[postgis-tickets] r14988 - Remove trailing spaces
Sandro Santilli
strk at kbt.io
Tue Jul 5 03:15:15 PDT 2016
Author: strk
Date: 2016-07-05 03:15:14 -0700 (Tue, 05 Jul 2016)
New Revision: 14988
Modified:
trunk/liblwgeom/measures.c
Log:
Remove trailing spaces
Modified: trunk/liblwgeom/measures.c
===================================================================
--- trunk/liblwgeom/measures.c 2016-07-04 15:45:56 UTC (rev 14987)
+++ trunk/liblwgeom/measures.c 2016-07-05 10:15:14 UTC (rev 14988)
@@ -351,14 +351,14 @@
if ( (dl->mode != DIST_MAX) &&
(! lw_dist2d_check_overlap(g1, g2)) &&
(g1->type == LINETYPE || g1->type == POLYGONTYPE) &&
- (g2->type == LINETYPE || g2->type == POLYGONTYPE) )
+ (g2->type == LINETYPE || g2->type == POLYGONTYPE) )
{
if (!lw_dist2d_distribute_fast(g1, g2, dl)) return LW_FALSE;
}
else
{
if (!lw_dist2d_distribute_bruteforce(g1, g2, dl)) return LW_FALSE;
- if (dl->distance<=dl->tolerance && dl->mode == DIST_MIN) return LW_TRUE; /*just a check if the answer is already given*/
+ if (dl->distance<=dl->tolerance && dl->mode == DIST_MIN) return LW_TRUE; /*just a check if the answer is already given*/
}
}
}
@@ -433,7 +433,7 @@
return lw_dist2d_circstring_curvepoly((LWCIRCSTRING *)lwg1, (LWCURVEPOLY *)lwg2, dl);
default:
lwerror("Unsupported geometry type: %s", lwtype_name(t2));
- }
+ }
}
case POLYGONTYPE:
{
@@ -474,7 +474,7 @@
return lw_dist2d_curvepoly_curvepoly((LWCURVEPOLY *)lwg1, (LWCURVEPOLY *)lwg2, dl);
default:
lwerror("Unsupported geometry type: %s", lwtype_name(t2));
- }
+ }
}
default:
{
@@ -623,7 +623,7 @@
return lw_dist2d_pt_ptarray(p, poly->rings[0], dl);
}
/* Return distance to outer ring if not inside it */
- if ( ptarray_contains_point(poly->rings[0], p) == LW_OUTSIDE )
+ if ( ptarray_contains_point(poly->rings[0], p) == LW_OUTSIDE )
{
LWDEBUG(3, "first point not inside outer-ring");
return lw_dist2d_pt_ptarray(p, poly->rings[0], dl);
@@ -667,7 +667,7 @@
lwerror("lw_dist2d_point_curvepoly cannot calculate max distance");
/* Return distance to outer ring if not inside it */
- if ( lwgeom_contains_point(poly->rings[0], p) == LW_OUTSIDE )
+ if ( lwgeom_contains_point(poly->rings[0], p) == LW_OUTSIDE )
{
return lw_dist2d_recursive((LWGEOM*)point, poly->rings[0], dl);
}
@@ -818,7 +818,7 @@
{
/* Its inside a hole, then the actual */
return LW_TRUE;
- }
+ }
}
if (dl->mode == DIST_MIN)
@@ -958,7 +958,7 @@
{
LWCOMPOUND *comp = (LWCOMPOUND*)geom;
LWLINE *line = (LWLINE*)(comp->geoms[0]);
- return getPoint2d_cp(line->points, 0);
+ return getPoint2d_cp(line->points, 0);
}
default:
lwerror("lw_curvering_getfirstpoint2d_cp: unknown type");
@@ -1108,13 +1108,13 @@
dl->twisted = twist;
A2 = getPoint2d_cp(pa, t);
A3 = getPoint2d_cp(pa, t+1);
-
+
if ( lw_dist2d_pt_arc(p, A1, A2, A3, dl) == LW_FALSE )
return LW_FALSE;
if ( dl->distance <= dl->tolerance && dl->mode == DIST_MIN )
return LW_TRUE; /*just a check if the answer is already given*/
-
+
A1 = A3;
}
@@ -1293,7 +1293,7 @@
double dist_C_D; /* distance from C to D */
int pt_in_arc, pt_in_seg;
DISTPTS dltmp;
-
+
/* Bail out on crazy modes */
if ( dl->mode < 0 )
lwerror("lw_dist2d_seg_arc does not support maxdistance mode");
@@ -1316,7 +1316,7 @@
D = dltmp.p1;
dist_C_D = dltmp.distance;
-
+
/* Line intersects circle, maybe arc intersects edge? */
/* If so, that's the closest point. */
/* If not, the closest point is one of the end points of A */
@@ -1340,7 +1340,7 @@
/* If E is within A and within B then it's an interesction point */
