[postgis-users] Adaptive k-nearest neigbourh in PostGIS

Vilem Ded Ded.V at seznam.cz
Mon Jan 8 07:26:15 PST 2018


Thanks, 
very nice indeed! I will definitely give that a try. 
But this is really very dependent on data distribution. My dataset is 
clustered so it will be better, but probably not good enough:/
As I understood KNN in Postgis is implemented with priority queue?
If so, there must be condition of type while i < k {next} , where k is our K
in KNN. I was hoping for some way how to alter this part of code - "just" 
change those few lines..
Thank you for any other hints
Vil

---------- Původní e-mail ----------
Od: Darafei "Komяpa" Praliaskouski <me at komzpa.net>
Komu: PostGIS Users Discussion <postgis-users at lists.osgeo.org>
Datum: 20. 12. 2017 12:44:01
Předmět: Re: [postgis-users] Adaptive k-nearest neigbourh in PostGIS 
"
Hi,



it seems to me that cumulative distance is guaranteed to always be more or 
equal to straight line distance, thus transforming your KNN query to 
essentially KNN-in-box query.




You can add `where ST_DWithin(geom, 'SRID=32633;POINT(404419.4 5599450.3)'::
geometry, distcum)` to your select clause, and you'll get a box-based index 
scan for your non-index-using query. Depending on your data distribution it 
might give enough performance already.




ср, 20 дек. 2017 г. в 14:30, Vilem Ded <Ded.V at seznam.cz
(mailto:Ded.V at seznam.cz)>:

"
Hi,

I have big table of spatial points in 2D (or 3D) (PostGIS) and distance 
defined between them (let say just real spatial distance). When I create 
GIST index on these points, I can efficiently get k-nearest neighbors for 
each point using `<->` operator in ORDER BY statement with constant k (e.g. 
20) specified in `LIMIT` statement([Postgis-official][1]). 

    SELECT id, st_distance(geom,'SRID=32633;POINT(404419.4 5599450.3)'::
geometry ) as dist, geom 
    FROM positions 
    ORDER BY geom <-> 'SRID=32633;POINT(404419.4 5599450.3)'::geometry limit
20; 

Explain analyze for that: 

QUERY PLAN 
----------------------------------------------------------------------------
-------------------------------------------------------------- 
     Limit  (cost=0.28..2.64 rows=10 width=36) (actual time=0.243..0.313 
rows=10 loops=1) 
       ->  Index Scan using positons2_gix on positions2 (cost=0.28..12059.82
rows=51146 width=36) (actual time=0.243..0.310 rows=10 loops=1) 
             Order By: (up_geom <-> '0101000020797F00009A9999990DAF
184133333393365C5541'::geometry) 
     Planning time: 0.109 ms 
     Execution time: 0.368 ms 


The thing is, that I would like to get different (dynamic) number k of 
neighbors for each point such that cumulative sum ([How to compute 
cumulative sum][2]) of distances to these points is less than parameter a 
(let say 500m) of course maximizing k. So called adaptive k-nearest neighbor
algorithm. I could compute distance to all positions and filter it by WHERE 
clause: 

    select * from 
    (select  *, sum(dist) over(order by dist) distcum from 
         (select id, st_distance(geom,'SRID=32633;POINT(404419.4 
5599450.3)'::geometry ) as dist,  geom from 
        positions  ORDER BY geom <-> 'SRID=32633;POINT(404419.4 
5599450.3)'::geometry) a 
    ) b where distcum < 500; 

explain analyze for that: 

    QUERY PLAN 
----------------------------------------------------------------------------
------------------------------------------------------------------- 
     Subquery Scan on b  (cost=14073.70..15608.08 rows=17049 width=52) 
(actual time=155.427..186.656 rows=26 loops=1) 
       Filter: (b.distcum < '500'::double precision) 
       Rows Removed by Filter: 51120 
       ->  WindowAgg  (cost=14073.70..14968.76 rows=51146 width=44) (actual 
time=155.421..181.934 rows=51146 loops=1) 
             ->  Sort  (cost=14073.70..14201.57 rows=51146 width=44) (actual
time=155.410..157.985 rows=51146 loops=1) 
                   Sort Key: a.dist 
                   Sort Method: quicksort  Memory: 5532kB 
                   ->  Subquery Scan on a (cost=9434.16..10073.49 rows=51146
width=44) (actual time=130.931..145.989 rows=51146 loops=1) 
                         ->  Sort  (cost=9434.16..9562.03 rows=51146 width=
36) (actual time=130.930..136.711 rows=51146 loops=1) 
                               Sort Key: ((positions.geom <-> '0101000020797
F00009A9999990DAF184133333393365C5541'::geometry)) 
                               Sort Method: quicksort  Memory: 8729kB 
                               ->  Seq Scan on positions (cost=0.00..5433.95
rows=51146 width=36) (actual time=0.023..95.801 rows=51146 loops=1) 
     Planning time: 0.146 ms 
     Execution time: 186.705 ms 


but if I am not mistaken, this is sorting all points ( Sort Key: (
(positions.geom <->....) using GIST index, runs window function on all 
points to get cumulative sum and then uses filter. 

I would like to apply this adaptive knn for all points in my table with 
about 2 000 000 rows. My proposed query is too slow for that. 

Is there any way how to implement adaptive knn in PotgreSQL/PostGIS so the 
computation is faster than my solution? (probably by avoiding sorting of all
points for each point) 

Thank you 
Vil 

  [1]: https://postgis.net/docs/geometry_distance_knn.html
(https://postgis.net/docs/geometry_distance_knn.html) 
  [2]: https://stackoverflow.com/questions/22841206/calculating-cumulative-
sum-in-postgresql
(https://stackoverflow.com/questions/22841206/calculating-cumulative-sum-in-postgresql)
_______________________________________________
postgis-users mailing list
postgis-users at lists.osgeo.org(mailto:postgis-users at lists.osgeo.org)
https://lists.osgeo.org/mailman/listinfo/postgis-users
(https://lists.osgeo.org/mailman/listinfo/postgis-users)"
_______________________________________________
postgis-users mailing list
postgis-users at lists.osgeo.org
https://lists.osgeo.org/mailman/listinfo/postgis-users"
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.osgeo.org/pipermail/postgis-users/attachments/20180108/8fc7d0c7/attachment.html>


More information about the postgis-users mailing list