[GRASS-SVN] r56056 - in grass-addons/grass7/raster: . r.crater
svn_grass at osgeo.org
svn_grass at osgeo.org
Wed May 1 08:38:08 PDT 2013
Author: ychemin
Date: 2013-05-01 08:38:07 -0700 (Wed, 01 May 2013)
New Revision: 56056
Added:
grass-addons/grass7/raster/r.crater/
grass-addons/grass7/raster/r.crater/Makefile
grass-addons/grass7/raster/r.crater/crater.c
grass-addons/grass7/raster/r.crater/main.c
grass-addons/grass7/raster/r.crater/r.crater.html
Modified:
grass-addons/grass7/raster/Makefile
Log:
Added r.crater to estimate impactors sizes from craters, or crater sizes from impactors
Modified: grass-addons/grass7/raster/Makefile
===================================================================
--- grass-addons/grass7/raster/Makefile 2013-05-01 11:30:51 UTC (rev 56055)
+++ grass-addons/grass7/raster/Makefile 2013-05-01 15:38:07 UTC (rev 56056)
@@ -4,6 +4,7 @@
r.area \
r.clump2 \
r.convergence \
+ r.crater \
r.flip \
r.fuzzy \
r.geomorphon \
Added: grass-addons/grass7/raster/r.crater/Makefile
===================================================================
--- grass-addons/grass7/raster/r.crater/Makefile (rev 0)
+++ grass-addons/grass7/raster/r.crater/Makefile 2013-05-01 15:38:07 UTC (rev 56056)
@@ -0,0 +1,10 @@
+MODULE_TOPDIR = ../..
+
+PGM = r.crater
+
+LIBES = $(RASTERLIB) $(GISLIB)
+DEPENDENCIES = $(RASTERDEP) $(GISDEP)
+
+include $(MODULE_TOPDIR)/include/Make/Module.make
+
+default: cmd
Added: grass-addons/grass7/raster/r.crater/crater.c
===================================================================
--- grass-addons/grass7/raster/r.crater/crater.c (rev 0)
+++ grass-addons/grass7/raster/r.crater/crater.c 2013-05-01 15:38:07 UTC (rev 56056)
@@ -0,0 +1,171 @@
+/*
+INFORMATION FROM THE ORIGINAL FORTRAN CODE
+//program crater
+//Short program to evaluate the scaling equations to determine
+//the diameter of a transient crater given details on the nature
+//of the projectile, conditions of impact, and state of the
+//target. The diameter is evaluated by three independent methods,
+//yield scaling, pi-scaling and Gault's semi-empirical relations
+//supplemented by rules on how crater size depends on gravity and
+//angle of impact.
+//Updated Nov. 1997 to compute projectile size from a given
+//transient crater diameter. Projectile and crater diameter
+//computation functions merged into a single program April 1998.
+//See Melosh, Impact Cratering, chapter 7 for more details
+//Updated Oct. 1999 to take final crater diameters as well as
+//transient crater diameters into account.
+//Copyright 1996, 1997 and 1998 by H. J. Melosh
+The original code was translated to Python @EGU2013 (20130410),
+then to C version @TRENTO GRASS meeting (20130414),
+into GRASS GIS @TRENTO GRASS meeting (20130416).