pt_in_arc = lw_pt_in_arc(&E, B1, B2, B3);
pt_in_seg = lw_pt_in_seg(&E, A1, A2);
-
+
if ( pt_in_arc && pt_in_seg )
{
dl->distance = 0.0;
@@ -1348,11 +1348,11 @@
dl->p2 = E;
return LW_TRUE;
}
-
+
/* If F is within A and within B then it's an interesction point */
pt_in_arc = lw_pt_in_arc(&F, B1, B2, B3);
pt_in_seg = lw_pt_in_seg(&F, A1, A2);
-
+
if ( pt_in_arc && pt_in_seg )
{
dl->distance = 0.0;
@@ -1361,12 +1361,12 @@
return LW_TRUE;
}
}
-
+
/* Line grazes circle, maybe arc intersects edge? */
/* If so, grazing point is the closest point. */
/* If not, the closest point is one of the end points of A */
else if ( dist_C_D == radius_C )
- {
+ {
/* Closest point D is also the point of grazing */
pt_in_arc = lw_pt_in_arc(&D, B1, B2, B3);
pt_in_seg = lw_pt_in_seg(&D, A1, A2);
@@ -1388,16 +1388,16 @@
POINT2D G; /* Point on circle closest to A */
G.x = C.x + (D.x-C.x) * radius_C / dist_C_D;
G.y = C.y + (D.y-C.y) * radius_C / dist_C_D;
-
+
pt_in_arc = lw_pt_in_arc(&G, B1, B2, B3);
pt_in_seg = lw_pt_in_seg(&D, A1, A2);
-
+
/* Closest point is on the interior of A and B */
if ( pt_in_arc && pt_in_seg )
return lw_dist2d_pt_pt(&D, &G, dl);
}
-
+
/* Now we test the many combinations of end points with either */
/* arcs or edges. Each previous check determined if the closest */
/* potential point was within the arc/segment inscribed on the */
@@ -1408,7 +1408,7 @@
if ( pt_in_arc & ! pt_in_seg )
{
lw_dist2d_pt_arc(A1, B1, B2, B3, dl);
- lw_dist2d_pt_arc(A2, B1, B2, B3, dl);
+ lw_dist2d_pt_arc(A2, B1, B2, B3, dl);
return LW_TRUE;
}
/* or, one of the arc end points is the closest */
@@ -1416,7 +1416,7 @@
{
lw_dist2d_pt_seg(B1, A1, A2, dl);
lw_dist2d_pt_seg(B3, A1, A2, dl);
- return LW_TRUE;
+ return LW_TRUE;
}
/* Finally, one of the end-point to end-point combos is the closest. */
else
@@ -1427,7 +1427,7 @@
lw_dist2d_pt_pt(A2, B3, dl);
return LW_TRUE;
}
-
+
return LW_FALSE;
}
@@ -1437,7 +1437,7 @@
double radius_A, d;
POINT2D C; /* center of circle defined by arc A */
POINT2D X; /* point circle(A) where line from C to P crosses */
-
+
if ( dl->mode < 0 )
lwerror("lw_dist2d_pt_arc does not support maxdistance mode");
@@ -1447,14 +1447,14 @@
/* Calculate centers and radii of circles. */
radius_A = lw_arc_center(A1, A2, A3, &C);
-
+
/* This "arc" is actually a line (A2 is colinear with A1,A3) */
if ( radius_A < 0.0 )
return lw_dist2d_pt_seg(P, A1, A3, dl);
-
- /* Distance from point to center */
+
+ /* Distance from point to center */
d = distance2d_pt_pt(&C, P);
-
+
/* X is the point on the circle where the line from P to C crosses */
X.x = C.x + (P->x - C.x) * radius_A / d;
X.y = C.y + (P->y - C.y) * radius_A / d;
@@ -1484,12 +1484,12 @@
POINT2D P; /* Temporary point P */
POINT2D D; /* Mid-point between the centers CA and CB */
int pt_in_arc_A, pt_in_arc_B; /* Test whether potential intersection point is within the arc */
-
+
if ( dl->mode != DIST_MIN )
lwerror("lw_dist2d_arc_arc only supports mindistance");
-
+
/* TODO: Handle case where arc is closed circle (A1 = A3) */
-
+
/* What if one or both of our "arcs" is actually a point? */
if ( lw_arc_is_pt(B1, B2, B3) && lw_arc_is_pt(A1, A2, A3) )
return lw_dist2d_pt_pt(B1, A1, dl);
@@ -1497,7 +1497,7 @@
return lw_dist2d_pt_arc(B1, A1, A2, A3, dl);
else if ( lw_arc_is_pt(A1, A2, A3) )
return lw_dist2d_pt_arc(A1, B1, B2, B3, dl);
-
+
/* Calculate centers and radii of circles. */
radius_A = lw_arc_center(A1, A2, A3, &CA);
radius_B = lw_arc_center(B1, B2, B3, &CB);
