[GRASS-SVN] r69839 - grass/branches/releasebranch_7_2/raster/r.texture
svn_grass at osgeo.org
svn_grass at osgeo.org
Wed Nov 16 12:32:28 PST 2016
Author: mmetz
Date: 2016-11-16 12:32:28 -0800 (Wed, 16 Nov 2016)
New Revision: 69839
Modified:
grass/branches/releasebranch_7_2/raster/r.texture/h_measure.c
grass/branches/releasebranch_7_2/raster/r.texture/h_measure.h
grass/branches/releasebranch_7_2/raster/r.texture/main.c
grass/branches/releasebranch_7_2/raster/r.texture/r.texture.html
Log:
r.texture: fix #3210, #2315, clean up code (backport from trunk r69838)
Modified: grass/branches/releasebranch_7_2/raster/r.texture/h_measure.c
===================================================================
--- grass/branches/releasebranch_7_2/raster/r.texture/h_measure.c 2016-11-16 20:31:35 UTC (rev 69838)
+++ grass/branches/releasebranch_7_2/raster/r.texture/h_measure.c 2016-11-16 20:32:28 UTC (rev 69839)
@@ -6,6 +6,7 @@
* with hints from:
* prof. Giulio Antoniol - antoniol at ieee.org
* prof. Michele Ceccarelli - ceccarelli at unisannio.it
+ * Markus Metz (optimization and bug fixes)
*
* PURPOSE: Create map raster with textural features.
*
@@ -28,9 +29,6 @@
#include <grass/raster.h>
#include <grass/glocale.h>
-#define RADIX 2.0
-#define EPSILON 0.000000001
-
#define BL "Direction "
#define F1 "Angular Second Moment "
#define F2 "Contrast "
@@ -46,28 +44,25 @@
#define F12 "Measure of Correlation-1 "
#define F13 "Measure of Correlation-2 "
-#define SIGN(x,y) ((y)<0 ? -fabs(x) : fabs(x))
-#define SWAP(a,b) {y=(a);(a)=(b);(b)=y;}
-
#define PGM_MAXMAXVAL 255
#define MAX_MATRIX_SIZE 512
float **matrix(int nr, int nc);
float *vector(int n);
-float f1_asm(float **P, int Ng);
-float f2_contrast(float **P, int Ng);
-float f3_corr(float **P, int Ng);
-float f4_var(float **P, int Ng);
-float f5_idm(float **P, int Ng);
-float f6_savg(float **P, int Ng);
-float f7_svar(float **P, int Ng, double S);
-float f8_sentropy(float **P, int Ng);
-float f9_entropy(float **P, int Ng);
-float f10_dvar(float **P, int Ng);
-float f11_dentropy(float **P, int Ng);
-float f12_icorr(float **P, int Ng);
-float f13_icorr(float **P, int Ng);
+float f1_asm(void);
+float f2_contrast(void);
+float f3_corr(void);
+float f4_var(void);
+float f5_idm(void);
+float f6_savg(void);
+float f7_svar(void);
+float f8_sentropy(void);
+float f9_entropy(void);
+float f10_dvar(void);
+float f11_dentropy(void);
+float f12_icorr(void);
+float f13_icorr(void);
static float **P_matrix = NULL;
static float **P_matrix0 = NULL;
@@ -76,16 +71,15 @@
static float **P_matrix135 = NULL;
int tone[PGM_MAXMAXVAL + 1];
-static int tones = 0;
-static float sentropy = 0.0;
+static int Ng = 0;
static float *px, *py;
static float Pxpys[2 * PGM_MAXMAXVAL + 2];
static float Pxpyd[2 * PGM_MAXMAXVAL + 2];
-void alloc_vars(int size, int dist)
+void alloc_vars(int size)
{
- int Ng;
+ int msize2;
/* Allocate memory for gray-tone spatial dependence matrix */
P_matrix0 = matrix(MAX_MATRIX_SIZE + 1, MAX_MATRIX_SIZE + 1);
@@ -94,104 +88,138 @@
P_matrix135 = matrix(MAX_MATRIX_SIZE + 1, MAX_MATRIX_SIZE + 1);
if (size * size < 256)
- Ng = size * size;
