[GRASS-SVN] r61099 - grass/trunk/raster/r.sun
svn_grass at osgeo.org
svn_grass at osgeo.org
Tue Jul 1 02:31:24 PDT 2014
Author: zarch
Date: 2014-07-01 02:31:24 -0700 (Tue, 01 Jul 2014)
New Revision: 61099
Modified:
grass/trunk/raster/r.sun/r.sun.html
Log:
r.sun: Update the manual page
Modified: grass/trunk/raster/r.sun/r.sun.html
===================================================================
--- grass/trunk/raster/r.sun/r.sun.html 2014-07-01 09:29:47 UTC (rev 61098)
+++ grass/trunk/raster/r.sun/r.sun.html 2014-07-01 09:31:24 UTC (rev 61099)
@@ -45,8 +45,8 @@
<p>
The solar incidence angle raster map <i>incidout</i> is computed specifying
-elevation raster map <i>elev_in</i>, aspect raster map <i>asp_in</i>, slope
-steepness raster map <i>slope_in,</i> given the day <i>day</i> and local time
+elevation raster map <i>elevation</i>, aspect raster map <i>aspect</i>, slope
+steepness raster map <i>slope,</i> given the day <i>day</i> and local time
<i>time</i>. There is no need to define latitude for locations with known
and defined projection/coordinate system (check it with the <a href="g.proj.html">
g.proj</a>
@@ -70,7 +70,7 @@
region or, as an option, a grid representing spatially distributed values
over a large region. The geographical latitude must be also in decimal system
with positive values for northern hemisphere and negative for southern one.
-In similar principle the Linke turbidity factor (<i>linke_in</i>, <i>lin</i>
+In similar principle the Linke turbidity factor (<i>linke</i>, <i>lin</i>
) and ground albedo (<i>albedo</i>, <i>alb</i>) can be set.
<p>Besides clear-sky radiations, the user can compute a real-sky radiation (beam,
diffuse) using <i>coef_bh</i> and <i>coef_dh</i> input raster maps defining
@@ -83,7 +83,7 @@
<p>
The solar irradiation or irradiance raster maps <i>beam_rad</i>, <i>diff_rad</i>,
<i>refl_rad</i> are computed for a given day <i>day,</i> latitude <i>lat_in</i>,
-elevation <i>elev_in</i>, slope <i>slope_in</i> and aspect <i>asp_in</i> raster maps.
+elevation <i>elevation</i>, slope <i>slope</i> and aspect <i>aspect</i> raster maps.
For convenience, the output raster given as <i>glob_rad</i>
will output the sum of the three radiation components. The program uses
the Linke atmosphere turbidity factor and ground albedo coefficient.
@@ -258,15 +258,15 @@
g.region rast=elevation -p
# calculate horizon angles (to speed up the subsequent r.sun calculation)
-r.horizon elev_in=elevation horizon_step=30 bufferzone=200 horizon=horangle \
+r.horizon elevation=elevation step=30 bufferzone=200 basename=horangle \
maxdistance=5000
# slope + aspect
r.slope.aspect elevation=elevation aspect=aspect.dem slope=slope.dem
# calculate global radiation for day 180 at 14:00hrs, using r.horizon output
-r.sun elev_in=elevation horizon=horangle horizon_step=30 asp_in=aspect.dem \
- slope_in=slope.dem glob_rad=global_rad day=180 time=14
+r.sun elevation=elevation horizon_basename=horangle horizon_step=30 \
+ aspect=aspect.dem slope=slope.dem glob_rad=global_rad day=180 time=14
</pre></div>
<p>
@@ -279,7 +279,7 @@
g.region rast=elev_ned_30m -p
# considering cast shadows
-r.sun elev_in=elev_ned_30m lin=2.5 alb=0.2 day=172 \
+r.sun elevation=elev_ned_30m lin=2.5 alb=0.2 day=172 \
beam_rad=b172 diff_rad=d172 \
refl_rad=r172 insol_time=it172
More information about the grass-commit
mailing list