[GRASS-SVN] r65218 - grass-addons/grass7/raster/r.rock.stability
svn_grass at osgeo.org
svn_grass at osgeo.org
Tue May 12 00:24:20 PDT 2015
Author: kikapu
Date: 2015-05-12 00:24:20 -0700 (Tue, 12 May 2015)
New Revision: 65218
Modified:
grass-addons/grass7/raster/r.rock.stability/r.rock.stability.html
Log:
Fix small compile problem
Modified: grass-addons/grass7/raster/r.rock.stability/r.rock.stability.html
===================================================================
--- grass-addons/grass7/raster/r.rock.stability/r.rock.stability.html 2015-05-11 00:16:13 UTC (rev 65217)
+++ grass-addons/grass7/raster/r.rock.stability/r.rock.stability.html 2015-05-12 07:24:20 UTC (rev 65218)
@@ -5,7 +5,7 @@
The final SMR rating is obtained by means of next expression: SMR=RMRb+(F1*F2*F3)+F4
where:
<ul>
- <li>RMRb is the RMR index resulting from Bieniawski’s Rock Mass Classification (1989)</li>
+ <li>RMRb is the RMR index resulting from Bieniawski's Rock Mass Classification (1989)</li>
<li>F1 depends on the parallelism between discontinuity and slope dip direction</li>
<li>F2 depends on the discontinuity dip in the case of planar failure and the plunge, or of the intersection line in wedge failure. As regards toppling failure, this parameter takes the value 1.0</li>
<li>F3 depends on the relationship between slope and discontinuity dips (toppling or planar failure cases) or the immersion line dip (wedge failure case)</li>
@@ -18,22 +18,25 @@
</li>
</ul>
<p>r.rock.stability calculate F1, F2 and F3 index by combining DEM (slope and aspect) and joint dip and dip direction.
-<p>F1, F2 and F3 are calculated according two functions of Romana (1995) and of Tomás et al. (2007). The functions proposed by Romana are discrete, instead Tomás et al. (2007) proposed continuous functions that reduced subjective interpretations.
+<p>F1, F2 and F3 are calculated according two functions of Romana (1995) and of Tomàs et al. (2007). The functions proposed by Romana are discrete, instead Tomàs et al. (2007) proposed continuous functions that reduced subjective interpretations.
<p><b>SSPC approach (optional)</b>: inserting TC value (or a map of TC values) it's possible to obtain a SSPC map according to Hack's classification (Hack, 1998). Only a part of the method introduced by Hack is used in the module: the orientation dependent stability (the stability depend on relation between slope and discontinuity orientation). According to the author:
<ul>
<li>sliding occurs if: TC < 0,0113*AP</li>
<li>toppling occurs if: TC < 0,0087*(-90-AP+dip)</li>
</ul>
<p>where AP is the apparent dip, TC is the condition factor for a discontinuity. TC can be calculated by multiplying the large scale roughness, the small scale roughness, the infill material and the karst factors observed in the field:
-<p> <b>TC=Rl Rs Im Ka</b>.
-<ul><b>Rl</b> (roughness in large scale – area between 0,2x0,2 m2 and 1x1 m2)
+<p> <b>TC=Rl Rs Im Ka</b>.
+<p><b>Rl</b> (roughness in large scale – area between 0,2x0,2 m2 and 1x1 m2)
+<ul>
<li>1,00 Wavy</li>
<li>0,95 Slightly wavy </li>
<li>0,85 Curved</li>
<li>0,80 Slightly curved</li>
<li>0,75 Straight</li>
-</ul>
-<ul><b>Rs</b> (roughness in small scale – area of 0,2x0,2m2):
+</ul></p>
+<p>
+<b>Rs</b> (roughness in small scale – area of 0,2x0,2m2):
+<ul>
<li>0,95 Rough stepped </li>
<li>0,90 Smooth stepped</li>
<li>0,85 Polished stepped</li>
@@ -44,16 +47,23 @@
<li>0,60 Smooth planar</li>
<li>0,55 Polished planar.</li>
</ul>
-<ul><b>Im</b> (Infill material)
+</p>
+<p>
+<b>Im</b> (Infill material)
+<ul>
<li>Cemented --> Infill (1,07), No Infill (1,00)</li>
- <li>Non softening and sheared material e.g. free of clay, talc, etc → Coarse (0,95) Medium (0,90) Fine (0,85)</li>
+ <li>Non softening and sheared material e.g. free of clay, talc, etc --> Coarse (0,95) Medium (0,90) Fine (0,85)</li>
<li>Soft sheared material e.g. clay, talc, etc --> Coarse (0,75) Medium (0,65) Fine (0,55)</li>
<li>Gouge < irregularities (0,42); Gouge > irregularities (0,17); flowing material (0,05)</li>
</ul>
-<ul><b>Ka</b> (karst):
+</p>
+<p>
+<b>Ka</b> (karst):
+<ul>
<li>1,00 None</li>
<li>0.92 Karst</li>
</ul>
+</p>
<p>NOTE: high pixel values indicate high susceptibility
<p><b>SMR wedge (optional)</b>: inserting dip and dip direction it's possible to calculate the SMR index of wedge.
<h2>INPUT</h2>
@@ -62,7 +72,7 @@
<p><b>Digital Elevation Model</b> = name
<ul>Name of elevation raster map</ul>
<p><b>Dip direction</b> = string
- <ul>Value of the direction of the discontinuity measured clockwise starting from North. North is 0° or 360°, East (90°). South (180°), West (270°)</ul>
+ <ul>Value of the direction of the discontinuity measured clockwise starting from North. North is 0° or 360°, East (90°). South (180°), West (270°)</ul>
<p><b>Dip</b> = string
<ul>Angle of inclination of the discontinuity relative to a horizontal plane.</ul>
<p><b>F4</b> = string
@@ -135,7 +145,7 @@
<p>FILIPELLO A., GIULIANI A., MANDRONE G. (2010) - Rock Slopes Failure Susceptibility Analysis: From Remote Sensing Measurements to Geographic Information System Raster Modules. American Journal of Environmental Sciences 6 (6): 489-494, 2010 ISSN 1553-345X © 2010 Science Publications.
<p>HACK HRGK (1998) Slope stability probability classification, SSPC, 2nd edn. ITC, Enschede, The Netherlands, 258 pp, ISBN 90 6164 154 3
<p>ROMANA M. (1995). The geomechanical classification SMR for slope correction. Proc. Int. Congress on Rock Mechanics 3: 1085-1092.
-<p>TOMÁS, R., DELGADO, J.,SERÓN, J.B. (2007). Modification of slope mass rating(SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences 44: 1062-1069.
+<p>TOMÀS, R., DELGADO, J.,SERON, J.B. (2007). Modification of slope mass rating(SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences 44: 1062-1069.
<h2>SEE ALSO</h2>
More information about the grass-commit
mailing list