with ~9 years daily MODIS data
 \end{center}
 }
 



More information about the grass-commit mailing list