[GRASS-SVN] r54163 - grass-addons/grass6/raster/r.mcda.ahp

svn_grass at osgeo.org svn_grass at osgeo.org
Mon Dec 3 07:32:09 PST 2012


Author: gianluca
Date: 2012-12-03 07:32:09 -0800 (Mon, 03 Dec 2012)
New Revision: 54163

Modified:
   grass-addons/grass6/raster/r.mcda.ahp/r.mcda.ahp.py
Log:
remove bud format

Modified: grass-addons/grass6/raster/r.mcda.ahp/r.mcda.ahp.py
===================================================================
--- grass-addons/grass6/raster/r.mcda.ahp/r.mcda.ahp.py	2012-12-03 15:30:51 UTC (rev 54162)
+++ grass-addons/grass6/raster/r.mcda.ahp/r.mcda.ahp.py	2012-12-03 15:32:09 UTC (rev 54163)
@@ -1,111 +1,111 @@
-#!/usr/bin/env python
-############################################################################
-#
-# MODULE:       r.mcda.ahp
-# AUTHOR:       Gianluca Massei - Antonio Boggia
-# PURPOSE:      Generate a raster map classified with  analytic hierarchy process (AHP) [Saaty, 1977 and Saaty & Vargas, 1991]
-# COPYRIGHT:    c) 2010 Gianluca Massei, Antonio Boggia  and the GRASS 
-#                       Development Team. This program is free software under the 
-#                       GNU General PublicLicense (>=v2). Read the file COPYING 
-#                       that comes with GRASS for details.
-#
-#############################################################################
-
-
-#%Module
-#% description: Generate a raster map classified with analytic hierarchy process (AHP).
-#% keywords: raster, analytic hierarchy process (AHP), Multi Criteria Decision Analysis (MCDA)
-#%End
-#%option
-#% key: criteria
-#% type: string
-#% multiple: yes
-#% gisprompt: old,cell,raster
-#% key_desc: name
-#% description: Name of criteria raster maps 
-#% required: yes
-#%end
-#%option
-#% key: pairwise
-#% type: string
-#% gisprompt: old,file,input
-#% description: Pairwise comparison matrix
-#% required: yes
-#%end
-#%option
-#% key: output
-#% type: string
-#% gisprompt: new_file,cell,output
-#% description: output classified raster map
-#% required: yes
-#%end
-#%flag
-#% key:k 
-#% description:build a void pairwise comparison matrix and exit (no yet implemented)
-#%end
-
-import sys
-import grass.script as grass
-import numpy as np
-import warnings
-
-def calculateWeight(pairwise):
-    "Define vector of weight based on eigenvector and eigenvalues"
-    pairwise=np.genfromtxt(pairwise, delimiter=",")
-    warnings.simplefilter("ignore", np.ComplexWarning)
-    eigenvalues, eigenvector=np.linalg.eig(pairwise)
-    maxindex=np.argmax(eigenvalues)
-    eigenvalues=np.float32(eigenvalues)
-    eigenvector=np.float32(eigenvector)
-    weight=eigenvector[:, maxindex] #extract vector from eigenvector with max vaue in eigenvalues
-    weight.tolist() #convert array(numpy)  to vector
-    weight=[ w/sum(weight) for w in weight ]
-    return weight, eigenvalues,  eigenvector
-    
-def calculateMap(criteria, weight, outputMap):
-    "Parser a formula for mapcalc and run grass.mapcalc"
-    formula=''
-    for i in range(len(criteria)-1):
-        formula += "%s*%s + " % (criteria[i], weight[i])
-    formula +="%s*%s " % (criteria[len(criteria)-1], weight[len(criteria)-1])
-    grass.mapcalc(outputMap +"=" +formula)
-    return 0
-    
-def Consistency(weight,eigenvalues):
-    "Calculete Consistency index in accord with Saaty (1977)"
-    RI=[0.00, 0.00, 0.00,0.52,0.90,1.12,1.24,1.32,1.41]     #order of matrix: 0,1,2,3,4,5,6,7,8
-    order=len(weight)
-    CI= (np.max(eigenvalues)-order)/(order-1)
-    return CI/RI[order-1]
-    
-def ReportLog(eigenvalues,eigenvector, weight, consistency):
-    "Make a log file"
-    log=open("log.txt", "w")
-    log.write("eigenvalues:\n%s" % eigenvalues)
-    log.write("\neigenvector:\n%s" % eigenvector)
-    log.write("\nweight:\n%s" % weight)
-    log.write("\nconsistency:\n%s" % consistency)
-    log.close()
-    return 0
-    
-def main():
-    "main"
-    criteria = options['criteria'].split(',')
-    pairwise = options['pairwise']
-    outputMap = options['output']
-    gregion = grass.region()
-    nrows = gregion['rows']
-    ncols = gregion['cols']
-    ewres=int(gregion['ewres'])
-    nsres=int(gregion['nsres'])
