[GRASS-user] r.regression.line... differences with regression
function LINEST in openoffice.org-calc (?)
nikos.alexandris at felis.uni-freiburg.de
nikos.alexandris at felis.uni-freiburg.de
Tue Dec 4 22:00:38 EST 2007
I have submitted some comments upon the documentation of
the "r.regression.line" script in
http://wald.intevation.org/tracker/?func=detail&aid=552&group_id=21&atid=207
Now I have 2 questions.
Apologies if I miss some obvious things but I am confused!
Here it goes:
1. I don't understand why (in lines 84 and 85 in the
r.regression.line script) "sumsqX=sumsqX/tot" and
"sumsqY=sumsqY/tot" ?
2. I can't understand the differences in the following... :
I created two raster maps with the same MASK, each
containing only 6 pixels with the following values:
mapA: 326 641 1336 2020 3197 3484
mapB: 432 850 931 1956 2582 2622
For mapA "r.univar" gives:
n: 6
minimum: 326
maximum: 3484
range: 3158
mean: 1834
mean of absolute values: 1834
standard deviation: 1194.44
variance: 1.4267e+06
variation coefficient: 65.1278 %
sum: 11004)
For mapB... :
n: 6
minimum: 432
maximum: 2622
range: 2190
mean: 1562.17
mean of absolute values: 1562.17
standard deviation: 866.145
variance: 750207
variation coefficient: 55.4451 %
sum: 9373)
In openoffice calc (some of) the respective results are:
For mapA:
MIN: 326
MAX: 3484
AVERAGE: 1834
STDEV: 1308,45
VAR: 1,71E+06
SUM: 11004
For mapB:
MIN: 432
MAX: 2622
AVERAGE: 156217
STDEV: 948,81
VAR: 9,00E+05
SUM: 9373
Based on r.regression.line I get
for map1=mapA and map2=mapB:
a b R N F medX sdX medY sdY
0.000458151 0.809242 0.99157 1021726 -0.98321 0.01077
5.3038 0.00917369 4.32854
and
for map1=mapB and map2=mapB:
a b R N F medX sdX medY sdY
-0.000375823 1.21498 0.99157 1021726 -0.98321 0.00917369
4.32854 0.01077 5.3038
"R" is Pearson's correlation coefficient (as correctly
defined in the script "r.regression.line" in line 83 but
wrongly expressed as "sumXY - sumX*sumY/tot" in the
print-out in line 101).
In openoffice-calc I get for these:
MapA MapB
326 432 1,350792 Slope m
641 850 0,138835 standard error of the slope
1336 931 0,959458 RSQ (Square of "r")
2020 1956 94,662802 4,000000 F value from the variance
analysis std error of regression for Y
3197 2582 8213134,001379 sum of squared deviation of
estimated Y values from their linear mean
3484 2622
or
MapB MapB
432 326 0,710293 Slope m
850 641 0,073004 standard error of the slope
931 1336 0,959458 RSQ
1956 2020 94,662802 4,000000 F value from the variance
analysis std error of regression for Y
2582 3197 4318750,949062 sum of squared deviation of
estimated Y values from their linear mean
2622 3484
(How is really r.regression.line functioning? Trying to
interpret the script is not that easy for me since I lack
of some basics in scripting)
Thank you,
Nikos.
More information about the grass-user
mailing list