+ msize2 = size * size;
else
- Ng = 256;
+ msize2 = 256;
- px = vector(Ng + 1);
- py = vector(Ng + 1);
+ px = vector(msize2 + 1);
+ py = vector(msize2 + 1);
}
+static int bsearch_gray(int *array, int n, int val)
+{
+ int lo, hi, mid;
+
+ lo = 0;
+ hi = n - 1;
+
+ while (lo <= hi) {
+ mid = (lo + hi) >> 1;
+
+ if (array[mid] == val)
+ return mid;
+
+ if (array[mid] > val)
+ hi = mid - 1;
+ else
+ lo = mid + 1;
+ }
+
+ return -1;
+}
+
int set_vars(int **grays, int curr_row, int curr_col,
int size, int offset, int t_d)
{
int R0, R45, R90, R135, x, y;
int row, col, row2, col2, rows, cols;
int itone, jtone;
+ int cnt;
rows = cols = size;
/* Determine the number of different gray scales (not maxval) */
for (row = 0; row <= PGM_MAXMAXVAL; row++)
tone[row] = -1;
+ cnt = 0;
for (row = curr_row - offset; row <= curr_row + offset; row++) {
for (col = curr_col - offset; col <= curr_col + offset; col++) {
if (grays[row][col] < 0) { /* No data pixel found */
- return 0;
+ continue;
}
if (grays[row][col] > PGM_MAXMAXVAL)
G_fatal_error(_("Too many categories (found: %i, max: %i). "
"Try to rescale or reclassify the map"),
grays[row][col], PGM_MAXMAXVAL);
tone[grays[row][col]] = grays[row][col];
+ cnt++;
}
}
+ /* what is the minimum number of pixels
+ * to get reasonable texture measurements ? */
+ if (cnt < t_d * t_d * 4)
+ return 0;
/* Collapse array, taking out all zero values */
- tones = 0;
+ Ng = 0;
for (row = 0; row <= PGM_MAXMAXVAL; row++) {
if (tone[row] != -1)
- tone[tones++] = tone[row];
+ tone[Ng++] = tone[row];
}
/* Now array contains only the gray levels present (in ascending order) */
- for (row = 0; row < tones; row++)
- for (col = 0; col < tones; col++) {
+ for (row = 0; row < Ng; row++)
+ for (col = 0; col < Ng; col++) {
P_matrix0[row][col] = P_matrix45[row][col] = 0;
P_matrix90[row][col] = P_matrix135[row][col] = 0;
}
+ /* Find normalizing constants */
+ /* not correct in case of NULL cells: */
+ /*
+ R0 = 2 * rows * (cols - t_d);
+ R45 = 2 * (rows - t_d) * (cols - t_d);
+ R90 = 2 * (rows - t_d) * cols;
+ R135 = R45;
+ */
+
+ /* count actual cooccurrences for each angle */
+ R0 = R45 = R90 = R135 = 0;
+
/* Find gray-tone spatial dependence matrix */
-
for (row = 0; row < rows; row++) {
row2 = curr_row - offset + row;
for (col = 0; col < cols; col++) {
col2 = curr_col - offset + col;
- x = 0;
- while (tone[x] != grays[row2][col2])
- x++;
- if (col + t_d < cols) {
- y = 0;
- while (tone[y] != grays[row2][col2 + t_d])
- y++;
+ if (grays[row2][col2] < 0)
+ continue;
+ x = bsearch_gray(tone, Ng, grays[row2][col2]);
+ if (col + t_d < cols &&
+ grays[row2][col2 + t_d] >= 0) {
+ y = bsearch_gray(tone, Ng, grays[row2][col2 + t_d]);
P_matrix0[x][y]++;
P_matrix0[y][x]++;
+ R0 += 2;
}
- if (row + t_d < rows) {
- y = 0;
- while (tone[y] != grays[row2 + t_d][col2])
- y++;
+ if (row + t_d < rows &&
+ grays[row2 + t_d][col2] >= 0) {
+ y = bsearch_gray(tone, Ng, grays[row2 + t_d][col2]);
P_matrix90[x][y]++;
P_matrix90[y][x]++;
+ R90 += 2;
}
- if (row + t_d < rows && col - t_d >= 0) {
- y = 0;
- while (tone[y] != grays[row2 + t_d][col2 - t_d])
- y++;
+ if (row + t_d < rows && col - t_d >= 0 &&
