[GRASS-user] High-resolution agricultural land cover from
satellite imagery
Luigi Ponti
lponti at inbox.com
Wed May 16 12:59:28 EDT 2012
Dear Markus
On 16/05/2012 14:19, Markus Neteler wrote:
> ...
> You may use neural networks in R (using the GRASS-R interface).
> For a general overview of the integration, see
> http://grass.osgeo.org/wiki/R_statistics
Right. Sometimes I forget the secret weapon...
> ...
> As my master thesis, I wrote these two modules:
>
> i.spec.sam: Spectral Angle mapping
> http://grass.osgeo.org/wiki/Addons#i.spec.sam
>
> i.spec.unmix: Spectral unmixing
> http://grass.osgeo.org/wiki/Addons#i.spec.unmix
>
> The latter needs proper update to GRASS 6 but that should not be too hard.
>
I had a feeling I was missing something important.
In the description of the two add-on modules, I found reference to two
very interesting papers that triggered some more search. In particular,
this conference paper by Stabile et al. (2009) on Fusion of
High-resolution Aerial Orthophoto with LandSat TM Image for Improved
Object-based Land-use Classification, uses the same data layers I may
access (orthophoto + Landsat TM):
http://www.a-a-r-s.org/acrs/proceeding/ACRS2009/Papers/Oral%20Presentation/TS12-05.pdf
based on which, I wonder if it would make any sense to perform i.fusion e.g.
i.fusion.brovey -l ms1=lsat7_2002_20 ms2=lsat7_2002_40 \
ms3=lsat7_2002_50 pan=ortho_photo_rgb_composite \
outputprefix=brovey
and then use i.smap after i.gensigset (the use of group= and subgroup=
parameters in both modules is a bit unclear to me) to classify the map
using areas with known land cover class identified via the orthophoto
itself or field survey.
Kind regards and thank you (and pardon my ignorance),
Luigi
More information about the grass-user
mailing list