<div dir="ltr"><div class="gmail_default" style="font-family:trebuchet ms,sans-serif;font-size:small;color:rgb(0,0,0)">I think I found a solution though. Used i.segment and then used the segments to make training sites and signatures for performing supervised classification. <br></div><div class="gmail_extra"><br clear="all"><div><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span style="font-family:trebuchet ms,sans-serif"><span style="color:rgb(0,0,0)">Jaya<br></span></span><font size="1"><span style="font-family:trebuchet ms,sans-serif"><span style="color:rgb(0,0,0)"><span style="color:rgb(7,55,99)"><a href="https://ca.linkedin.com/in/jayaakrish" target="_blank"></a></span></span></span></font><br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
<br><div class="gmail_quote">On 3 April 2016 at 10:07, Jaya Krishnan <span dir="ltr"><<a href="mailto:jayaakrish@gmail.com" target="_blank">jayaakrish@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="font-family:trebuchet ms,sans-serif;font-size:small;color:rgb(0,0,0)">Thanks! However I don't completely understand. Are you saying that there is no currently way to classify directly from raster result of i.segment based on some raster statistics, and possibly choosing vector training areas from this?<span class="HOEnZb"><font color="#888888"><br></font></span></div><div class="gmail_extra"><span class="HOEnZb"><font color="#888888"><br clear="all"><div><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span style="font-family:trebuchet ms,sans-serif"><span style="color:rgb(0,0,0)">Jaya<br><br></span></span><font size="1"><span style="font-family:trebuchet ms,sans-serif"><span style="color:rgb(0,0,0)"><span style="color:rgb(7,55,99)"></span></span></span></font><br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></font></span><div><div class="h5">
<br><div class="gmail_quote">On 3 April 2016 at 08:31, Moritz Lennert <span dir="ltr"><<a href="mailto:mlennert@club.worldonline.be" target="_blank">mlennert@club.worldonline.be</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span>On 31/03/16 01:17, Jaya Krishnan wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Hi fellow GRASS users,<br>
<br>
I have outputs of i.segment (object segmentation) for 30m Landsat<br>
imagery from 4 dates. The segments are around 10000 each for each<br>
imagery. How can I use these outputs for land cover change analysis? Do<br>
I have to vectorize these and recode the classes, or is there a more<br>
efficient way?<br>
</blockquote>
><br>
<br></span>
The classical approach would be:<br>
<br>
1) segmentation<br>
2) caracterization of the segments<br>
3) selection of training segments or training points<br>
4) classification<br>
<br>
Currently, in GRASS you have the following addons for the respective steps:<br>
<br>
2) v.stats / i.segment.stats<br>
4) <a href="http://v.class.ml" rel="noreferrer" target="_blank">v.class.ml</a> / v.class.mlpy / v.class.mlR<br>
<br>
You can check the section on Object-based classification in [1] for more info (although partially outdated).<br>
<br>
Moritz<br>
<br>
<br>
[1] <a href="https://grasswiki.osgeo.org/wiki/Image_classification" rel="noreferrer" target="_blank">https://grasswiki.osgeo.org/wiki/Image_classification</a><br>
<br>
</blockquote></div><br></div></div></div></div>
</blockquote></div><br></div></div>