+ grays[row2 + t_d][col2 - t_d] >= 0) {
+ y = bsearch_gray(tone, Ng, grays[row2 + t_d][col2 - t_d]);
P_matrix45[x][y]++;
P_matrix45[y][x]++;
+ R45 += 2;
}
- if (row + t_d < rows && col + t_d < cols) {
- y = 0;
- while (tone[y] != grays[row2 + t_d][col2 + t_d])
- y++;
+ if (row + t_d < rows && col + t_d < cols &&
+ grays[row2 + t_d][col2 + t_d] >= 0) {
+ y = bsearch_gray(tone, Ng, grays[row2 + t_d][col2 + t_d]);
P_matrix135[x][y]++;
P_matrix135[y][x]++;
+ R135 += 2;
}
}
}
/* Gray-tone spatial dependence matrices are complete */
- /* Find normalizing constants */
- R0 = 2 * rows * (cols - 1);
- R45 = 2 * (rows - 1) * (cols - 1);
- R90 = 2 * (rows - 1) * cols;
- R135 = R45;
-
/* Normalize gray-tone spatial dependence matrix */
- for (itone = 0; itone < tones; itone++) {
- for (jtone = 0; jtone < tones; jtone++) {
+ for (itone = 0; itone < Ng; itone++) {
+ for (jtone = 0; jtone < Ng; jtone++) {
P_matrix0[itone][jtone] /= R0;
P_matrix45[itone][jtone] /= R45;
P_matrix90[itone][jtone] /= R90;
@@ -202,10 +230,10 @@
return 1;
}
-int set_angle_vars(int angle, int have_px, int have_py, int have_sentr,
+int set_angle_vars(int angle, int have_px, int have_py,
int have_pxpys, int have_pxpyd)
{
- int i, j, Ng;
+ int i, j;
float **P;
switch (angle) {
@@ -223,10 +251,6 @@
break;
}
- if (have_sentr)
- sentropy = f8_sentropy(P_matrix, tones);
-
- Ng = tones;
P = P_matrix;
/*
@@ -276,69 +300,69 @@
{
switch (t_m) {
/* Angular Second Moment */
- case 0:
- return (f1_asm(P_matrix, tones));
+ case 1:
+ return (f1_asm());
break;
/* Contrast */
- case 1:
- return (f2_contrast(P_matrix, tones));
+ case 2:
+ return (f2_contrast());
break;
/* Correlation */
- case 2:
- return (f3_corr(P_matrix, tones));
+ case 3:
+ return (f3_corr());
break;
/* Variance */
- case 3:
- return (f4_var(P_matrix, tones));
+ case 4:
+ return (f4_var());
break;
/* Inverse Diff Moment */
- case 4:
- return (f5_idm(P_matrix, tones));
+ case 5:
+ return (f5_idm());
break;
/* Sum Average */
- case 5:
- return (f6_savg(P_matrix, tones));
- break;
-
- /* Sum Entropy */
case 6:
- return (sentropy);
+ return (f6_savg());
break;
/* Sum Variance */
case 7:
- return (f7_svar(P_matrix, tones, sentropy));
+ return (f7_svar());
break;
- /* Entropy */
+ /* Sum Entropy */
case 8:
- return (f9_entropy(P_matrix, tones));
+ return (f8_sentropy());
break;
- /* Difference Variance */
+ /* Entropy */
case 9:
- return (f10_dvar(P_matrix, tones));
+ return (f9_entropy());
break;
- /* Difference Entropy */
+ /* Difference Variance */
case 10:
- return (f11_dentropy(P_matrix, tones));
+ return (f10_dvar());
break;
- /* Measure of Correlation-1 */
+ /* Difference Entropy */
case 11:
- return (f12_icorr(P_matrix, tones));
+ return (f11_dentropy());
break;
- /* Measure of Correlation-2 */
+ /* Measure of Correlation-1 */
case 12:
- return (f13_icorr(P_matrix, tones));
+ return (f12_icorr());
break;
+
+ /* Measure of Correlation-2 */
+ case 13:
+ return (f13_icorr());
+ break;
}
return 0;
@@ -361,10 +385,11 @@
* gray-tone transitions. Hence the P matrix for such an image will have
* fewer entries of large magnitude.
