Multimedia Data Mining on RSI Images

Github link for the codes of implemented Phase-1:
https://github.com/amitabh27/Multimedia-data-mining-on-RSI-images.git
Youtube link for the demonstration of Phase 1 of my GSoC proposal:
https://www.youtube.com/watch?v=KbnQKMQy4N8&feature=youtu.be
Timeline representation of my proposal:
	Duration
	Work Done

	Work done till now :

	January 11 – January 25

	January 26 – January 31

	February 1 – February 7

	February 8 – March 14

	March 15 – March 25

	

	Study of the IEEE papers on bit level mining especially the one by Qin Ding and William Perrizo.

	Implementing the Java swings code for taking the images from user and converting them into Band Sequential Format.

	Implementing the C code for converting Band sequential format into the bit sequential formats.

	Implementing the code for operations on the data structure P-tree for the actual bit level mining.

	Implementing the Java swings code for generating the predicted images from the rules derived above.

Remark :
The reason of starting so early was I wanted to have a rough idea of how the entire algorithm can be constructed. So I started with only the visual bands mining and the next phase describes how it would be taken further.

	Work to be done:

	March 26 – April 30

	May 1 – June 20*

	June 21 – August 1

	August 1 – August 7

	August 8 – August 15

	

	Studying of Ultraviolet and Infrared bands that need to be mined along with visual bands because geo tiff images have all the 3 types of bands.

	Expansion of codes constructed above to make the mining of all 3 types of bands possible.

	Integration of codes with GRASS GIS and construction of a simple GUI for uploading of geo tiff images and an area selection feature.

	Testing and Documentation of the work done till date.

	Documenting the future scope which is very much necessary for open source projects.

Remark:
*My university exams are there during that period, so keeping in mind that I have devoted a long time to that sub-phase.

PARM
There are 4 codes that run sequentially to give results:
Parm1.java (java swings to handle images at input sideTo convert images into BSQs)
Parm2.c(C code to convert BSQ into bSQs)
Parrm3.c(C code responsible for performing bit level data mining)
Parm4.java (java swings to convert textual results into images)

Naming Conventions:
Input files:
geo1…..geon.jpg/png/giff/jpeg=RSI images including 1 event and (n-1) contributing factors.

Code files:
RGB to RGB mapping(event with one Contributing factor)= parm11.java,parm22.c,parm33.c,parm44.java
RGB to Grey mapping(event with one Contributing factor)= parm1.java,parm2.c,parm3.c,parm4.java,parm5.java,parm6.java
RGB to RGB(event with multiple Contributing factors)= parm11.java,parm22.c,parm33.c,parm44.java
Repositories:
parm_rsi.txt=It is the Band Sequential format.
b1b1.txt ……….. bnb4.txt=These are the bit sequential formats where n=Number_of_input_images*3.
rules.txt=To store the association rules.
Output files:
generated_image1=predicted image with the lower 4bits of each byte set to zero.
generated_image2=predicted image with the lower 4bits of each byte set to one.
Items:
The count of possible number of items=3(Number of bands)*4(Number of bits per band)*2(bit can be either 1 or 0)*M(Number of images).
An item is represented as ABC which means it is representing the Bth bit of Ath band with the value being C.The (R,G,B) bands of first image are represented as (1,2,3) and that of 2nd image as (4,5,6) so on and so forth.

Dimensions of files:
Input files:
All the images are of the same dimensions say (NxN).

Repositories:
parm_rsi.txt= Size of this file in (Nx(Nx3x4xM))
Where
N is the image size
3 represents the bands(R,G,B) of each pixel.
4 represents the number of bits per band(only the higher order 4 bits are considered)
M represents the number of input images(If M=2 then there is an event and only one contributing factor)
b1b1…..bnb4=Size of all the bit sequential format files is NxN.
Output files:
generated_image1…n=The output images are all of size NxN.

