[GRASS-user] Calculating eigen values and %
varianceexplainedafter PCA analysis
Nikos Alexandris
nikos.alexandris at felis.uni-freiburg.de
Sun Mar 1 06:36:51 EST 2009
On Sun, 2009-03-01 at 01:59 -0800, Hamish wrote:
> Hamish wrote:
> > # 'automatic method'
> > imagery60:G6.5svn> i.pca in=spot.ms.1,spot.ms.2,spot.ms.3 out=spot_pca
> >
> > Eigen (vectors) and values:
> > PC1 ( -0.63 -0.65 -0.43 ) 88.07
> > PC2 ( 0.23 0.37 -0.90 ) 11.48
> > PC3 ( 0.75 -0.66 -0.08 ) 0.45
>
> changed to:
> Eigen values, (vectors), and [percent importance]:
> Eigenvalue 1: 1170.12 ( -0.63 -0.65 -0.43 ) [88.07%]
> Eigenvalue 2: 152.49 ( 0.23 0.37 -0.90 ) [11.48%]
> Eigenvalue 3: 6.01 ( 0.75 -0.66 -0.08 ) [0.45%]
>
> comments welcome.
> Hamish
Congrats after I see that... it works :-p
.
Seriously now: Thank You Hamish!!
Kindest regards, Nikos
P.S. I overdid it with ideas below... :D
---
I am testing... (after the compilation completes). Even before testing I
dould like to drop-in my idea about the output, that is "be more close
to the _standards_ (=e.g. the books present the results)".
* Present first the variance (=eigenvalues) because it's the first
thing you will look at to know "how much variance of the original data
is _expressed_ in each new component.
* The importance, since it refers to the eigenvalue, it's better to
come right after it.
* Present the loadings (eigenvectors) for each new component.
* Column-wise or row-wise? The results can be either presented
column-wise, that is one column for each new component _or_ row-wise,
as they are currently printed. I think row-wise just looks better :-)
"Some" examples... (only 2 for column-wise and all the rest row-wise...
playing around).
# column-wise examples ##############################################
PC1 PC2 PC3
1170.12 152.49 6.01
[88.07%] [11.48%] [0.47%]
-0.63 0.23 0.75
-0.65 0.37 -0.66
-0.43 -0.90 -0.08
or
#...and perhaps naming each row after
# _original feature_ or
# _original variable_ or
# _original image_ or
# _original dimension_ or
# _original input_ ?
Dimensions PCA PC2 PC3
Variance 1170.12 152.49 6.01
Importance [88.07%] [11.48%] [0.47%]
1st input -0.63 0.23 0.75
2nd input -0.65 0.37 -0.66
3rd input -0.43 -0.90 -0.08
or
Dimensions PCA PC2 PC3
Variance 1170.12 152.49 6.01
Importance(%) 88.07 11.48 0.47
1st input -0.63 0.23 0.75
2nd input -0.65 0.37 -0.66
3rd input -0.43 -0.90 -0.08
or
[...]
# row-wise examples ##############################################
Eigenvalues, [importance] and (eigenvectors)
PC1 1170.12 [88.07%] ( -0.63 -0.65 -0.43 )
PC2 152.49 [11.48%] ( 0.23 0.37 -0.90 )
PC3 6.01 [0.45%] ( 0.75 -0.66 -0.08 )
or
Eigenvalues, importance and (eigenvectors)
PC1 1170.12 88.07% ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48% ( 0.23 0.37 -0.90 )
PC3 6.01 0.45% ( 0.75 -0.66 -0.08 )
or
Eigenvalues Importance Eigenvectors
PC1 1170.12 88.07% ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48% ( 0.23 0.37 -0.90 )
PC3 6.01 0.45% ( 0.75 -0.66 -0.08 )
or
Eigenvalues Importance Eigenvectors
PC1 1170.12 88.07% ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48% ( 0.23 0.37 -0.90 )
PC3 6.01 0.45% ( 0.75 -0.66 -0.08 )
or
Eigenvalues % Eigenvectors
PC1 1170.12 88.07 ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48 ( 0.23 0.37 -0.90 )
PC3 6.01 0.45 ( 0.75 -0.66 -0.08 )
or
Eigenvalues % Eigenvectors
PC1 1170.12 88.07 ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48 ( 0.23 0.37 -0.90 )
PC3 6.01 0.45 ( 0.75 -0.66 -0.08 )
or
Eigenvalues % Eigenvectors
PC1 1170.12 88.07 ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48 ( 0.23 0.37 -0.90 )
PC3 6.01 0.45 ( 0.75 -0.66 -0.08 )
or
Eigenvalues [%] Eigenvectors
PC1 1170.12 [88.07] ( -0.63 -0.65 -0.43 )
PC2 152.49 [11.48] ( 0.23 0.37 -0.90 )
PC3 6.01 [0.45] ( 0.75 -0.66 -0.08 )
or
Eigenvalues [%] Eigenvectors
PC1 1170.12 [88.07] ( -0.63 -0.65 -0.43 )
PC2 152.49 [11.48] ( 0.23 0.37 -0.90 )
PC3 6.01 [0.45] ( 0.75 -0.66 -0.08 )
or
Variance Variance(%) Eigenvectors
PC1 1170.12 88.07 ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48 ( 0.23 0.37 -0.90 )
PC3 6.01 0.45 ( 0.75 -0.66 -0.08 )
or
Std % Eigenvectors
PC1 1170.12 88.07 ( -0.63 -0.65 -0.43 )
PC2 152.49 11.48 ( 0.23 0.37 -0.90 )
PC3 6.01 0.45 ( 0.75 -0.66 -0.08 )
More information about the grass-user
mailing list