*/
-float f1_asm(float **P, int Ng)
+float f1_asm(void)
{
int i, j;
float sum = 0;
+ float **P = P_matrix;
for (i = 0; i < Ng; i++)
for (j = 0; j < Ng; j++)
@@ -379,22 +404,36 @@
* measure of the contrast or the amount of local variations present in an
* image.
*/
-float f2_contrast(float **P, int Ng)
+float f2_contrast(void)
{
- int i, j, n;
+ int i, j /*, n */;
float sum, bigsum = 0;
+ float **P = P_matrix;
+ /*
for (n = 0; n < Ng; n++) {
sum = 0;
for (i = 0; i < Ng; i++) {
for (j = 0; j < Ng; j++) {
- if ((i - j) == n || (j - i) == n) {
+ if ((tone[i] - tone[j]) == tone[n] ||
+ (tone[j] - tone[i]) == tone[n]) {
sum += P[i][j];
}
}
}
- bigsum += n * n * sum;
+ bigsum += tone[n] * tone[n] * sum;
}
+ */
+
+ /* two-loop version */
+ for (i = 0; i < Ng; i++) {
+ for (j = 0; j < Ng; j++) {
+ if (i != j) {
+ sum += P[i][j] * (tone[i] - tone[j]) * (tone[i] - tone[j]);
+ }
+ }
+ }
+
return bigsum;
}
@@ -403,13 +442,13 @@
* This correlation feature is a measure of gray-tone linear-dependencies
* in the image.
*/
-float f3_corr(float **P, int Ng)
+float f3_corr(void)
{
int i, j;
- float sum_sqrx = 0, sum_sqry = 0, tmp = 0;
- float meanx = 0, meany = 0, stddevx, stddevy;
+ float sum_sqr = 0, tmp = 0;
+ float mean = 0, stddev;
+ float **P = P_matrix;
-
/* Now calculate the means and standard deviations of px and py */
/*- fix supplied by J. Michael Christensen, 21 Jun 1991 */
@@ -418,25 +457,23 @@
* after realizing that meanx=meany and stddevx=stddevy
*/
for (i = 0; i < Ng; i++) {
- meanx += px[i] * i;
- sum_sqrx += px[i] * i * i;
+ mean += px[i] * tone[i];
+ sum_sqr += px[i] * tone[i] * tone[i];
for (j = 0; j < Ng; j++)
- tmp += i * j * P[i][j];
+ tmp += tone[i] * tone[j] * P[i][j];
}
- meany = meanx;
- sum_sqry = sum_sqrx;
- stddevx = sqrt(sum_sqrx - (meanx * meanx));
- stddevy = stddevx;
+ stddev = sqrt(sum_sqr - (mean * mean));
- return (tmp - meanx * meany) / (stddevx * stddevy);
+ return (tmp - mean * mean) / (stddev * stddev);
}
/* Sum of Squares: Variance */
-float f4_var(float **P, int Ng)
+float f4_var(void)
{
int i, j;
float mean = 0, var = 0;
+ float **P = P_matrix;
/*- Corrected by James Darrell McCauley, 16 Aug 1991
* calculates the mean intensity level instead of the mean of
@@ -444,73 +481,102 @@
*/
for (i = 0; i < Ng; i++)
for (j = 0; j < Ng; j++)
- mean += i * P[i][j];
+ mean += tone[i] * P[i][j];
for (i = 0; i < Ng; i++)
for (j = 0; j < Ng; j++)
- var += (i + 1 - mean) * (i + 1 - mean) * P[i][j];
+ var += (tone[i] - mean) * (tone[j] - mean) * P[i][j];
return var;
}
/* Inverse Difference Moment */