+Public domain - Yann Chemin
+*/
+
+#include<stdio.h>
+#include<stdlib.h>
+#include<math.h>
+
+int crater(double v, double theta, double rhotarget, double g, int targtype, double rhoproj, double L, double Dt, double Dfinal, int scaling_law, int return_time, int comptype){
+ double pi=3.1415926535897932384626433;
+ double third=1./3.;
+ /*constants for the Schmidt-Holsapple pi scaling & gravity conversion factors*/
+ double Cd[3]={1.88,1.54,1.6};
+ double beta[3]={0.22,0.165,0.22};
+ double gearth=9.8;
+ double gmoon=1.67;
+ double rhomoon=2700.;
+ double Dstarmoon=1.8*pow(10,4);
+ double Dprmoon=1.4*pow(10,5);
+ //convert units to SI and compute some auxiliary quantites
+ v=1000.*v; /*km/sec to m/sec*/
+ theta=theta*(pi/180.); /*degrees to radians*/
+ double anglefac=pow((sin(theta)),third); /*impact angle factor*/
+ double densfac=pow(rhoproj,0.16667)/sqrt(rhotarget);
+ double pifac=(1.61*g)/(v*v); /*inverse froude length factor*/
+ double Ct=0.80; /*coefficient for formation time*/
+ if(targtype == 1){
+ Ct=1.3;
+ }
+ double Dstar=(gmoon*rhomoon*Dstarmoon)/(g*rhotarget); /*transition crater diameter*/
+ double Dpr =(gmoon*rhomoon*Dprmoon )/(g*rhotarget); /*peak-ring crater diameter*/
+ double Dstd, Lpiscale, Lyield, Lgault; /*Default mode*/
+
+ /***************************************************/
+ /* computation for specified projectile diameter*/
+ /***************************************************/
+ double m, W, pitwo, dscale, Dpiscale, Dyield, gsmall, Dgault, Tform, Dsimple, size;
+ char *cratertype;
+ if(comptype == 1){
+ m=(pi/6.)*rhoproj*pow(L,3); /*projectile mass*/
+ W=0.5*m*v*v; /*projectile kinetic energy*/
+ pitwo=pifac*L; /*inverse froude number*/
+ dscale=pow((m/rhotarget),third); /*scale for crater diameter*/
+ if(scaling_law==0){
+ //Pi Scaling (Schmidt and Holsapple 1987)
+ Dpiscale=dscale*Cd[targtype-1]*pow(pitwo,(-beta[targtype-1]));
+ Dpiscale=Dpiscale*anglefac;
+ size=Dpiscale;
+ } else if(scaling_law==2){
+ //Yield Scaling (Nordyke 1962) with small correction for depth of projectile penetration
+ Dyield=0.0133*pow(W,(1/3.4))+1.51*sqrt(rhoproj/rhotarget)*L;
+ Dyield=Dyield*anglefac*pow((gearth/g),0.165);
+ size=Dyield;
+ } else {
+ //Gault (1974) Semi-Empirical scaling
+ gsmall=0.25*densfac*pow(W,0.29)*anglefac;
+ if(targtype == 3){
+ gsmall=0.015*densfac*pow(W,0.37)*pow(anglefac,2);
+ }
+ if(gsmall < 100.){
+ Dgault=gsmall;
+ }else{
+ Dgault=0.27*densfac*pow(W,0.28)*anglefac;
+ }
+ Dgault=Dgault*pow((gmoon/g),0.165);
+ size=Dgault;
+ }
+ if(return_time){
+ /*Compute crater formation time from Schmidt and Housen*/
+ Tform=(Ct*L/v)*pow(pitwo,-0.61);
+ }
+ /*Compute final crater type and diameter from pi-scaled transient dia.*/
+ Dsimple=1.56*Dpiscale;
+ /* TODO: Return category */
+ if (Dsimple < Dstar){
+ Dfinal=Dsimple;
+ cratertype="Simple";
+ }else{
+ Dfinal=pow(Dsimple,1.18)/pow(Dstar,0.18);
+ cratertype="Complex";
+ }
+ if((Dsimple < Dstar*1.4) && (Dsimple > Dstar*0.71)){
+ cratertype="Simple/Complex";
+ }
+ if(Dfinal > Dpr){
+ cratertype="Peak-ring";
+ }
+
+ /*Print out results*/
+// printf("Three scaling laws yield the following *transient*', crater diameters:\n");
+// printf("(note that diameters are measured at the pre-impact surface.\n");
