[GRASS-user] v.class.mlR Error

Moritz Lennert mlennert at club.worldonline.be
Tue Jun 19 02:33:21 PDT 2018


Hi Jamille,

Testing with the data you sent me offlist (which BTW was a mapset, not a 
location. A location contains at least one mapset named PERMANENT which 
contains the projection info - I just assumed that you are working in 
UTM Zone 21N, created my own location and copied your mapset into that 
location.) and with the following command:

v.class.mlR -i --overwrite 
segments_map=Segments_vector_Stats_Ben_test at haarlooj_Ben_Test 
training_map=Training_Ben5 at haarlooj_Ben_Test 
raster_segments_map=best5_myregion1_at_haarlooj_Ben_Test_rank1 at haarlooj_Ben_Test 
train_class_column=Ecosystem output_class_column=vote 
output_prob_column=prob classifiers=svmRadial,rf,C5.0 folds=5 
partitions=10 tunelength=10 weighting_metric=accuracy 
r_script_file=R-script processes=3

the module runs perfectly fine for me here on GNU/Linux. Note the fact 
that the train_class_column=Ecosystem, not ecosystem. Case matters here.

Could you try with the training class column in the right case ?

Moritz

On 18/06/18 21:51, Jamille Haarloo wrote:
> Hello Moritz,
> 
> It looks like I got some results, but I suspect there are still some 
> issues due to the warning messages.
> 
> I either kept getting that a file couldn't be found or that it had 
> trouble running the R-script.
> My actions:
> 
>  1. I found that it was looking in "C:\Program Files\QGIS
>     2.16.0\apps\Python27\Lib" for certain scripts but I also had another
>     location of the Python27 library "C:\Program Files\GRASS GIS
>     7.4.0\Python27\Lib". So I tried adding the second location via the
>     black terminal because I figured it needed the GRASS
>     versions/formats (with my lack of experience I am not sure if I
>     succeeded).
>  2. It was still failing, and I suspected this had to do with the qbwwv
>     voting method (see output). So I unchecked that option and got
>     results. I'am also sending a screenshot of the attribute table with
>     results.
> 
> Do you have any suggestions for improvement?
> Soon I will test with a much bigger area for a land-use planning project.
> 
> 
> /The last 2 command outputs:/
> 
> Running R now. Following output is R output.
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> Loading required package: caret
> Loading required package: lattice
> Loading required package: ggplot2
> Loading required package: foreach
> Loading required package: iterators
> Loading required package: parallel
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> Warning message:
> In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,  :
>    There were missing values in resampled performance measures.
> Error in `$<-.data.frame`(`*tmp*`, vote_qbwwv, value = numeric(0)) :
>    replacement has 0 rows, data has 1965
> Calls: $<- -> $<-.data.frame
> Execution halted
> ERROR: There was an error in the execution of the R script.
> Please check the R output.
> (Mon Jun 18 15:36:47 2018) Command finished (1 min 24 sec)
> (Mon Jun 18 15:50:30 2018)
> v.class.mlR -i --overwrite 
> segments_map=Segments_vector_Stats_Ben_test at haarlooj_Ben_Test 
> training_map=Training_Ben_Grass at haarlooj_Ben_Test 
> raster_segments_map=best5_myregion1_at_haarlooj_Ben_Test_rank1 at haarlooj_Ben_Test 
> train_class_column=ecosystem output_class_column=vote 
> output_prob_column=prob classifiers=svmRadial,rf,C5.0 folds=5 
> partitions=10 tunelength=10 weighting_metric=accuracy 
> r_script_file=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_mlR-script3 
> processes=2
> Running R now. Following output is R output.
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> Loading required package: caret
> Loading required package: lattice
> Loading required package: ggplot2
> Loading required package: foreach
> Loading required package: iterators
> Loading required package: parallel
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> During startup - Warning messages:
> 1: Setting LC_CTYPE=en_US.cp1252 failed
> 2: Setting LC_COLLATE=en_US.cp1252 failed
> 3: Setting LC_TIME=en_US.cp1252 failed
> 4: Setting LC_MONETARY=en_US.cp1252 failed
> Warning message:
> In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,  :
>    There were missing values in resampled performance measures.