-float f5_idm(float **P, int Ng)
+float f5_idm(void)
{
int i, j;
float idm = 0;
+ float **P = P_matrix;
for (i = 0; i < Ng; i++)
for (j = 0; j < Ng; j++)
- idm += P[i][j] / (1 + (i - j) * (i - j));
+ idm += P[i][j] / (1 + (tone[i] - tone[j]) * (tone[i] - tone[j]));
return idm;
}
/* Sum Average */
-float f6_savg(float **P, int Ng)
+float f6_savg(void)
{
- int i;
+ int i, j, k;
float savg = 0;
+ float *P = Pxpys;
+ /*
for (i = 0; i < 2 * Ng - 1; i++)
savg += (i + 2) * Pxpys[i];
+ */
+ for (i = 0; i < Ng; i++) {
+ for (j = 0; j < Ng; j++) {
+ k = i + j;
+ savg += (tone[i] + tone[j]) * P[k];
+ }
+ }
+
return savg;
}
/* Sum Variance */
-float f7_svar(float **P, int Ng, double S)
+float f7_svar(void)
{
- int i;
+ int i, j, k;
float var = 0;
+ float *P = Pxpys;
+ float savg = f6_savg();
+ float tmp;
+ /*
for (i = 0; i < 2 * Ng - 1; i++)
- var += (i + 2 - S) * (i + 2 - S) * Pxpys[i];
+ var += (i + 2 - savg) * (i + 2 - savg) * Pxpys[i];
+ */
+ for (i = 0; i < Ng; i++) {
+ for (j = 0; j < Ng; j++) {
+ k = i + j;
+ tmp = tone[i] + tone[j] - savg;
+ var += tmp * tmp * P[k];
+ }
+ }
+
return var;
}
/* Sum Entropy */
-float f8_sentropy(float **P, int Ng)
+float f8_sentropy(void)
{
int i;
float sentr = 0;
+ float *P = Pxpys;
- for (i = 0; i < 2 * Ng - 1; i++)
- sentr -= Pxpys[i] * log10(Pxpys[i] + EPSILON);
+ for (i = 0; i < 2 * Ng - 1; i++) {
+ if (P[i] > 0)
+ sentr -= P[i] * log2(P[i]);
+ }
return sentr;
}
/* Entropy */
-float f9_entropy(float **P, int Ng)
+float f9_entropy(void)
{
int i, j;
float entropy = 0;
+ float **P = P_matrix;
for (i = 0; i < Ng; i++) {
for (j = 0; j < Ng; j++) {
- entropy += P[i][j] * log10(P[i][j] + EPSILON);
+ if (P[i][j] > 0)
+ entropy += P[i][j] * log2(P[i][j]);
}
}
@@ -518,50 +584,60 @@
}
/* Difference Variance */
-float f10_dvar(float **P, int Ng)
+float f10_dvar(void)
{
int i, tmp;
float sum = 0, sum_sqr = 0, var = 0;
+ float *P = Pxpyd;
/* Now calculate the variance of Pxpy (Px-y) */
for (i = 0; i < Ng; i++) {
- sum += Pxpyd[i];
- sum_sqr += Pxpyd[i] * Pxpyd[i];
+ sum += P[i];
+ sum_sqr += P[i] * P[i];
}
- tmp = Ng * Ng;
+ /* tmp = Ng * Ng; */
+ tmp = (tone[Ng - 1] - tone[0]) * (tone[Ng - 1] - tone[0]);
var = ((tmp * sum_sqr) - (sum * sum)) / (tmp * tmp);
return var;
}
/* Difference Entropy */
-float f11_dentropy(float **P, int Ng)
+float f11_dentropy(void)
{
int i;
float sum = 0;
+ float *P = Pxpyd;
- for (i = 0; i < Ng; i++)
- sum += Pxpyd[i] * log10(Pxpyd[i] + EPSILON);
+ for (i = 0; i < Ng; i++) {
+ if (P[i] > 0)
+ sum += P[i] * log2(P[i]);
+ }
return -sum;
}
/* Information Measures of Correlation */