+// printf("Rim-to-rim diameters are about 1.25X larger!)\n");
+// printf("Yield Scaling Dyield =%f m\n", Dyield);
+// printf("Pi Scaling (Preferred method!) Dpiscale =%f m\n", Dpiscale);
+// printf("Gault Scaling Dgault =%f m\n", Dgault);
+// printf("Crater Formation Time Tform =%f sec\n", Tform);
+// printf("Using the Pi-scaled transient crater, the *final* crater has\n");
+// printf("rim-to-rim diameter =%f km, and is of type %s\n",Dfinal/1000.,cratertype);
+ }
+ /***************************************************************/
+ /* Default Mode: Estimate projectile size from crater diameter */
+ /***************************************************************/
+ else{
+ /*convert input crater rim-to-rim diameter to transient crater diameter*/
+ if(Dt == 0.){
+ if(Dfinal < Dstar){
+ Dt=0.64*Dfinal;
+ }else{
+ Dt=0.64*pow((Dfinal*pow(Dstar,0.18)),0.8475);
+ }
+ dscale=pow(((6.*rhotarget)/(pi*rhoproj)),third);
+ }
+ if(scaling_law==0){
+ /*Pi Scaling (Schmidt and Holsapple 1987)*/
+ Dstd=Dt/anglefac;
+ Lpiscale=(Dstd*dscale*pow(pifac,beta[targtype-1]))/Cd[targtype-1];
+ Lpiscale=pow(Lpiscale,(1./(1.-beta[targtype-1])));
+ size=Lpiscale;
+ } else if(scaling_law==2){
+ /*Yield Scaling (Nordyke 1962) without correction for projectile penetration depth.*/
+ Dstd=(Dt*pow((g/gearth),0.165))/anglefac;
+ W=pow((Dstd/0.0133),3.4);
+ Lyield=pow(((12.*W)/(pi*rhoproj*v*v)),third);
+ size=Lyield;
+ } else {
+ /*Gault (1974) Semi-Empirical scaling*/
+ Dstd=Dt*pow((g/gmoon),0.165);
+ if((Dstd <= 10.) && (targtype == 3)){
+ W=pow(((Dstd/0.015)/(densfac*pow(anglefac,2))),2.70);
+ }else if(Dstd < 300.){
+ W=pow(((Dstd/0.25)/(densfac*anglefac)),3.45);
+ }else{
+ W=pow(((Dstd/0.27)/(densfac*anglefac)),3.57);
+ }
+ Lgault=pow(((12.*W)/(pi*rhoproj*pow(v,2))),third);
+ size=Lgault;
+ }
+ if(return_time){
+ /*Compute crater formation time for Pi-scaled diameter*/
+ Tform=(Ct*Lpiscale/v)*pow((pifac*Lpiscale),-0.61);
+ }
+ /*Print out results*/
+// printf("Three scaling laws yield the following projectile diameters:\n");
+// printf("(note that diameters assume a spherical projectile)\n");
+// printf("Yield Scaling Lyield =%f m\n",Lyield);
+// printf("Pi Scaling (Preferred method!) Lpiscale =%f m\n",Lpiscale);
+// printf("Gault Scaling Lgault =%f m\n",Lgault);
+// printf("Crater Formation Time Tform =%f sec\n",Tform);
+ }
+ if(return_time) return (Tform);
+ else return (size);
+}
Added: grass-addons/grass7/raster/r.crater/main.c
===================================================================
--- grass-addons/grass7/raster/r.crater/main.c (rev 0)
+++ grass-addons/grass7/raster/r.crater/main.c 2013-05-01 15:38:07 UTC (rev 56056)
@@ -0,0 +1,287 @@
+
+/****************************************************************************
+ *
+ * MODULE: r.crater
+ * AUTHOR(S): Yann Chemin - yann.chemin at gmail.com
+ * PURPOSE: Creates craters from meteorites
+ * or meteorites from craters
+ * original code was in fortran77 from Meloch
+ *
+ * COPYRIGHT: (C) 2013 by the GRASS Development Team
+ *
+ * This program is free software under the GNU General Public
+ * License (>=v2). Read the file COPYING that comes with GRASS
+ * for details.