> Finished running R.
> Loading results into attribute table
> (Mon Jun 18 15:51:58 2018) Command finished (1 min 27 sec)
> 
> 
> Best,
> Jamille Haarloo
> Department of Natural Resources and Environmental Assessment (NARENA)
> Centre for Agricultural Research in Suriname (CELOS) 
> <http://www.celos.sr.org/>
> 
> Prof. Dr. Ir. Jan Ruinardlaan
> AdeKUS University campus
> Phone: 439982
> 
> 
> On Thu, Jun 14, 2018 at 11:02 AM, Jamille Haarloo <j.r.haarloo at gmail.com 
> <mailto:j.r.haarloo at gmail.com>> wrote:
> 
>     Hello Moritz,
> 
>     Sorry about that. I am sending the zip of the location. The output
>     at the other machine (system cannot find the file specified) was due
>     to location/ directory issues and has been resolved, but also stops
>     executing the R-script saying there were more than 50 errors. Been
>     looking for similar cases online but haven't found many.
> 
>>     haarlooj_Ben_Test.zip
>     <https://drive.google.com/file/d/1wQqmreMbbd3oRfoVXWIIGJOG9L63miV6/view?usp=drive_web>
>> 
>     On Thu, Jun 14, 2018 at 5:19 AM, Moritz Lennert
>     <mlennert at club.worldonline.be <mailto:mlennert at club.worldonline.be>>
>     wrote:
> 
>         P.S. Your vector data also does not contain any attribute
>         information as this is contained in a separate sqlite file. Just
>         another reason never to touch the contents of a GRASS database
>         directly, but only using dedicated tools. :-)
> 
> 
>         On 14/06/18 10:11, Moritz Lennert wrote:
> 
>             Hi Jamille,
> 
>             Sorry, but I've been hopping from meeting to meeting these
>             days and
>             haven't had the opportunity to look at your data.
> 
>             Actually, the form you transmit them in is very
>             inconvenient. If you
>             want to transmit GRASS data to someone, you should either
>             zip an entire
>             location directory and send that, or export the data with
>             r.pack/v.pack.
> 
>             In this form it is difficult to know which projection is
>             used and I have
>             to handcraft the data by copying the files into different
>             directories.
> 
>             So, please resend your data in a format that I can easily use.
> 
>             Best wishes,
>             Moritz
> 
>             On 11/06/18 20:55, Jamille Haarloo wrote:
> 
>                 Hello Moritz,
> 
>                 I managed to edit my copy of v.class.mlR with the lines
>                 you sent. But I
>                 am still getting errors on two different machines.
>                 I am sending you the data (hope I didn't miss anything)
>                 and the command
>                 outputs. I think there is sth wrong with my computer,
>                 but also with one
>                 of the files because of the error on the other machine.
> 
>                 _Computer I normally use:_
> 
>                 v.class.mlR -i --overwrite
>                 segments_map=Segments_vector_Stats_Ben_test at haarlooj_Ben_Test
>                 training_map=Training_Ben5 at haarlooj_Ben_Test
>                 raster_segments_map=best5_myregion1_at_haarlooj_Ben_Test_rank1 at haarlooj_Ben_Test
>                 train_class_column=Ecosystem output_class_column=vote
>                 output_prob_column=prob classifiers=svmRadial,rf,C5.0
>                 folds=5
>                 partitions=10 tunelength=10 weighting_modes=smv,qbwwv
>                 weighting_metric=accuracy
>                 Running R now. Following output is R output.