-float f12_icorr(float **P, int Ng)
+float f12_icorr(void)
{
int i, j;
float hx = 0, hy = 0, hxy = 0, hxy1 = 0;
+ float **P = P_matrix;
for (i = 0; i < Ng; i++)
for (j = 0; j < Ng; j++) {
- hxy1 -= P[i][j] * log10(px[i] * py[j] + EPSILON);
- hxy -= P[i][j] * log10(P[i][j] + EPSILON);
+ if (px[i] * py[j] > 0)
+ hxy1 -= P[i][j] * log2(px[i] * py[j]);
+ if (P[i][j] > 0)
+ hxy -= P[i][j] * log2(P[i][j]);
}
/* Calculate entropies of px and py - is this right? */
for (i = 0; i < Ng; i++) {
- hx -= px[i] * log10(px[i] + EPSILON);
- hy -= py[i] * log10(py[i] + EPSILON);
+ if (px[i] > 0)
+ hx -= px[i] * log2(px[i]);
+ if (py[i] > 0)
+ hy -= py[i] * log2(py[i]);
}
/* fprintf(stderr,"hxy1=%f\thxy=%f\thx=%f\thy=%f\n",hxy1,hxy,hx,hy); */
@@ -569,15 +645,18 @@
}
/* Information Measures of Correlation */
-float f13_icorr(float **P, int Ng)
+float f13_icorr(void)
{
int i, j;
float hxy = 0, hxy2 = 0;
+ float **P = P_matrix;
for (i = 0; i < Ng; i++) {
for (j = 0; j < Ng; j++) {
- hxy2 -= px[i] * py[j] * log10(px[i] * py[j] + EPSILON);
- hxy -= P[i][j] * log10(P[i][j] + EPSILON);
+ if (px[i] * py[j] > 0)
+ hxy2 -= px[i] * py[j] * log2(px[i] * py[j]);
+ if (P[i][j] > 0)
+ hxy -= P[i][j] * log2(P[i][j]);
}
}
Modified: grass/branches/releasebranch_7_2/raster/r.texture/h_measure.h
===================================================================
--- grass/branches/releasebranch_7_2/raster/r.texture/h_measure.h 2016-11-16 20:31:35 UTC (rev 69838)
+++ grass/branches/releasebranch_7_2/raster/r.texture/h_measure.h 2016-11-16 20:32:28 UTC (rev 69839)
@@ -24,8 +24,8 @@
*****************************************************************************/
float h_measure(int);
-void alloc_vars(int, int);
+void alloc_vars(int);
int set_vars(int **grays, int curr_rrow, int curr_col,
int size, int offset, int t_d);
-int set_angle_vars(int angle, int have_px, int have_py, int have_sentr,
+int set_angle_vars(int angle, int have_px, int have_py,
int have_pxpys, int have_pxpyd);
Modified: grass/branches/releasebranch_7_2/raster/r.texture/main.c
===================================================================
--- grass/branches/releasebranch_7_2/raster/r.texture/main.c 2016-11-16 20:31:35 UTC (rev 69838)
+++ grass/branches/releasebranch_7_2/raster/r.texture/main.c 2016-11-16 20:32:28 UTC (rev 69839)
@@ -6,6 +6,7 @@
* with hints from:
* prof. Giulio Antoniol - antoniol at ieee.org
* prof. Michele Ceccarelli - ceccarelli at unisannio.it
+ * Markus Metz (optimization and bug fixes)
*
* PURPOSE: Create map raster with textural features.
