[GRASS-SVN] r59540 - grass/trunk/temporal/t.rast.aggregate
svn_grass at osgeo.org
svn_grass at osgeo.org
Tue Apr 1 01:01:17 PDT 2014
Author: neteler
Date: 2014-04-01 01:01:15 -0700 (Tue, 01 Apr 2014)
New Revision: 59540
Modified:
grass/trunk/temporal/t.rast.aggregate/t.rast.aggregate.html
Log:
t.rast.aggregate manual: example template added from ML
Modified: grass/trunk/temporal/t.rast.aggregate/t.rast.aggregate.html
===================================================================
--- grass/trunk/temporal/t.rast.aggregate/t.rast.aggregate.html 2014-04-01 08:00:29 UTC (rev 59539)
+++ grass/trunk/temporal/t.rast.aggregate/t.rast.aggregate.html 2014-04-01 08:01:15 UTC (rev 59540)
@@ -1,6 +1,7 @@
<h2>DESCRIPTION</h2>
-<em>t.rast.aggregate</em> temporally aggregates space time raster datasets by a specific temporal granularity.
+<em>t.rast.aggregate</em> temporally aggregates space time raster datasets
+by a specific temporal granularity.
This module support <em>absolute</em> and <em>relative time</em>.
The temporal granularity of absolute time can be
<em>seconds, minutes, hours, days, weeks, months</em> or <em>years</em>.
@@ -8,16 +9,17 @@
In case of relative time the temporal unit of the input space time raster
dataset is used. The granularity must be specified with an integer value.
<p>
-This module is sensitive to the current region and mask settings, hence spatial extent and spatial resolution.
-In case the registered raster maps of the input space time raster dataset
-have different spatial resolutions, the default nearest neighbor resampling method is used for
-runtime spatial aggregation.
+This module is sensitive to the current region and mask settings,
+hence spatial extent and spatial resolution. In case the registered
+raster maps of the input space time raster dataset have different
+spatial resolutions, the default nearest neighbor resampling method
+is used for runtime spatial aggregation.
<h2>NOTES</h2>
The raster module <em>r.series</em> is used internally. Hence all aggregate
-methods of <em>r.series</em> are supported. See the <a href="r.series.html">r.series</a> manpage
-for details.
+methods of <em>r.series</em> are supported. See the
+<a href="r.series.html">r.series</a> manual page for details.
<p>
This module will shift the start date for each aggregation process depending on the
provided temporal granularity. The following shifts will performed:
@@ -31,9 +33,11 @@
<li><em>granularity minutes</em>: will start at the first second of a minute, hence 14-08-2012 01:30:30 will be shifted to 14-08-2012 01:30:00</li>
</ul>
-<h2>EXAMPLE</h2>
+<h2>EXAMPLES</h2>
-In this example we create 7 raster maps that will be registered in a single space time
+<h3>EXAMPLE 1</h3>
+
+In this example, we create 7 raster maps that will be registered in a single space time
raster dataset named <em>precipitation_daily</em> using a daily temporal granularity.
The names of the raster maps are stored in a text file that is used for raster map registration.
<p>
@@ -45,7 +49,6 @@
temporally during a week will be considered for computation:
<div class="code"><pre>
-
MAPS="map_1 map_2 map_3 map_4 map_5 map_6 map_7"
for map in ${MAPS} ; do
@@ -164,6 +167,29 @@
+----------------------------------------------------------------------------+
</pre></div>
+
+<h3>EXAMPLE 2</h3>
+
+Example for monthly aggregation:
+
+<div class="code"><pre>
+# January averages
+t.rast.series input=monthly_aggregates \
+ output=jan_average method=average \
+ where="start_time = datetime(start_time, 'start_of_year', '0 month')"
+
+# February averages
+t.rast.series input=monthly_aggregates \
+ output=feb_average method=average \
+ where="start_time = datetime(start_time, 'start_of_year', '1 month')"
+
+# March averages
+t.rast.series input=monthly_aggregates \
+ output=mar_average method=average \
+ where="start_time = datetime(start_time, 'start_of_year', '2 month')"
+</pre></div>
+
+
<h2>SEE ALSO</h2>
<em>
More information about the grass-commit
mailing list