+ *
+ *****************************************************************************/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <grass/gis.h>
+#include <grass/raster.h>
+#include <grass/glocale.h>
+
+int main(int argc, char *argv[])
+{
+ int nrows, ncols;
+ int row, col;
+ struct GModule *module;
+ struct Flag *flag, *flag1, *flag2, *flag3;
+ struct Option *input1, *input2, *input3, *input4, *input5;
+ struct Option *input6, *input7, *input8, *input9, *output;
+ struct History history; /*metadata */
+
+ char *result; /*output raster name */
+ int infd_v, infd_theta, infd_rhotarget;
+ int infd_g, infd_rhoproj, infd_ttyp, infd_ttype;
+ int infd_L, infd_Dt, infd_Dfinal;/*Modes parameters*/
+ int outfd;
+ char *ivelocity, *iangle, *idensity, *idiameter; /*Impactor*/
+ char *tg, *ttype, *tdensity; /*Target*/
+ char *tcrater_diameter_transient, *tcrater_diameter_final; /*Target crater*/
+ void *inrast_v, *inrast_theta, *inrast_rhotarget;
+ void *inrast_g, *inrast_ttype, *inrast_rhoproj;
+ void *inrast_L, *inrast_Dt, *inrast_Dfinal;
+ DCELL *outrast;
+
+ /************************************/
+ G_gisinit(argv[0]);
+ module = G_define_module();
+ G_add_keyword(_("raster"));
+ G_add_keyword(_("planetary"));
+ G_add_keyword(_("impact"));
+ G_add_keyword(_("meteorite"));
+ G_add_keyword(_("crater"));
+ module->description = _("Creates meteorites from craters (-c) or craters from meteorites (default).");
+
+ /* Define the different options */
+ input1 = G_define_standard_option(G_OPT_R_INPUT);
+ input1->key = "impactor_velocity";
+ input1->description = _("Name of impactor velocity raster map [km/s]");
+
+ input2 = G_define_standard_option(G_OPT_R_INPUT);
+ input2->key = "impactor_angle";
+ input2->description = _("Name of impactor angle raster map [dd.ddd]");
+
+ input3 = G_define_standard_option(G_OPT_R_INPUT);
+ input3->key = "target_density";
+ input3->description = _("Name of target density raster map [kg/m^3]");
+
+ input4 = G_define_standard_option(G_OPT_R_INPUT);
+ input4->key = "gravity_acceleration";
+ input4->description = _("Name of gravity acceleration raster map [m/s^-2]");
+
+ input5 = G_define_standard_option(G_OPT_R_INPUT);
+ input5->key = "target_type";
+ input5->description = _("Name of target type raster map [1=liq.H2O, 2=Loose Sand, 3=Competent Rock/Saturated Soil]");
+ /**TODO Think about modeling impact on a mixed land cover**/
+
+ input6 = G_define_standard_option(G_OPT_R_INPUT);
+ input6->key = "impactor_density";
+ input6->description = _("Name of impactor density raster map [kg/m^3]");
+
+ input7 = G_define_standard_option(G_OPT_R_INPUT);
+ input7->key = "projectile_diameter";
+ input7->description = _("Flag -c: Name of projectile diameter raster map [m]");
+ input7->required = NO;
+
+ input8 = G_define_standard_option(G_OPT_R_INPUT);
+ input8->key = "transient_crater_diameter";
+ input8->description = _("Default mode: Name of transient crater diameter raster map [kg/m^3]");
+ input8->required = NO;
+
+ input9 = G_define_standard_option(G_OPT_R_INPUT);
+ input9->key = "final_crater_diameter";
+ input9->description = _("Default mode: Name of final crater diameter raster map [kg/m^3]");
+ input8->required = NO;
+
+ output = G_define_standard_option(G_OPT_R_OUTPUT);
+ output->description = _("Name for projectile size (default) or crater size (-c) or crater creation time (-t) raster map [m] or [s]");
+
+ flag = G_define_flag();
+ flag->key = 'c';
+ flag->description = _("Estimate crater diameter from projectile size [m]");
+
+ flag1 = G_define_flag();
+ flag1->key = 't';
+ flag1->description = _("output the time of crater formation for Pi scaling [s]");