-    weight, eigenvalues,  eigenvector = calculateWeight(pairwise)
-    calculateMap(criteria, weight, outputMap)
-    consistency=Consistency(weight,eigenvalues)
-    ReportLog(eigenvalues,eigenvector, weight, consistency)
-    
-    
-if __name__ == "__main__":
-    options, flags = grass.parser()
-    sys.exit(main())
-
-
+#!/usr/bin/env python
+############################################################################
+#
+# MODULE:       r.mcda.ahp
+# AUTHOR:       Gianluca Massei - Antonio Boggia
+# PURPOSE:      Generate a raster map classified with  analytic hierarchy process (AHP) [Saaty, 1977 and Saaty & Vargas, 1991]
+# COPYRIGHT:    c) 2010 Gianluca Massei, Antonio Boggia  and the GRASS 
+#                       Development Team. This program is free software under the 
+#                       GNU General PublicLicense (>=v2). Read the file COPYING 
+#                       that comes with GRASS for details.
+#
+#############################################################################
+
+
+#%Module
+#% description: Generate a raster map classified with analytic hierarchy process (AHP).
+#% keywords: raster, analytic hierarchy process (AHP), Multi Criteria Decision Analysis (MCDA)
+#%End
+#%option
+#% key: criteria
+#% type: string
+#% multiple: yes
+#% gisprompt: old,cell,raster
+#% key_desc: name
+#% description: Name of criteria raster maps 
+#% required: yes
+#%end
+#%option
+#% key: pairwise
+#% type: string
+#% gisprompt: old,file,input
+#% description: Pairwise comparison matrix
+#% required: yes
+#%end
+#%option
+#% key: output
+#% type: string
+#% gisprompt: new_file,cell,output
+#% description: output classified raster map
+#% required: yes
+#%end
+#%flag
+#% key:k 
+#% description:build a void pairwise comparison matrix and exit (no yet implemented)
+#%end
+
+import sys
+import grass.script as grass
+import numpy as np
+import warnings
+
+def calculateWeight(pairwise):
+    "Define vector of weight based on eigenvector and eigenvalues"
+    pairwise=np.genfromtxt(pairwise, delimiter=",")
+    warnings.simplefilter("ignore", np.ComplexWarning)
+    eigenvalues, eigenvector=np.linalg.eig(pairwise)
+    maxindex=np.argmax(eigenvalues)
+    eigenvalues=np.float32(eigenvalues)
+    eigenvector=np.float32(eigenvector)
+    weight=eigenvector[:, maxindex] #extract vector from eigenvector with max vaue in eigenvalues
+    weight.tolist() #convert array(numpy)  to vector
+    weight=[ w/sum(weight) for w in weight ]
+    return weight, eigenvalues,  eigenvector
+    
+def calculateMap(criteria, weight, outputMap):
+    "Parser a formula for mapcalc and run grass.mapcalc"
+    formula=''
+    for i in range(len(criteria)-1):
+        formula += "%s*%s + " % (criteria[i], weight[i])
+    formula +="%s*%s " % (criteria[len(criteria)-1], weight[len(criteria)-1])
+    grass.mapcalc(outputMap +"=" +formula)
+    return 0
+    
+def Consistency(weight,eigenvalues):
+    "Calculete Consistency index in accord with Saaty (1977)"
+    RI=[0.00, 0.00, 0.00,0.52,0.90,1.12,1.24,1.32,1.41]     #order of matrix: 0,1,2,3,4,5,6,7,8
+    order=len(weight)
+    CI= (np.max(eigenvalues)-order)/(order-1)
+    return CI/RI[order-1]
+    
+def ReportLog(eigenvalues,eigenvector, weight, consistency):
+    "Make a log file"
+    log=open("log.txt", "w")
+    log.write("eigenvalues:\n%s" % eigenvalues)
+    log.write("\neigenvector:\n%s" % eigenvector)
+    log.write("\nweight:\n%s" % weight)
+    log.write("\nconsistency:\n%s" % consistency)
+    log.close()
+    return 0
+    
+def main():
+    "main"
+    criteria = options['criteria'].split(',')
+    pairwise = options['pairwise']
+    outputMap = options['output']
+    gregion = grass.region()
+    nrows = gregion['rows']
+    ncols = gregion['cols']
+    ewres=int(gregion['ewres'])
+    nsres=int(gregion['nsres'])
+    weight, eigenvalues,  eigenvector = calculateWeight(pairwise)
+    calculateMap(criteria, weight, outputMap)
+    consistency=Consistency(weight,eigenvalues)
+    ReportLog(eigenvalues,eigenvector, weight, consistency)
+    
+    
+if __name__ == "__main__":
+    options, flags = grass.parser()
+    sys.exit(main())
+
+



More information about the grass-commit mailing list