How the process works?
Let us consider the case of an event and one contributing factor.
Event : A 2x2 image where each pixel has 3 visual bands(R,G,B)
	121,131,141
	127,129,131

	117,225,230
	131,210,212

Contributing Factor: A 2x2 image where each pixel has 3 visual bands(R,G,B)
	121,212,129
	131,210,141

	129,230,212
	141,225,131

Once the inputs are received we create the Band sequential format which looks like this:
	121,131,141,121,212,129,127,129,131,131,210,141

	117,225,230,129,230,212,131,210,212,141,225,131

Now these integral values are converted into binary form wherein only the higher order 4 bits are reserved for each byte.
	0111,1000,1000,0111,1101,1000,0111,1000,1000,1000,1101,1000

	0111,1110,1110,1000,1110,1101,1000,1101,1101,1000,1110,1000

Now the bit sequential formats are created from the above file:
	B1b1 :
	0
	0

	0
	1

	B1b2 :
	1
	1

	1
	0

	B1b3 :
	1
	1

	1
	0

	B1b4 :
	1
	1

	1
	0

	B2b1 :
	1
	1

	1
	1

	B2b2:
	0
	0

	1
	1

	 B2b3:
	0
	0

	1
	0

	B2b4 :
	0
	0

	0
	1

	B3b1 :
	1
	1

	1
	1

	B3b2 :
	0
	0

	1
	1

	B3b3 :
	0
	0

	1
	0

	B3b4 :
	0
	0

	0
	1

	B4b1 :
	0
	1

	1
	1

	B4b2 :
	1
	0

	0
	0

	B4b3 :
	1
	0

	0
	0

	B4b4 :
	1
	0

	0
	0

	B5b1 :
	1
	1

	1
	1

	B5b2 :
	1
	1

	1
	1

	B5b3 :
	0
	0

	1
	1

	B5b4 :
	1
	1

	0
	0

	B6b1 :
	1
	1

	1
	1

	B6b2 :
	0
	0

	1
	0

	B6b3 :
	0
	0

	0
	0

	B6b4 :
	0
	0

	1
	0

Once the bit sequential formats are created we try to find out the frequent item from each file.
Suppose support is 50%.We start with the file B1b1 wherein there are three 0s and one 1.so the frequent item is 110 i.e 1st bit of 1st band is 0.
So the 1-frequent itemsets are : 110,121,131,141,211,220,221,230,240,311,321,320,330,340,411,420,430,440,511,521,530,531,541,540,611,620,630,640.
Now for generating 2-frequent itemsets simply perform anding of bSQs.If we AND B1b2 and B1b4,we get
B1b2 AND B1b3 =
	1
	1

	1
	0

Here the count of 1s is 3 greater than support count. So {121,131} forms a 2-frequent itemset.
Similarly the entire process is repeated to get n-frequent itemsets.
Example of n-frequent itemset : {121,131,141}
So the rules are:
{121}{131,141}
{131}{121,141}
{141{121,131}
{121,131}{141}
{121,141}{131}
{131,141}{121}
Then the rules are pruned based on the confidence desired.
All these rules get stored into a repository.Then these are parsed to match the LHS of a rule with the bands of pixels of the image “Contributing_factor” of some different geographical region.Once a match is found the corresponding pixels in the “Predicted_event” are imparted colors.
Example:
Suppose the rule is {441,510,631}{121,231,341}
Now if the 4th bit of Red band is 1 and 1st bit of Green band is 0 and 3rd bit of Blue band is 1 of the image “Contributing_factor”/geo3.jpg then,
2nd bit of Red band is set to 1 and 3rd bit of Green band is set to 1 and 4th bit of Blue band is set to 1 of the image “Predicted_event”/generated_image.jpeg.
Block diagram depicting code and repository interactions for RGB to RGB Mapping:
Contributing factor-1
Event-2
Event-1

Parm11.java

Parm_rsi.txt

Parm22.c

B1b1.txt

B2b4.txt

B2b3.txt

B2b2.txt

B2b1.txt
B1b4.txt

B1b3.txt

B1b2.txt

B3b3.txt

B3b2.txt

B3b1.txt

B4b4.txt

B4b3.txt

B4b2.txt

B4b1.txt
B3b4.txt

B5b1.txt
B5b2.txt

B5b3.txt

B5b4.txt

B6b1.txt
B6b2.txt

B6b3.txt

B6b4.txt

Parm33.c

[bookmark: _GoBack]
Rules.txt

Parm44.java

Generated_iamge2.jpg
Generated_image1.jpg

Snapshots of file systems:
· RGB to RGB Mapping
[image: C:\Users\amitabh\Desktop\parm_RGB_file_system.png]

· RGB to Grey Mapping
[image: C:\Users\amitabh\Desktop\parm_grey_file_system.png]

(let me know if there are any queries).

image1.png

image2.png