@@ -1524,7 +1524,7 @@
P = CB; CB = CA; CA = P;
d = radius_B; radius_B = radius_A; radius_A = d;
}
-
+
/* Center-center distance */
d = distance2d_pt_pt(&CA, &CB);
@@ -1533,16 +1533,16 @@
{
lwerror("lw_dist2d_arc_arc can't handle cojoint circles, uh oh");
}
-
+
/* Circles touch at a point. Is that point within the arcs? */
if ( d == (radius_A + radius_B) )
{
D.x = CA.x + (CB.x - CA.x) * radius_A / d;
D.y = CA.y + (CB.y - CA.y) * radius_A / d;
-
+
pt_in_arc_A = lw_pt_in_arc(&D, A1, A2, A3);
pt_in_arc_B = lw_pt_in_arc(&D, B1, B2, B3);
-
+
/* Arcs do touch at D, return it */
if ( pt_in_arc_A && pt_in_arc_B )
{
@@ -1557,7 +1557,7 @@
else if ( d > (radius_A + radius_B) /* Disjoint */ || d < (radius_A - radius_B) /* Contained */ )
{
POINT2D XA, XB; /* Points where the line from CA to CB cross their circle bounds */
-
+
/* Calculate hypothetical nearest points, the places on the */
/* two circles where the center-center line crosses. If both */
/* arcs contain their hypothetical points, that's the crossing distance */
@@ -1565,10 +1565,10 @@
XA.y = CA.y + (CB.y - CA.y) * radius_A / d;
XB.x = CB.x + (CA.x - CB.x) * radius_B / d;
XB.y = CB.y + (CA.y - CB.y) * radius_B / d;
-
+
pt_in_arc_A = lw_pt_in_arc(&XA, A1, A2, A3);
pt_in_arc_B = lw_pt_in_arc(&XB, B1, B2, B3);
-
+
/* If the nearest points are both within the arcs, that's our answer */
/* the shortest distance is at the nearest points */
if ( pt_in_arc_A && pt_in_arc_B )
@@ -1585,11 +1585,11 @@
double a = (radius_A*radius_A - radius_B*radius_B + d*d) / (2*d);
/* Distance from D to E or F */
double h = sqrt(radius_A*radius_A - a*a);
-
+
/* Location of D */
D.x = CA.x + (CB.x - CA.x) * a / d;
D.y = CA.y + (CB.y - CA.y) * a / d;
-
+
/* Start from D and project h units perpendicular to CA-D to get E */
E.x = D.x + (D.y - CA.y) * h / a;
E.y = D.y + (D.x - CA.x) * h / a;
@@ -1608,7 +1608,7 @@
/* Start from D and project h units perpendicular to CA-D to get F */
F.x = D.x - (D.y - CA.y) * h / a;
F.y = D.y - (D.x - CA.x) * h / a;
-
+
/* Crossing point F contained in arcs? */
pt_in_arc_A = lw_pt_in_arc(&F, A1, A2, A3);
pt_in_arc_B = lw_pt_in_arc(&F, B1, B2, B3);
@@ -1639,8 +1639,8 @@
else if ( pt_in_arc_B && ! pt_in_arc_A )
{
lw_dist2d_pt_arc(A1, B1, B2, B3, dl);
- lw_dist2d_pt_arc(A3, B1, B2, B3, dl);
- return LW_TRUE;
+ lw_dist2d_pt_arc(A3, B1, B2, B3, dl);
+ return LW_TRUE;
}
/* Finally, one of the end-point to end-point combos is the closest. */
else
@@ -1650,7 +1650,7 @@
lw_dist2d_pt_pt(A2, B1, dl);
lw_dist2d_pt_pt(A2, B3, dl);
return LW_TRUE;
- }
+ }
return LW_TRUE;
}
@@ -1799,11 +1799,11 @@
int t;
int n1 = l1->npoints;
int n2 = l2->npoints;
-
+
LISTSTRUCT *list1, *list2;
list1 = (LISTSTRUCT*)lwalloc(sizeof(LISTSTRUCT)*n1);
list2 = (LISTSTRUCT*)lwalloc(sizeof(LISTSTRUCT)*n2);
-
+
LWDEBUG(2, "lw_dist2d_fast_ptarray_ptarray is called");
max1X = box1->xmax;
@@ -1899,7 +1899,7 @@
}
}
lwfree(list1);
- lwfree(list2);
+ lwfree(list2);
return LW_TRUE;
}
@@ -2098,7 +2098,7 @@
{
return lw_dist2d_pt_pt(p,B,dl);
}
-
+
/*If the point p is on the segment this is a more robust way to find out that*/
if (( ((A->y-p->y)*(B->x-A->x)==(A->x-p->x)*(B->y-A->y) ) ) && (dl->mode == DIST_MIN))
{
@@ -2106,7 +2106,7 @@
dl->p1 = *p;
dl->p2 = *p;
}
-
+
/*If the projection of point p on the segment is between A and B
then we find that "point on segment" and send it to lw_dist2d_pt_pt*/
c.x=A->x + r * (B->x-A->x);
More information about the postgis-tickets
mailing list