>                 During startup - Warning messages:
>                 1: Setting LC_CTYPE=en_US.cp1252 failed
>                 2: Setting LC_COLLATE=en_US.cp1252 failed
>                 3: Setting LC_TIME=en_US.cp1252 failed
>                 4: Setting LC_MONETARY=en_US.cp1252 failed
>                 Loading required package: caret
>                 Loading required package: lattice
>                 Loading required package: ggplot2
>                 There were 50 or more warnings (use warnings() to see
>                 the first 50)
>                 There were 50 or more warnings (use warnings() to see
>                 the first 50)
>                 Error in `$<-.data.frame`(`*tmp*`, vote_qbwwv, value =
>                 numeric(0)) :
>                      replacement has 0 rows, data has 1965
>                 Calls: $<- -> $<-.data.frame
>                 Execution halted
>                 ERROR: There was an error in the execution of the R script.
>                 Please check the R output.
> 
> 
>                 _The output from the other machine:_
>                 (Mon Jun 11 13:27:39 2018)
>                 v.class.mlR -i --overwrite
>                 segments_map=Segments_vector_Stats_Ben_test at haarlooj_Ben_Test
>                 training_map=Training_Ben5 at haarlooj_Ben_Test
>                 raster_segments_map=best5_myregion1_at_haarlooj_Ben_Test_rank1 at haarlooj_Ben_Test
>                 train_class_column=Ecosystem output_class_column=vote
>                 output_prob_column=prob classifiers=svmRadial,rf,C5.0
>                 folds=5
>                 partitions=10 tunelength=10 weighting_metric=accuracy
>                 Running R now. Following output is R output.
>                 Traceback (most recent call last):
>                      File
>                 "C:\Users\HaarlooJ\AppData\Roaming\GRASS7\addons/scri
>                 pts/v.class.mlR.py <http://v.class.mlR.py>
>                 <http://v.class.mlR.py>", line 639, in <module>
>                      File
>                 "C:\Users\HaarlooJ\AppData\Roaming\GRASS7\addons/scri
>                 pts/v.class.mlR.py <http://v.class.mlR.py>
>                 <http://v.class.mlR.py>", line 576, in main
>                        shutil.copy(r_commands, r_script_file)
>                      File "C:\Program Files\GRASS GIS
>                 7.4.0\Python27\lib\subprocess.py", line 537, in check_call
>                        retcode = call(*popenargs, **kwargs)
>                      File "C:\Program Files\GRASS GIS
>                 7.4.0\Python27\lib\subprocess.py", line 524, in call
>                        return Popen(*popenargs, **kwargs).wait()
>                      File "C:\Program Files\GRASS GIS
>                 7.4.0\Python27\lib\subprocess.py", line 711, in __init__
>                        errread, errwrite)
>                      File "C:\Program Files\GRASS GIS
>                 7.4.0\Python27\lib\subprocess.py", line 948, in
>                 _execute_child
>                        startupinfo)
>                 WindowsError: [Error 2] The system cannot find the file
>                 specified
>                 (Mon Jun 11 13:27:42 2018) Command finished (3 sec)
> 
> 
>                 On Mon, Jun 11, 2018 at 5:47 AM, Moritz Lennert
>                 <mlennert at club.worldonline.be
>                 <mailto:mlennert at club.worldonline.be>
>                 <mailto:mlennert at club.worldonline.be
>                 <mailto:mlennert at club.worldonline.be>>> wrote:
> 
>                       Hi Jamille,
> 
>                       Le Fri, 8 Jun 2018 16:14:45 -0300,
>                       Jamille Haarloo <j.r.haarloo at gmail.com
>                 <mailto:j.r.haarloo at gmail.com>
>                       <mailto:j.r.haarloo at gmail.com
>                 <mailto:j.r.haarloo at gmail.com>>> a écrit :
> 
>                       > Hello Moritz,
>                       >
>                       > This time I asked a vector to be created with
>                 the stats and used this
>                       > to extract training polygons in QGIS and
>                 imported the training map in
>                       > GRASS. I had to do some interventions regarding
>                 the column names to
>                       > make sure they are the same except for the class.
>                       > I still get an error, and the only thing I could
>                 trace is the fact
>                       > that values are missing in some rows  for both
>                 vectors. I am not sure
>                       > if I should correct this/ retry it all.