+
+ flag2 = G_define_flag();
+ flag2->key = 'g';
+ flag2->description = _("use the Gault instead of default Pi scaling");
+
+ flag3 = G_define_flag();
+ flag3->key = 'y';
+ flag3->description = _("use the Yield instead of default Pi scaling");
+
+ /********************/
+ if (G_parser(argc, argv))
+ exit(EXIT_FAILURE);
+
+ /*Impactor parameters*/
+ ivelocity = input1->answer;
+ iangle = input2->answer;
+ idensity = input6->answer;
+ if(input7->answer) idiameter = input7->answer;
+ /*Target parameters*/
+ tg = input4->answer;
+ ttype = input5->answer;
+ tdensity = input3->answer;
+ if(input8->answer) tcrater_diameter_transient = input8->answer;
+ if(input9->answer) tcrater_diameter_final = input9->answer;
+ /*output*/
+ result = output->answer;
+
+ /*Default Mode: Estimate projectile size from crater diameter*/
+ int comptype = 0;
+
+ /*Check if return of duration of impact was requested*/
+ int return_time = 0;
+ if(flag1->answer) return_time = 1;
+
+ /*Check if Gault scaling was requested */
+ int scaling_law = 0;
+ if(flag2->answer && !flag3->answer) scaling_law = 1;
+ if(flag3->answer && !flag2->answer) scaling_law = 2;
+ if(flag2->answer && flag3->answer){
+ scaling_law = 0;
+ G_message("Confusion for the scaling law flags, using default");
+ }
+ if(flag->answer && input7->answer){
+ /*Flagged Mode: Estimate crater diameter from projectile size*/
+ infd_L = Rast_open_old(idiameter, "");
+ inrast_L = Rast_allocate_d_buf();
+ comptype = 1;/*Switch to pass to crater function for non default mode*/
+ /*Projectile Diameter Size*/
+ }else{
+ /*Default Mode: Estimate projectile size from crater diameter*/
+ infd_Dt = Rast_open_old(tcrater_diameter_transient, "");
+ inrast_Dt = Rast_allocate_d_buf();
+ /*Transient Crater Diameter*/
+
+ infd_Dfinal = Rast_open_old(tcrater_diameter_final, "");
+ inrast_Dfinal = Rast_allocate_d_buf();
+ /*If known, the final crater diameter*/
+ }
+
+ /***************************************************/
+ infd_v = Rast_open_old(ivelocity, "");
+ inrast_v = Rast_allocate_d_buf();
+ /*v = Impact velocity in km/s*/
+
+ infd_theta = Rast_open_old(iangle, "");
+ inrast_theta = Rast_allocate_d_buf();
+ /*theta = Impact angle in degrees*/
+
+ infd_rhotarget = Rast_open_old(tdensity, "");
+ inrast_rhotarget = Rast_allocate_d_buf();
+ /*rhotarget = Target Density in kg/m^3*/
+
+ infd_g = Rast_open_old(tg, "");
+ inrast_g = Rast_allocate_d_buf();
+ /*g = Acceleration of gravity in m/s*/
+
+ infd_ttype = Rast_open_old(ttype, "");
+ inrast_ttype = Rast_allocate_d_buf();
+ /*targype = liqH2O=1 Loose_Sand=2 Competent_rock/saturated_soil=3*/
+
+ infd_rhoproj = Rast_open_old(idensity, "");
+ inrast_rhoproj = Rast_allocate_d_buf();
+ /*rhoproj = Density of Projectile */
+
+ /***************************************************/
+ nrows = Rast_window_rows();
+ ncols = Rast_window_cols();
+ outrast = Rast_allocate_d_buf();
+
+ /* Create New raster files */
+ outfd = Rast_open_new(result, DCELL_TYPE);
+
+ /* Process pixels */
+ for (row = 0; row < nrows; row++)
+ {
+ DCELL d;
+ DCELL d_v;
+ DCELL d_theta;
+ DCELL d_rhotarget;
+ DCELL d_rhoproj;
+ DCELL d_g;
+ DCELL d_ttype;
+ DCELL d_L;
+ DCELL d_Dt;
+ DCELL d_Dfinal;
+ G_percent(row, nrows, 2);
+
+ /* read input maps */
+ Rast_get_d_row(infd_v, inrast_v, row);
+ Rast_get_d_row(infd_theta, inrast_theta, row);
+ Rast_get_d_row(infd_rhotarget, inrast_rhotarget, row);
+ Rast_get_d_row(infd_rhoproj, inrast_rhoproj, row);
+ Rast_get_d_row(infd_g, inrast_g, row);
+ Rast_get_d_row(infd_ttype, inrast_ttype, row);
+ if(flag->answer && input7->answer){
+ Rast_get_d_row(infd_L, inrast_L, row);
