[GRASS-SVN] r71179 - grass-addons/grass7/raster/r.learn.ml
svn_grass at osgeo.org
svn_grass at osgeo.org
Mon Jun 12 21:36:15 PDT 2017
Author: spawley
Date: 2017-06-12 21:36:15 -0700 (Mon, 12 Jun 2017)
New Revision: 71179
Modified:
grass-addons/grass7/raster/r.learn.ml/r.learn.ml.py
Log:
removal of classifier calibration
Modified: grass-addons/grass7/raster/r.learn.ml/r.learn.ml.py
===================================================================
--- grass-addons/grass7/raster/r.learn.ml/r.learn.ml.py 2017-06-12 21:20:45 UTC (rev 71178)
+++ grass-addons/grass7/raster/r.learn.ml/r.learn.ml.py 2017-06-13 04:36:15 UTC (rev 71179)
@@ -441,14 +441,13 @@
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, Imputer
from sklearn.model_selection import (
- GridSearchCV, RandomizedSearchCV, GroupShuffleSplit, ShuffleSplit,
+ GridSearchCV, GroupShuffleSplit, ShuffleSplit,
StratifiedKFold, GroupKFold)
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.utils import shuffle
from sklearn import metrics
from sklearn.metrics import make_scorer
- from sklearn.calibration import CalibratedClassifierCV
except:
gscript.fatal("Scikit learn 0.18 or newer is not installed")
@@ -883,13 +882,6 @@
if model_only is not True:
gscript.message(os.linesep)
- # recalibrate probabilities if classes have been balanced
- if balance is True:
- if any(param_grid) is True and nested_cv is True:
- clf = clf.best_estimator_
- clf = CalibratedClassifierCV(clf, cv=20)
- clf.fit(X, y)
-
# predict classification/regression raster
if prob_only is False:
gscript.message('Predicting classification/regression raster...')
More information about the grass-commit
mailing list