> 
>                       I haven't seen this before, so yes, please try to
>                 eliminate the rows
>                       with missing values. How did you get the feature
>                 variables and how come
>                       there are missing values ?
> 
>                       I don't have the time to test this right now, so I
>                 prefer not to commit
>                       as is, but you could try to edit your copy of
>                 v.class.mlR to add the
>                       four lines marked with a plus:
> 
>                             r_file.write('features <- read.csv("%s",
>                 sep="%s", header=TRUE,
>                             row.names=1)' % (feature_vars, separator))
>                 r_file.write("\n")
>                       +    r_file.write("features <- na.omit(features)")
>                       +    r_file.write("\n")
>                             r_file.write('training <- read.csv("%s",
>                 sep="%s", header=TRUE,
>                             row.names=1)' % (training_vars, separator))
>                 r_file.write("\n")
>                       +    r_file.write("training <- na.omit(training)")
>                       +    r_file.write("\n")
> 
>                       This would eliminate all lines that have at least
>                 one missing value.
> 
>                       Another option would be for you to send me the
>                 data (segments
>                       and training) privately, so that I can test.
> 
>                       Moritz
> 
> 
>                        >
>                        > This is the command output:
>                        >
>                        > (Fri Jun 08 15:48:28 2018)
>                        >
>                        > v.class.mlR -i --overwrite
>                        >
>                 segments_map=Segments_vector_Stats_Ben_test at haarlooj_Ben_Test
>                        > training_map=Training_Ben5 at haarlooj_Ben_Test
>                        >
>                     
>                   raster_segments_map=best5_myregion1_at_haarlooj_Ben_Test_rank1 at haarlooj_Ben_Test
>                        > train_class_column=Ecosystem
>                 output_class_column=vote
>                        > output_prob_column=prob
>                 classifiers=svmRadial,rf,C5.0 folds=5
>                        > partitions=10 tunelength=10
>                 weighting_modes=smv,qbwwv
>                        > weighting_metric=accuracy
>                        >
>                     
>                   classification_results=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_Classifier-results
>                        >
>                     
>                   accuracy_file=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_Classifier-accuracy
>                        >
>                     
>                   model_details=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_Classifier-module-runs
>                        >
>                     
>                   bw_plot_file=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_Classifier-performance
>                        >
>                     
>                   r_script_file=C:\Users\haarlooj\Documents\CELOS\v.class.mIRR_optional_output\Ben_test_R_script
>                        > processes=3 Running R now. Following output is
>                 R output.
>                        > During startup - Warning messages:
>                        > 1: Setting LC_CTYPE=en_US.cp1252 failed
>                        > 2: Setting LC_COLLATE=en_US.cp1252 failed
>                        > 3: Setting LC_TIME=en_US.cp1252 failed
>                        > 4: Setting LC_MONETARY=en_US.cp1252 failed
>                        > Loading required package: caret
>                        > Loading required package: lattice
>                        > Loading required package: ggplot2
>                        > Loading required package: foreach
>                        > Loading required package: iterators
>                        > Loading required package: parallel
>                        > During startup - Warning messages:
>                        > 1: Setting LC_CTYPE=en_US.cp1252 failed
>                        > 2: Setting LC_COLLATE=en_US.cp1252 failed
>                        > 3: Setting LC_TIME=en_US.cp1252 failed
>                        > 4: Setting LC_MONETARY=en_US.cp1252 failed
>                        > During startup - Warning messages:
>                        > 1: Setting LC_CTYPE=en_US.cp1252 failed
>                        > 2: Setting LC_COLLATE=en_US.cp1252 failed
>                        > 3: Setting LC_TIME=en_US.cp1252 failed
>                        > 4: Setting LC_MONETARY=en_US.cp1252 failed
>                        > During startup - Warning messages:
>                        > 1: Setting LC_CTYPE=en_US.cp1252 failed
>                        > 2: Setting LC_COLLATE=en_US.cp1252 failed
>                        > 3: Setting LC_TIME=en_US.cp1252 failed
>                        > 4: Setting LC_MONETARY=en_US.cp1252 failed
>                        > Warning message:
>                        > In nominalTrainWorkflow(x = x, y = y, wts =
>                 weights, info =
>                        > trainInfo,  : There were missing values in
>                 resampled performance
>                        > measures. Error in `$<-.data.frame`(`*tmp*`,
>                 vote_qbwwv, value =
>                        > numeric(0)) : replacement has 0 rows, data has 1965
>                        > Calls: $<- -> $<-.data.frame
>                        > Execution halted
>                        > ERROR: There was an error in the execution of
>                 the R script.
