[Proj] Little sphere projection
Duncan Agnew
dagnew at ucsd.edu
Tue Aug 9 10:52:41 PDT 2011
I think what is wanted is a projection that magnifies the center much
more
than greater distances; see (these are from Snyder's bibliography):
944. H\agerstrand, Torsten, 1957, Migration and area, in Migration in
Sweden: Lund, Sweden, Royal University of Lund, Dept. of Geography, Lund
studies in geography, series B, Human Geography, no. 13, p. 27-158.
[Azimuthal Logarithmic projection shown, p. 73.]
1194. Kadmon, Naftali, 1975, Data-bank derived hyperbolic-scale
equitemporal town maps: International Yearbook of Cartography, v. 15, p.
47-54. [Enlargement of center of projection.]
1197. Kadmon, Naftali, and Shlomi, Eli, 1978, A polyfocal projection
for
statistical surfaces: Cartographic Journal, v. 15, no. 1, p. 36-41.
2101. Sliwa, Antoni, 1978, Kartograficzne metody ekonomicznej
transformacji
przestrzeni: Folia Geographica, Series Geografica Oeconomica, v. 11, p.
149-160. [Polish. Cartographical methods of economic space
transformation.
Extension of H?gerstrand (1957) Azimuthal Logarithmic projection
techniques.]
2102. Smith, Derek, and Griffin, Trevor, 1976, Maps and the human
statistical landscape: Globe, v. 1, no. 5-6, p. 63-69. [Azimuthal
Logarithmic projection centered on Adelaide, Australia.]
2132. Snyder, J. P., 1987, "Magnifying-glass" azimuthal map
projections: Amer.
Cartographer, v. 14, no. 1, p. 61-68.
2253. Tobler, W. R., 1963, Geographic area and map projections:
Geographical Review, v.
53, no. 1, p. 59-78. [Equal-area projections and cartograms.
Translated to
German as Geographischer Raum und Kartenprojektionen, in Wirtschafts-
und
Sozialgeographie. Hrsg. v. Dietrich Bartels: Cologne and Berlin,
Kiepenheuer und Witsch, 1970, p. 262-277.]
More information about the Proj
mailing list