+ }else{
+ Rast_get_d_row(infd_Dt, inrast_Dt, row);
+ Rast_get_d_row(infd_Dfinal, inrast_Dfinal, row);
+ }
+
+ /*process the data */
+ for (col = 0; col < ncols; col++)
+ {
+ d_v = ((DCELL *) inrast_v)[col];
+ d_theta = ((DCELL *) inrast_theta)[col];
+ d_rhotarget = ((DCELL *) inrast_rhotarget)[col];
+ d_rhoproj = ((DCELL *) inrast_rhoproj)[col];
+ d_g = ((DCELL *) inrast_g)[col];
+ d_ttype = ((DCELL *) inrast_ttype)[col];
+ if(flag->answer){
+ d_L = ((DCELL *) inrast_L)[col];
+ } else {
+ d_Dt = ((DCELL *) inrast_Dt)[col];
+ d_Dfinal = ((DCELL *) inrast_Dfinal)[col];
+ }
+ if (Rast_is_d_null_value(&d_v) ||
+ Rast_is_d_null_value(&d_theta) ||
+ Rast_is_d_null_value(&d_rhotarget) ||
+ Rast_is_d_null_value(&d_rhoproj) ||
+ Rast_is_d_null_value(&d_g) ||
+ Rast_is_d_null_value(&d_ttype) ||
+ ((d_ttype < 1) || (d_ttype > 3)) ||
+ Rast_is_d_null_value(&d_rhoproj) ||
+ ((input7->answer)&&(Rast_is_d_null_value(&d_L))) ||
+ ((input8->answer)&&(Rast_is_d_null_value(&d_Dt))) ||
+ ((input9->answer)&&(Rast_is_d_null_value(&d_Dfinal))) )
+ Rast_set_d_null_value(&outrast[col], 1);
+ else {
+ if(flag->answer){
+ d_Dt = 0.0;
+ d_Dfinal = 0.0;
+ } else {
+ d_L = 0.0;
+ }
+ d = crater(d_v, d_theta, d_rhotarget, d_g, d_ttype, d_rhoproj, d_L, d_Dt, d_Dfinal, scaling_law, return_time, comptype);
+ outrast[col] = d;
+ }
+ }
+ Rast_put_d_row(outfd, outrast);
+ }
+ G_free(inrast_v);
+ G_free(inrast_theta);
+ G_free(inrast_rhoproj);
+ G_free(inrast_g);
+ Rast_close(infd_v);
+ Rast_close(infd_theta);
+ Rast_close(infd_rhotarget);
+ Rast_close(infd_rhoproj);
+ Rast_close(infd_g);
+ G_free(outrast);
+ Rast_close(outfd);
+
+ Rast_short_history(result, "raster", &history);
+ Rast_command_history(&history);
+ Rast_write_history(result, &history);
+
+ exit(EXIT_SUCCESS);
+}
Added: grass-addons/grass7/raster/r.crater/r.crater.html
===================================================================
--- grass-addons/grass7/raster/r.crater/r.crater.html (rev 0)
+++ grass-addons/grass7/raster/r.crater/r.crater.html 2013-05-01 15:38:07 UTC (rev 56056)
@@ -0,0 +1,47 @@
+<h2>DESCRIPTION</h2>
+
+<em>r.crater</em> This program estimates the size of a gravity dominated impact crater or the projectile that made it.
+Three different estimates are presented, but the pi-scaling method is currently considered the best!n
+<p>
+Impact conditions:
+argv[1]: enter the impact velocity in km/sec
+argv[2]: enter the impact angle in degrees
+<p>
+Target descriptors:
+argv[3]: enter the target density in kg/m^3
+argv[4]: enter the acceleration of gravity in m/sec^2
+<p>
+argv[5]: enter the target type, (1-3):
+type 1 = liquid water
+type 2 = loose sand
+type 3 = competent rock or saturated soil
+argv[6]: enter the projectile density in kg/m^3
+<p>
+argv[7]: enter the type of computation desired (1 or 2):
+ Mode 1, crater size
+ Mode 2, projectile size
+<p>
+Mode 1: Estimate crater diameter from projectile size*/
+Mode 1 case: Projectile descriptors:
+argv[8]: enter the projectile diameter in m
+<p>
+Mode 2: Estimate crater size from crater diameter*/
+Mode 2 case: Crater descriptor:
+argv[8]: enter the transient crater diameter in m (if the final, not the transient crater diameter is known, enter zero (0.0) here)
+argv[9]: [optional] enter the final crater diameter in m
+<p>
+
+<h2>NOTES</h2>
+
+<h2>SEE ALSO</h2>
+
+<em>
+<a href="r.drain.html">r.drain</a>,
+<a href="r.out.ascii.html">r.out.ascii</a>
+</em>
+
+<h2>AUTHOR</h2>
+GRASS Development Team<br>
+
+<p>
+<i>Last changed: $Date: 2013-04-02 23:48:59 +0530 (Tue, 02 Apr 2013) $</i>
More information about the grass-commit
mailing list