>                        > Please check the R output.
>                        > (Fri Jun 08 15:49:32 2018) Command finished (1
>                 min 4 sec)
>                        >
>                        >
>                        >
>                        > Best,
>                        > Jamille
>                        >
>                        >
>                        >
>                        >
>                        > On Thu, Jun 7, 2018 at 11:09 AM, Jamille Haarloo
>                        > <j.r.haarloo at gmail.com
>                 <mailto:j.r.haarloo at gmail.com>
>                 <mailto:j.r.haarloo at gmail.com
>                 <mailto:j.r.haarloo at gmail.com>>> wrote:
>                        >
>                        > > Hello Moritz,
>                        > >
>                        > > No worries. Thankful these modules are made
>                 available for newbies
>                        > > in RS like me and also happy these
>                 interactions are possible for
>                        > > learning. Hope to get back soon after some
>                 adjustments.
>                        > >
>                        > > Best,
>                        > > Jamille
>                        > >
>                        > > On Thu, Jun 7, 2018 at 10:44 AM, Moritz Lennert <
>                        > > mlennert at club.worldonline.be
>                 <mailto:mlennert at club.worldonline.be>
>                       <mailto:mlennert at club.worldonline.be
>                 <mailto:mlennert at club.worldonline.be>>> wrote:
>                        > >
>                        > >> Thanks
>                        > >>
>                        > >> On 07/06/18 15:17, Jamille Haarloo wrote:
>                        > >>
>                        > >>> The first 20+ lines of Stats_Training_Ben_test:
>                        > >>>
>                        > >>>
>                 cat,area,perimeter,compact_circle,compact_square,fd,WV_Benat
>                        > >>>
>                 imofo_1_min,WV_Benatimofo_1_max,WV_Benatimofo_1_range,WV_Ben
>                        > >>>
>                 atimofo_1_mean,WV_Benatimofo_1_stddev,WV_Benatimofo_1_varia
>                        > >>>
>                 nce,WV_Benatimofo_1_coeff_var,WV_Benatimofo_1_sum,WV_
>                        > >>>
>                 Benatimofo_1_first_quart,WV_Benatimofo_1_median,WV_Benatim
>                        > >>>
>                 ofo_1_third_quart,WV_Benatimofo_2_min,WV_Benatimofo_2_max,
>                        > >>>
>                 WV_Benatimofo_2_range,WV_Benatimofo_2_mean,WV_Benatimofo_2_
>                        > >>>
>                 stddev,WV_Benatimofo_2_variance,WV_Benatimofo_2_coeff_var,
>                        > >>>
>                 WV_Benatimofo_2_sum,WV_Benatimofo_2_first_quart,WV_
>                        > >>>
>                 Benatimofo_2_median,WV_Benatimofo_2_third_quart,WV_Benatimof
>                        > >>>
>                 o_3_min,WV_Benatimofo_3_max,WV_Benatimofo_3_range,WV_Benat
>                        > >>>
>                 imofo_3_mean,WV_Benatimofo_3_stddev,WV_Benatimofo_3_varianc
>                        > >>>
>                 e,WV_Benatimofo_3_coeff_var,WV_Benatimofo_3_sum,WV_
>                        > >>>
>                 Benatimofo_3_first_quart,WV_Benatimofo_3_median,WV_Benatim
>                        > >>>
>                 ofo_3_third_quart,WV_Benatimofo_4_min,WV_Benatimofo_4_max,
>                        > >>>
>                 WV_Benatimofo_4_range,WV_Benatimofo_4_mean,WV_Benatimofo_4_
>                        > >>>
>                 stddev,WV_Benatimofo_4_variance,WV_Benatimofo_4_coeff_var,
>                        > >>>
>                 WV_Benatimofo_4_sum,WV_Benatimofo_4_first_quart,WV_
>                        > >>> Benatimofo_4_median,WV_Benatimofo_4_third_quart
>                        > >>>
>                 1144,3832.000000,1256.000000,5.723635,0.197144,1.729624,13,7
>                        > >>>
>                 6,63,46.4097077244259,9.98454911351384,99.69122100017,21.513
>                        > >>>
>                 9237092391,177842,40,47,53,40,138,98,90.2687891440501,15.250
>                        > >>>
>                 0825418009,232.565017531741,16.8940812061464,345910,81,92,