*
@@ -40,19 +41,19 @@
/* modify this table to add new measures */
static struct menu menu[] = {
- {"asm", "Angular Second Moment", "_ASM", 0, 0},
- {"contrast", "Contrast", "_Contr", 0, 1},
- {"corr", "Correlation", "_Corr", 0, 2},
- {"var", "Variance", "_Var", 0, 3},
- {"idm", "Inverse Diff Moment", "_IDM", 0, 4},
- {"sa", "Sum Average", "_SA", 0, 5},
- {"se", "Sum Entropy", "_SE", 0, 6},
+ {"asm", "Angular Second Moment", "_ASM", 0, 1},
+ {"contrast", "Contrast", "_Contr", 0, 2},
+ {"corr", "Correlation", "_Corr", 0, 3},
+ {"var", "Variance", "_Var", 0, 4},
+ {"idm", "Inverse Diff Moment", "_IDM", 0, 5},
+ {"sa", "Sum Average", "_SA", 0, 6},
{"sv", "Sum Variance", "_SV", 0, 7},
- {"entr", "Entropy", "_Entr", 0, 8},
- {"dv", "Difference Variance", "_DV", 0, 9},
- {"de", "Difference Entropy", "_DE", 0, 10},
- {"moc1", "Measure of Correlation-1", "_MOC-1", 0, 11},
- {"moc2", "Measure of Correlation-2", "_MOC-2", 0, 12},
+ {"se", "Sum Entropy", "_SE", 0, 8},
+ {"entr", "Entropy", "_Entr", 0, 9},
+ {"dv", "Difference Variance", "_DV", 0, 10},
+ {"de", "Difference Entropy", "_DE", 0, 11},
+ {"moc1", "Measure of Correlation-1", "_MOC-1", 0, 12},
+ {"moc2", "Measure of Correlation-2", "_MOC-2", 0, 13},
{NULL, NULL, NULL, 0, -1}
};
@@ -86,9 +87,9 @@
FCELL measure; /* Containing measure done */
int dist, size; /* dist = value of distance, size = s. of moving window */
int offset;
- int have_px, have_py, have_sentr, have_pxpys, have_pxpyd;
+ int have_px, have_py, have_pxpys, have_pxpyd;
int infd, *outfd;
- RASTER_MAP_TYPE data_type, out_data_type;
+ RASTER_MAP_TYPE out_data_type;
struct GModule *module;
struct Option *opt_input, *opt_output, *opt_size, *opt_dist, *opt_measure;
struct Flag *flag_ind, *flag_all;
@@ -127,7 +128,8 @@
opt_dist->key_desc = "value";
opt_dist->type = TYPE_INTEGER;
opt_dist->required = NO;
- opt_dist->description = _("The distance between two samples (>= 1)");
+ opt_dist->label = _("The distance between two samples (>= 1)");
+ opt_dist->description = _("The distance must be smaller than the size of the moving window");
opt_dist->answer = "1";
for (i = 0; menu[i].name; i++) {
@@ -166,6 +168,8 @@
dist = atoi(opt_dist->answer);
if (dist <= 0)
G_fatal_error(_("The distance between two samples must be > 0"));
+ if (dist >= size)
+ G_fatal_error(_("The distance between two samples must be smaller than the size of the moving window"));
n_measures = 0;
if (flag_all->answer) {
@@ -192,7 +196,7 @@
j = 0;
for (i = 0; menu[i].name; i++) {
if (menu[i].useme == 1) {
- measure_idx[j] = menu[i].idx;
+ measure_idx[j] = i;
j++;
}
}
@@ -206,10 +210,6 @@
have_py = 1;
else
have_py = 0;
- if (menu[6].useme || menu[7].useme)
- have_sentr = 1;
- else
- have_sentr = 0;
if (menu[5].useme || menu[6].useme || menu[7].useme)
have_pxpys = 1;
else
@@ -221,9 +221,6 @@
infd = Rast_open_old(name, "");
- /* determine the inputmap type (CELL/FCELL/DCELL) */
- data_type = Rast_get_map_type(infd);
-
Rast_get_cellhd(name, "", &cellhd);
out_data_type = FCELL_TYPE;
@@ -327,8 +324,8 @@
G_message(n_("Calculating %d texture measure",
"Calculating %d texture measures", n_measures), n_measures);
else
