[GRASS-SVN] r64130 - grass-addons/grass7/raster/r.meb
svn_grass at osgeo.org
svn_grass at osgeo.org
Tue Jan 13 05:34:41 PST 2015
Author: pvanbosgeo
Date: 2015-01-13 05:34:41 -0800 (Tue, 13 Jan 2015)
New Revision: 64130
Modified:
grass-addons/grass7/raster/r.meb/r.meb.py
Log:
minor change
Modified: grass-addons/grass7/raster/r.meb/r.meb.py
===================================================================
--- grass-addons/grass7/raster/r.meb/r.meb.py 2015-01-13 13:21:14 UTC (rev 64129)
+++ grass-addons/grass7/raster/r.meb/r.meb.py 2015-01-13 13:34:41 UTC (rev 64130)
@@ -5,12 +5,12 @@
#
# MODULE: r.meb
# AUTHOR(S): Paulo van Breugel <p.vanbreugel AT gmail.com>
-# PURPOSE: Compute the multivariate envirionmental bias (EB). If A
-# is an areas within a larger region B, the EB represents
-# how much envirionmental conditions in A deviate from
-# median conditions in B. The first step is to compute the
-# multi-envirionmental similarity (MES) for B, using all
-# raster cells in B as reference points. The MES of a
+# PURPOSE: Compute the multivariate envirionmental bias (MEB). If A
+# is an areas within a larger region B, the EB represents
+# how much envirionmental conditions in A deviate from
+# median conditions in B. The first step is to compute the
+# multi-envirionmental similarity (MES) for B, using all
+# raster cells in B as reference points. The MES of a
# raster cell thus represent how much conditions deviate
# from median conditions in B. The EB is then computed as the
# absolute difference of the median of MES values in A (MESa)
@@ -106,6 +106,12 @@
#%end
#----------------------------------------------------------------------------
+#Test
+#----------------------------------------------------------------------------
+#options = {"env":"bio_1 at climate,bio_2 at climate,bio_3 at climate", "file":"test.txt", "ref":"PAs2", "output":"AA1", "digits":"5"}
+#flags = {"m":True, "n":True, "o":True, "i":True}
+
+#----------------------------------------------------------------------------
# Standard
#----------------------------------------------------------------------------
@@ -230,10 +236,6 @@
# Variables
#----------------------------------------------------------------------------
-#Test
-#options = {"env":"bio_1 at climate,bio_2 at climate,bio_3 at climate", "file":"test.txt", "ref":"PAs2", "output":"AA1", "digits":"5"}
-#flags = {"m":True, "n":True, "o":True, "i":True}
-
# variables
ipl = options['env']
ipl = ipl.split(',')
@@ -265,12 +267,15 @@
# Calculate the frequency distribution
tmpf1 = tmpname('reb1')
- # todo - check if layer is integer. If so, skip step below
- grass.mapcalc("$tmpf1 = int($dignum * $inplay)",
- tmpf1=tmpf1,
- inplay=ipl[j],
- dignum=digits2,
- quiet=True)
+ laytype = grass.raster_info(ipl[j])['datatype']
+ if laytype == 'CELL':
+ grass.run_command("g.copy", quiet=True, raster=(ipl[j], tmpf1))
+ else:
+ grass.mapcalc("$tmpf1 = int($dignum * $inplay)",
+ tmpf1=tmpf1,
+ inplay=ipl[j],
+ dignum=digits2,
+ quiet=True)
p = grass.pipe_command('r.stats', quiet=True, flags='cn', input=tmpf1, sort='asc', sep=';')
stval = {}
for line in p.stdout:
More information about the grass-commit
mailing list