>                        > >>>
>                 100,15,61,46,40.8582985386221,7.82663897784868,61.2562776895
>                        > >>>
>                 802,19.1555675536767,156569,36,42,47,28,124,96,68.42536534
>                        > >>>
>                     
>                   44676,13.5774536655369,184.347248039801,19.8427200164517,262206,59,68,77
>                        > >>>
>                 1145,12092.000000,2282.000000,5.854120,0.192750,1.645226,13,
>                        > >>>
>                 94,81,51.386288455177,10.5294376761475,110.869057775874,20.4
>                        > >>>
>                 907534532914,621363,45,52,59,21,220,199,114.230731061859,23.
>                        > >>>
>                 3590328249442,545.644414516822,20.4489917973953,1381278,101,
>                        > >>>
>                 114,128,7,76,69,46.4219318557724,8.42747122371732,71.
>                        > >>>
>                 0222712265835,18.1540726264915,561334,42,48,52,17,198,181,
>                        > >>>
>                 97.2732385047966,22.492313569247,505.904169697333,23.
>                        > >>> 1228176577445,1176228,84,97,110
>                        > >>>
>                        > >>> [...]
>                        > >>
>                        > >> ---------------------
>                        > >>> All the lines of the output of v.db.select
>                        > >>> Training_Ben2 at haarlooj_Ben_Tes t:
>                        > >>>
>                        > >>> cat|id|Type|code
>                        > >>> 1|4|B29|18
>                        > >>> 2|5|B31|19
>                        > >>> 3|3|B28|17
>                        > >>>
>                        > >>
>                        > >>
>                        > >> Again a lack of clear documentation on my
>                 side: both the training
>                        > >> and the segment info should contain the same
>                 attributes, with only
>                        > >> additional one column ('code' in your case)
>                 present in the
>                        > >> training data.
>                        > >>
>                        > >> It should be possible to do this
>                 differently, i.e. provide the
>                        > >> module with the features of all segments,
>                 and only the id/cat of
>                        > >> each training segment with the relevant
>                 class and have the module
>                        > >> merge the two, but this is not implemented, yet.
>                        > >>
>                        > >> I also just notice that you have the word
>                 'Training' in both
>                       names.
>                        > >>
>                        > >> The segment_file/segment_map contains the
>                 info (cat + all feature
>                        > >> variables) of all segments you wish to
>                 classify, either in the
>                        > >> form of a csv file or in the form of a
>                 vector map with the info in
>                        > >> the attribute table.
>                        > >>
>                        > >> The training_file/training_map contains the
>                 info (cat + all
>                       feature
>                        > >> variables + class) of the training data.
>                 Often this is an extract
>                        > >> of the former, but not necessarily.
>                        > >>
>                        > >> All columns in the training file have to be
>                 present in the segment
>                        > >> file, except for the class column (your 'code').
>                        > >>
>                        > >> Sorry for the lack of docs. This module has
>                 mostly been used
>                        > >> internally here and so we are not always
>                 aware of the unclear and
>                        > >> missing parts. Having your feedback has been
>                 very useful !
>                        > >>
>                        > >> Moritz
>                        > >>
>                        > >>
>                        > >
> 
> 
> 
> 
> 
> 
> 
> 




More information about the grass-user mailing list