- G_message(_("Calculating %s"), menu[measure_idx[0]].desc);
- alloc_vars(size, dist);
+ G_message(_("Calculating %s..."), menu[measure_idx[0]].desc);
+ alloc_vars(size);
for (row = first_row; row < last_row; row++) {
G_percent(row, nrows, 2);
@@ -346,11 +343,11 @@
/* for all angles (0, 45, 90, 135) */
for (i = 0; i < 4; i++) {
- set_angle_vars(i, have_px, have_py, have_sentr, have_pxpys, have_pxpyd);
+ set_angle_vars(i, have_px, have_py, have_pxpys, have_pxpyd);
/* for all requested textural measures */
for (j = 0; j < n_measures; j++) {
- measure = (FCELL) h_measure(measure_idx[j]);
+ measure = (FCELL) h_measure(menu[measure_idx[j]].idx);
if (flag_ind->answer) {
/* output for each angle separately */
Modified: grass/branches/releasebranch_7_2/raster/r.texture/r.texture.html
===================================================================
--- grass/branches/releasebranch_7_2/raster/r.texture/r.texture.html 2016-11-16 20:31:35 UTC (rev 69838)
+++ grass/branches/releasebranch_7_2/raster/r.texture/r.texture.html 2016-11-16 20:32:28 UTC (rev 69839)
@@ -8,14 +8,21 @@
<em>r.texture</em> assumes grey levels ranging from 0 to 255 as input.
The input is automatically rescaled to 0 to 255 if the input map range is outside
of this range.
+
<p>
+In order to reduce noise in the input data, and to speed up processing,
+the input map can be recoded using equal-probability quantization.
+Quantization rules for <em>r.recode</em> can be generated with
+<em>r.quantile -r</em> using e.g 16 or 32 quantiles (see example below).
+
+<p>
In general, several variables constitute texture: differences in grey level values,
coarseness as scale of grey level differences, presence or lack of directionality
and regular patterns. A texture can be characterized by tone (grey level intensity
properties) and structure (spatial relationships). Since textures are highly scale
dependent, hierarchical textures may occur.
+
<p>
-
<em>r.texture</em> reads a GRASS raster map as input and calculates
textural features based on spatial dependence matrices for north-south,
east-west, northwest, and southwest directions using a side by side
@@ -122,6 +129,15 @@
This calculates four maps (requested texture at four orientations):
ortho_texture_ASM_0, ortho_texture_ASM_45, ortho_texture_ASM_90, ortho_texture_ASM_135.
+Reducing the number of gray levels (equal-probability quantizing):
+
+<div class="code"><pre>
+g.region -p rast=ortho_2001_t792_1m
+r.quantile in=ortho_2001_t792_1m quantiles=16 -r | r.recode in=ortho_2001_t792_1m out=ortho_2001_t792_1m_q16 rules=-
+</pre></div>
+
+The recoded raster map can then be used as input for r.texture as before.
+
<h2>KNOWN ISSUES</h2>
The program can run incredibly slow for large raster maps.
@@ -162,6 +178,7 @@
<h2>AUTHORS</h2>
<a href="mailto:antoniol at ieee.org">G. Antoniol</a> - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
C. Basco - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
-M. Ceccarelli - Facolta di Scienze, Universita del Sannio, Benevento
+M. Ceccarelli - Facolta di Scienze, Universita del Sannio, Benevento<br>
+Markus Metz
<p><i>Last changed: $Date$</i>
More information about the grass-commit
mailing list